
Spatial Join with R-Tree

on Graphics Processing Units

Tongjai Yampaka
Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

Tongjai.Y@Student.chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

prabhas@chula.ac.th

Abstract: Spatial operations such as spatial join combine two

objects on spatial predicates. It is different from relational

join because objects have multi dimensions and spatial join

consumes large execution time. Recently, many researches

tried to find methods to improve the execution time. Parallel

spatial join is one method to improve the execution time.

Comparison between objects can be done in parallel. Spatial

datasets are large. R-Tree data structure can improve the

performance of spatial join.

 In this paper, a parallel spatial join on Graphic processor

unit (GPU) is introduced. The capacity of GPU which has

many processors to accelerate the computation is exploited.

The experiment is carried out to compare the spatial join

between a sequential implementation with C language on

CPU and a parallel implementation with CUDA C language

on GPU. The result shows that the spatial join on GPU is

faster than on a conventional processor.

Keyword: Spatial Join, Spatial Join with R-tree, Graphic

processing unit

I. INTRODUCTION

 The evolution of Graphic Processing Unit is driven by

the demand for real time, high-definition and 3-D

graphics. The requirement for an efficient and fast

computation has been met by parallel computation [1]. In

addition, GPU architecture that supports parallel

computation is programmable to solve other problems.

This new trend is called General Purpose computing on

Graphic processors (GPGPU). Developers can use the

capacity of GPU to solve other problem beside graphics

and can improve the execution time by parallel

computation. In a spatial database, storing and managing

complex and large datasets such as Graphic Information

system (GIS) and Computer-aided design (CAD) are time

consuming. A spatial database characteristic is different

from a relational database because of data type. Spatial

data types are point, line and polygon. The type of data

depends on the characteristic of objects, for example a

road is represented by a line or a city is represented by a

polygon. An object shape is created by x, y and z

coordinates. Therefore, spatial operations in a spatial

database are not the same as operations in a relational

database. There are specific techniques for spatial

operations.

 Spatial join combines between two objects on spatial

predicates, for example, find intersection between two

objects. It is an expensive operation because spatial

datasets can be complex and very large. Their processing

cost is very high. To solve this problem R-Tree is used to

improve the performance for accessing data in spatial join.

Spatial objects are indexed by spatial indexing [2] [3].

The objects are represented by minimum bounding

rectangles which cover them. An internal node points to

children nodes that are covered by their parents. A leaf

node points to real objects. The join with R-Tree begins

with a minimum bounding rectangle. The test for an

overlap is performed from a root node to a leaf node. It is

possible that there are overlaps in sub-trees too.

 The previous work [4] introduces a technique for

spatial join that can be divided into two steps.

• Filter Step: This step computes an approximation of

each spatial object, its minimum bounding rectangle. This

step produces rectangles that cover all objects.

 • Refinement Step: In this step, spatial join predicates

are performed over each object.

 Recently, spatial join techniques have been proposed

in many works. In a survey [5], many techniques to

improve spatial join are described. One technique shows a

parallel spatial join that improves the execution time for

this operation.

 This paper presents a spatial join with R-Tree on

Graphic processing units. The parallel step is executed for

testing an overlap. The paper is organized as follow.

Section 2 explains the background and reviews related

works. Section 3 describes the spatial join with R-Tree on

Graphic processing units. Section 4 explains the

experiment. The results are presented in Section 5.

Section 6 concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Spatial join with R-Tree

 Spatial join combines two objects with spatial

predicates. Objects have multi-dimension so it is

important to efficiently retrieve data. In a survey [5],

techniques of spatial join are presented. Indexing data

such as R-Tree is one method which improves I/O time. In

[6], R-Tree is used for spatial join. Before executing a

spatial join predicate in the leaf level, an overlap between

two objects from parent nodes is tested. When parent

nodes are overlapped the search is continue into sub-trees

that are covered by its parents. The sub-trees which are

not overlapped from parent nodes are ignored. The reason

is that the overlapped parent nodes are probably

overlapped with leaf nodes too. The next step, the overlap

function test is called with sub-trees recursively. This

algorithm is shown in Figure 1

SpatialJoin(R,S):

For (all ptrS S) Do

For (all ptrR ∈ R with ptrR.rect ∩ ptrS.rect ≠∅) Do

 If (R is a leaf node) Then

 Output (ptrR , ptrS)

 Else

 Read (ptrR.child); Read (ptrS.child)

 SpatialJoin(ptrR.child, ptrS.child)

 End

End

End SpatialJoin;

Figure 1 Spatial join with R-Tree

 The work [6] presents a spatial join with R-Tree that

improves the execution time. However, this algorithm is

designed for a single-core processor. The proposed

algorithm is based on this work but the implementation is

on Graphics Processing Units.

B. Parallel spatial join with R-Tree

 To reduce the execution time of a spatial join, a

parallel algorithm can be employed. The work in [7]

describes a parallel algorithm for a spatial join. A spatial

join has two steps: filter step and refinement step. The

filter step uses an approximation of the spatial objects,

e.g. the minimum bounding rectangle (MBR).

 The filter admits only objects that are possible to

satisfy the predicate. A spatial object is defined in the

form {MBRi,IDi} where i is a key-pointer data for the

object. The output of this step is the set

[{MBRi,IDi},{MBRj,IDj}] if MBRi intersects with

MBRj. Each pair is called a candidate pair. The next step

is the refinement step. Pair of candidate objects is

retrieved from the disk for performing a join predicate. To

retrieve data, it reads the pointers from IDi and IDj. The

algorithm creates tasks for testing an overlap in the filter

step in parallel. For example in Figure 2, R and S denote

spatial relations.

 The set {R1,R2,R3,R4,R5,R6,…,RN} is in R root and

the set {S1,S2,S3,S4,S5,S6,…,SN} is in S root. In the

algorithm described here the filter step is done in parallel.

Root R

 Root S

 R root = {R1, R2, R3, R4, R5}

 S root = {S1, S2, S3, S4 }

 Task1 (R1,S1) Task2(R1,S2)

 Task3 (R1,S3) Task4(R1,S4) Task created

 …

 TaskN (RN,SN) TaskN(RN,SN)

Figure 2 Filter task creation and distribution

in Parallel for R-tree join

 The algorithm is designed for parallel operation on a

CPU. In this paper we use the same idea for the algorithm

but it is implemented on a GPU.

 In other research [8], R-Tree is used in parallel search.

The algorithm distributes objects to separate sites and

creates index data objects from leaves to parents. Every

parent has entries to all sites. A search query such as

windows query can perform search in parallel.

C. Spatial query on GPU

 For a parallel operation in GPU, the work in [9]

implements a spatial indexing algorithm to perform a

parallel search. A linear-space search algorithm is

presented that is suitable for the CUDA [1] programming

model. Before the search query begins, a preparation of

data array is required for the R-Tree. This is done on

CPU. Then the data array is loaded into device memory.

The search query is launched on GPU threads. The data

structure has two data arrays represented in bits. The

arithmetic at bit level is exploited. The first array stores

MBR co-ordinate referred to the bottom-left and top-right

co-ordinates of the i MBR in the index. The second array

is an array of R-Tree nodes. R-Tree nodes store the set

{MBRi, childNode|t|}. ChildNode|t| is an index into the

array representing the children of the node i. When the

search query is called, the GPU kernel creates threads to

execute the tasks. Then copy two data arrays to memory

on device. Finally the main function in GPU is called. The

algorithm is shown in Figure 3. The result is copied back

to CPU when the execution on GPU is finished.

Clear memory array (in parallel).

For each thread

if Search[i] is:

 For each search[i] overlaps with the query MBR node j:

 If the child node j is a leaf, mark it as part of the

 output.

 If the child node j is not a leaf, mark it in the

 Next Search array.

Sync Threads

Copy next Search array into Search[i] (in parallel).

Figure 3 R-Tree Searches on GPU

III. IMPLEMENTATION

A. Overview of the algorithm

 Most works have focused on the improvement of the

filter step. The first filter step assumes that the

computation is done with MBR of the spatial objects. In

this paper, this step is performed on CPU and the data set

is assumed to be in the data arrays. The algorithm begins

by parallel filtering objects on GPU. The steps of the

algorithm are as follows.

 • Step 1: The data arrays required for the R-Tree are

mapped to the device memory. The data arrays are

prepared on CPU before sending them to device.

∈

R1

R4

S1
R5

R2
S4

S2
S3 R3

A

D

B

E

C

A

D

B

E

C

 • Step 2: Filtering step, a function to find an overlap

between two MBR objects is called. Threads are created

on GPU for execution in parallel. The results are the set of

MBRs which are overlapping.

 • Step 3: Find leaf nodes, the results of step 2, the set

of MBRs, are checked whether they are in the leaf nodes

or not. If they are the leaf nodes, return the set as the

result and send them to the host. If they are not the leaf

nodes and then they are used as input again recursively

until reaching leaf nodes.

B. Data Structure in the algorithm

 Assume MBRs objects are stored in a table or a file. In

the join operation, there are two relations denote as R and

S. MBRs structure (shown in C language syntax) are in

the form:

Struct MBR_object {

int min_x,max_x,min_y,max_y;

};

/*x, y coordinate rectangle of object*/

Struct MBR_root {

int min_x,max_x,min_y,max_y;

child[numberOfchild];

};

/*x, y coordinate rectangle of root*/

MBR_root rootR [numberOfrootR];

MBR_root rootS [numberOfrootS];

/*Array of rootR and rootS relation*/

MBR_object objectR [numberOfobjectR];

MBR_object objectS [numberOfobjectS];

/*Array of objectR and objectS relation*/

C. R-Tree Indexing

 An R-Tree is similar to a B-Tree which the index is

recorded in a leaf node and it points to the data object [4].

All minimum bounding rectangles are created by x, y

coordinates of objects. The index of data is created by

packing R-Tree technique [10]. The technique is divided

into three steps:

 1) Find the amount of objects per pack. The number of

child is between a lower bound (m) and an upper bound

(M) values.

 2) Sort the data on x or y coordinates of rectangle.

 3) Assign rectangles from the sort list to the pack

successively, until the pack is full. Then, find min x, y

and max x, y for each pack to create the root node.

Figure 4 MBRs before split node R-Tree

 An example is shown in Figure 4. It has five

rectangles of objects. The objects are ordered according to

x-coordinate of the rectangle. The sorted list is {A, D, B,

E, C}. Define objects per pack as three. The assignments

of objects into packs are:

 Pack1 = {A, D, B}

 Pack2 = {C, E}

 In the next step, a root is created. Compute min x,

min y and max x, max y.

 Pack1 Pack2

 Max y

 R1 R2

 Min y

 Min x Max x

Figure 5 MBRs after split node R-Tree

 The root node of pack1 is R1 and the root node of

pack2 is R2. R1 points to three objects: A, D and B. R2

points to two objects: C and E. The root coordinate is

computed from min x, min y max x, max y of all objects

which the root covers them. In the example, only one

relation is shown.

 R-Tree creation is done on CPU. The difference is in

the spatial join operation. The spatial join on CPU is

sequential and on GPU is parallel.

D. Spatial join on GPU

 To parallelize a spatial join, the data preparation is

carried out on CPU, such as MBRs calculation and

splitting R-Tree nodes. In GPU, the overlap function and

the intersection join function are executed in parallel.

1) Algorithm

• Overlap: This step is the filter step for testing the

overlap between root nodes R and S.

1. Load MBR data arrays (R and S) to GPU.

2. Test the overlap Ri and Sj in parallel.

3. The overlap function call is:

 Overlap ((Sj.x_min < Ri.x_max)

 and (Sj.x_max > Ri.x_min)

 and (Sj.y_min < Ri.y_max)

 and (Sj.y_max > Ri.y_min))

4. For each Ri overlap Sj

5. Find Ri and Sj children nodes.

• Find children: Find children nodes which are covered

by the root Ri and Sj.

a) The information from MBRs indicates the children

that are covered by the root.

b) Load children data and send them to the overlap

function.

• Test intersection: This is the refinement step. Compute

the join predicate on all children of Ri and Sj using the

overlap function above.

2) GPU Program Structure

 CUDA C language is used. The language has been

designed to facilitate graphic rendering on Graphics

processing units. CUDA program has two phases [11]. In

the first phase, the program on CPU, called host code,

performs the data initialization and transfers data from

host to device or from device to host. On the second

phase, the program on GPU, called the device code,

makes use of the CUDA runtime system to generate

threads for execution of functions. All threads execute the

same code but operate on different data at the same time.

A CUDA function uses the keyword “__global__” to

define function that is a kernel function. When the kernel

function is called from the host, CUDA generates a grid of

threads on the device.

 In the spatial join, the overlap function is distributed to

different blocks and is executed at the same time with

different data objects. To divide the task, every block has

a block identity calls blockIdx.

For example:

•••• Objects
Relation R = {Robject0, Robject1, Robject2,..,RobjectN},

Relation S = {Sobject0, Sobject1, Sobject2,…,SobjectN}

•••• Overlap function: Compare all objects. Find x and y

coordinates in the intersection predicate.

 The sequential program on CPU executes only one

pair of data at the one time.

 Robject0 compare Sobject0

 Robject0 compare Sobject1

 Robject0 compare Sobject2

 ...

 RobjectN compare SobjectN..timeN

 On GPU, the CUDA code on device generates blocks

for execution all data on different blocks.

 Block0 = Robject0 compare Sobject0

 Block1 = Robject0 compare Sobject1

 Block2 = Robject0 compare Sobject2

 ...

 BlockN = RobjectN compare SobjectN

 The memory is allocated for execution between CPU

and GPU. First, allocate memory for data structure of root

R-Tree and MBRs of objects. Second, allocate memory of

data arrays to store results. When the task is done copy

data arrays back to host.

 The nested loop is transformed to run in parallel. The

rectangle of objects are mapped to 2D block on GPU. The

outer loop is mapped to blockIdx.x and the inner loop is

mapped to threadIdx.y.

 The call to kernel function is:

kernel<<<number of outer loop,number of inner loop>>>.

CUDA kernel generates blocks and threads for execution.

IV. EXPERIMENTATION

A. Platform

 The spatial join is coded in C language for sequential

version. CUDA C language is used in parallel version.

Both versions run on Intel Core i3 530 DDR3 2.93 GHz

2 GB memory. GPU NVIDIA GT440 1092 MHz.1024

MB and CUDA 96 Cores.

B. Dataset

 In the experiment, the dataset is retrieved from R-Tree

portal [12]. In the data preparation step the minimum

bounding rectangles are pre-computed. The attributes in

the dataset consist of Roads join River in Greece, Streets

join Real roads in Germany.

TABLE I DATASET IN EXPERIMENTATION

Pair of dataset Amount

MBRs

Data size

Greece

Rivers join Roads 47,918 0.7 MB

Germany

Streets join Real roads 67,008 0.6 MB

 Table 1 shows the number of MBRs and the size of

dataset. All datasets are in text file. A C function is used

to read data from a text file to data arrays.

V. RESULT

 Spatial join is tested with dataset in Table 1 with two

functions (Overlap function of root nodes and Intersection

function of children nodes). In the experiment, the time to

read data from text files and stores them to data arrays is

ignored. The execution time of spatial join operation

between CPU and GPU is compared. The generation of R-

Tree is done on CPU in both sequential and parallel

version. Only the spatial join operations are different.

A. Performance comparison between sequential and

parallel

 The results are divided into two functions: overlap

and intersect.

TABLE II EXECUTION TIME ON GPU AND CPU

Pair of

dataset

Overlap

(ms)

Intersection

(ms)

Total

(ms)

CPU GPU CPU GPU CPU GPU

Greece

Rivers

join

Roads

18 4 72.67 22.33 90.67 26.33

Germany
Streets

join Real

roads

5.33 4 74.00 39.67 79.33 43.67

 The result in Table 2 shows that the execution time on

GPU is faster than on CPU. For the dataset 1, the overlap

function on GPU is 77.78% faster (4 ms versus 18 ms or

about 4x); the intersection function is 69.27% faster (3x).

The total execution time on GPU is 70.96% faster (3.4x).

For the dataset 2, the overlap function on GPU is 25%

faster (1.3x); the intersection function is 46.40%

faster (1.8x). The total execution time on GPU is 44.96%

faster (1.8x). The speedup depends on the data type as

well. If data has larger numbers, the execution time is

longer too. In the experiment, the dataset 1 is floating

point data. It has six digits per one element. Execution

time is higher than the dataset 2 because the dataset 2 has

integer data. It has four digits per one element.

 The time to transfer data is significant. The data

transfer time affected the execution time. The total

running time in Table 2 includes the data transfer time

from host to device and device to host.

Figure 6 Transfer rate dataset 1, dataset 2

 Figure 6 shows the data transfer rate on GPU. The

dataset 1 has 47,918 records and its size is 0.7 MB. The

data transfer time of this dataset is 59.53% of the

execution time. The dataset 2 has 67,008 records and is

0.6 MB. The data transfer time of this dataset is 76.83%

of the execution time.

VI. CONCLUSION

 This paper describes how a spatial join operation with

R-Tree can be implemented on GPU. It uses the multi-

processing units in GPU to accelerate the computation.

The process starts with splitting objects and indexing data

in R-Tree on the host (CPU) and copies them to the device

(GPU). The spatial join makes use of the parallel

execution of functions to perform the calculation over

many processing units in GPU.

 However using Graphic Processor Unit to perform

general purpose task has limitations. The symbiosis

between CPU and GPU is complicate. There is a need to

transfer data back and forth between CPU and GPU and

the data transfer time is significant. Therefore, it may be

the case that the data transfer time will dominate the total

execution time if the task and the data are not carefully

divided.

 The future work will be on how to automate and

coordinate the task between CPU and GPU. There are

other database management functions that are suitable to

be implemented in GPU too. It is worth the investigation

as GPU becomes ubiquitous nowadays.

REFERENCE

[1] NVIDIA CUDA Programming Guide, 2010. Retrieve

at http://developer.download.nvidia.com

[2] A. Nanopoulos, A. N. Papadopoulos and Y.

Theodoridis Y. Manolopoulos, R-trees: Theory and

Applications, Springer, 2006.

[3] Xiang Xiao and Tuo Shi, "R-Tree: A Hardware

Implemention," Int. Conf. on Computer Design, Las

Vegas, USA, July 14-17, 2008..

[4] Gutman A., "R-tree:A Dinamic Index Structure for

Spatial Searching," ACM SIGMOD Int. Conf. , 1984.

[5] E.H. Jacox and H. Samet, "Spatial Join Techniques,"

ACM Trans. on Database Systems, Vol.V, No.N,

November 2006, Pages 1–45.

[6] Hans P. Kriegel and B. Seeger T. Brinkhoff, "Efficient

Processing of Spatial Joins Using R-tree," SIGMOD

Conference, 1993, pp.237-246.

[7] L. Mutenda and M. Kitsuregawa, "Parallel R-tree

Spatial Join for a Shared-Nothing Architecture," Int. Sym.

on Database Applications in Non-Traditional

Environments, Japan, 1999, pp.423-430.

[8] H. Wei, Z. Wei, Q. Yin, "A New Parallel Spatial

Query Algorithm for Distributed Spatial Database," Int.

Conf. on Machine Learning and Cybernetics, 2008, Vol.3,

pp.1570-1574.

[9] M. Kunjir and A. Manthramurthy, "Using Graphics

Processing in Spatial Indexing Algorithm", Research

report, Indian Institute of Science, 2009.

[10] K. Ibrahim and F. Cristos, "On Packing R-tree," Int.

Conf. on Information and knowledge management, ACM,

USA, 1993, pp.490-499.

[11] David B. Kirk and Wen-mei W. Hwu, Programming

Massively Parallel Processors A Hands-on Approach,

Morgan Kaufmann, 2010.

[12] R-tree Portal. [Online]. http://www.rtreeportal.org

