
 
Abstract— This paper presents an implementation of 

Coincidence Algorithm on multi-core processors. The algorithm is 
suitable to solve combinatorial problems. The implementation uses 
Intel Threading Building Blocks library for parallel computation. The 
performance improvement is measured using several Traveling 
Salesman Problems. The result shows that a speedup of a dual-core 
processor over a single-core processor is 76% and 230% for a quad-
core processor. 
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I. INTRODUCTION 
INDING an optimal solution of complex problems usually 
is a difficult task and mostly not very efficient on today 

computers. One popular approach for solving these problems is 
Evolutionary Algorithm (EA). Traveling Salesman Problem 
(TSP) represents a typical optimization problems of this class. 
Coincidence Algorithm (COIN) is an evolutionary algorithm 
specialized in combinatorial problems. TSP belongs to this 
class of problems. A typical EA consumes long running time, 
therefore to improve the execution time a parallel computation 
is introduced. Presently, the technology has changed very fast 
and the multi-core processors now already a common place in 
the market. This paper presents to an implementation of COIN 
algorithm with parallel programming on multi-core processors. 

The structure of this paper is organized as follows. Section II 
presents the related work. Section III gives an overview the 
coincidence algorithm. Section IV presents a parallel 
implementation on multi-core processors. The experimental 
evaluation is shown in Section V and the conclusion is 
presented in Section VI. 1 

II. RELATED WORK 
Parallel processing is well known today. Many work show 

how to improve the computing performance. For example, 
Hongzhong Shan proposes a hybrid programming for 
multicore processors [1]. His research used MPI and OpenMP 
programming model.  He reported the result on performance 
and memory usage. The research investigates three problems: 
Lower-Upper Symmetric Gauss-Siedal (LU), Scalar Penta-
diagonal (SP) and Block Tri-diagonal (BT). The memory 
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usage depends on number of MPI process. The performance, 
when using MPI and OpenMP is better than pure MPI model. 
The limitation is when there is more MPI process, the load 
imbalance will occur. Parallel K-Nearest Neighbor Algorithm 
on CUDA-enabled GPU (CUNN) proposed by Shenshen 
Liang et al. [2]. The research uses two CUDA kernels, 
distance calculation and selection. The experimental 
evaluation shows that the processing time is reduced by 46.71 
percent for the synthetic datasets and 42.49 percent for the 
physical simulation dataset. The I/O cost is included. 

However to implement a parallel program for GPU, the 
developer has to use thread and manage a low level details 
such as block selection, thread control and data transfer 
between main memory and GPU memory. Salman Yussof et al. 
demonstrates a parallel genetic algorithm for shortest path 
routing problem [3]. Coarse-grained GA has been chosen and 
is implemented on MPI cluster. The computation time is faster 
than GA but the accuracy of an algorithm will decrease when 
using more computing nodes. 

III. COINCIDENCE ALGORITHM (COIN) 
COIN was proposed in 2009 [4].  It is an algorithm in the 

class of Estimation Distribution Algorithms (aka a modern GA) 
which employs a model.  The model in COIN is a Markov 
Chain Matrix. This matrix is used to generate the next 
generation population. COIN generates the population by 
probability of each coincidence.  The representation of solution 
for TSP is a tour designated by a permutation of label of each 
city.  A coincidence is a pair of adjacent labels.  For example, 
we have path of ten cities TSP problem and represented by A, 
B, C, D, E, F, G, H, I and J. 

 
ABCDEFGHIJ 
 
From this tour, we have ten coincidences namely A-B, B-C, 

C-D, D-E, E-F, F-G, G-H, H-I, I-J and J-A back to the start 
point. Using these pair the probability in the matrix can be 
updated. The steps of COIN can be summarized as follows: 

Step 1 Initialize the matrix 
Step 2 Sampling the population 
Step 3 Evaluate the population 
Step 4 Select the candidates 
Step 5 Update the matrix 
Step 6 repeat Step 1-5 until converge 
The most important step is the update step. 
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A. The Generator 
COIN algorithm used the generator for sampling the 

population and represented by matrix, H, of size 𝑛 × 𝑛 
containing probability of each pair of member. In the proposed 
algorithm each Hxy, where x represented as a row and y 
represented as a column of the matrix, has a value between 0.0 
to 1.0 (except the diagonal are always zero) and the sum over 
each row equals 1.0. 

B. Initial the Generator 
The generator, for the beginning, all Hxy except Hxx are 

updated with a value 1
(𝑛−1) where n is a problem size. 

C. Sampling the Population 
The starting point is sampled, says it is x and the next 

sample point is y. This denotes the edge xy of the tour. The 
probability of sample depends on Hxy. The next edge is again 
generated from H starting from y. This process is repeat until 
the length of problem size (n) is reached. All population are 
generated in the same way. 

D. Evaluate the Population 
Every candidate is evaluated for it fitness by the function 

according to the objective. 

E. Selection the Candidates 
All of population is ranked by the fitness value. Then select 

c percent of top as a better-group and c percent of bottom as a 
worse-group. 

F. Update the Generator 
The better-group is use for reward by increase of Hxy. Every 

pair of xy founded in this group is use for update. The reward 
equation is: 

 

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛 − 1) �𝑟𝑥𝑦
(𝑡 + 1)�

−
𝑘

(𝑛 − 1)2 ��𝑟𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1
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 The punishment is to decrease of Hxy of any pair of xy 

founded in the worse-group. The punishment equation is: 
 

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) −
𝑘

(𝑛 − 1) �𝑝𝑥𝑦
(𝑡 + 1)�

+
𝑘
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 The new value of Hxy when founded in both group, the 

equation with combining from both is: 
 

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛 − 1) �𝑟𝑥𝑦(𝑡 + 1) − 𝑝𝑥𝑦(𝑡 + 1)�

+
𝑘

(𝑛 − 1)2 ��𝑝𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1
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𝑛
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Where k denotes the learning step, n is the length of 

problem size, rxy the number of xy founded in better-group, pxy 
the number of xy founded in worse-group. The incremental 
and decrease step is  𝑘

(𝑛−1) and term 𝑘
(𝑛−1)2

�∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 −

∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 �  represents the step to adjust all other Hxj 

where 𝑗 ≠ 𝑥 and 𝑗 ≠ 𝑦 to keep the sum of each row remain to 
one. 

IV. IMPLEMENTATION 
Most programs in the past decades are written for serial 

computers running on a single computer with a single-core. In 
the present, the technology has been changed, the processor 
was developed with increasing number of cores and in the next 
5-10 years the processor will comes out with tens or even a 
hundred of cores [5]. For use full account of processor 
performance the parallel programming is important. 

A. Intel Threading Building Blocks (TBB) 
This techniques for parallelism have been developed in 

many languages for ease of programming. The Intel Threading 
Building Blocks (TBB) library [6], [7] is one of parallelism 
library extension use in high level language (C++) for 
multithreads applications. Intel TBB is a task-base parallel 
developed by Intel. It operates by defining tasks that can be 
executed concurrently. Intel TBB performing parallelism by 
using the work-stealing task schedules to distribute tasks and 
balance a load between the available threads [8]. 

1) The Operation: Intel TBB for generic parallel 
algorithm using the parallel_for, parallel_reduce, 
parallel_scan, parallel_do, pipeline, parallel_pipeline, 
parallel_sort and parallel_invoke. The simplest of parallelism 
is a loop of iterations, in TBB parallel_for function template is 
used and also it provides parallel_reduce for calculation of a 
reduction and parallel_scan for calculation of a parallel prefix. 
TBB applies to a range of elements concurrently [8]. An 
advance algorithm for streams uses parallel_do, parallel_sort 
and pipeline. The parallel_for template works with a fixed 
number of independence loop iterations. It breaks iteration 
space into a chunk which run on separate threads. The first 
parameters of the template is a blocked_range object that 
describes the lower bound and the upper bound of the iteration 
space. The second parameter is the function object which calls 
the body object. The overload the operator method is applied 
to each subrange. 

B. COIN Parallel on Multi-core Processors 
The parallel computation for COIN algorithm takes place in 

three modules, 1) generate the population, 2) evaluate the 
population and 3) update the generator. This section shows the 

(3) 
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differences between the Sequential and the Parallel algorithm 
implemented by TBB. 

1) Generate the Population: Each population is 
independent from the others. The goal of this module is to use 
full account the concurrency of population generating 
processed in the different tasks. Generation of the population 
can be fully parallelized. This algorithm generates, for each 
generation, the population by breaking the amount of 
population into subgroups for different tasks (thread). The 
process is illustrated in Figure 1. The implementation of the 
algorithm using TBB code shown in Figure 3. For 
parallelization of the algorithm, parallel_for of TBB library is 
used. In this code at line 19 creates the task scheduler object 
for mapping tasks to physical threads. The parallel_for 
function in line 22, the block_range, the first argument, 
defined whole range of the population. The grain size, the 
iRange, is defined by dividing with 10 in this case. The 
Generate class, the second argument, to generate the 
population is defined in lines 1 thru 8. The parallel_for 
invokes the Generate class on each subranges. At line 4, the 
call range.begin() method returns the start of subrange and 
range.end() methods returns the end of subrange. The 
sequential code of the Generate population is shown in Figure 
2. The function uses a normal for-loop, in line 7, to generate 
the population. 

 

 
 

Fig. 1 Parallelization of Generate the population algorithm 
 
 

 
Fig. 2 The sequential algorithm of Generate the population 

 
 

Fig. 3 The Generate population algorithm implemented by TBB 

2) Evaluate the Population: Once the population has been 
generated, evaluation of the population is performed to 
calculate the fitness value and to rank all candidates. The 
fitness value calculation is computed as the tour length of 
every candidates in the generation. With data-parallelism, we 
can concurrently calculate the fitness value of the population. 
First, the population is divided into subgroups map to TBB 
task (see Figure 4 (a)). Second, each subgroup contained 
multiple candidates and will be processed in a sequential 
method. The length of the tour is the sum of distance between 
each pair of the tour. Since  pairs of the tour are independent, 
the distance calculation can be performed in a parallel (see 
Figure 4 (b)).  

3) Update the Generator: Before generating the next 
population, the generator have to be updated. The algorithm to 
update the generator has two major steps. First, increase the 
probability of each pair found in the good group. Second, 
decrease the probability of each pair found in the worse group. 
The parallel algorithm to update the generator is described in 
two parts. Part one, traversing the matrix. We separate the 
matrix by row into subgroups for concurrent update. Part two, 
counting the number of occurrence of pairs from the selected 
candidates (good and worse groups). Counting method 
concurrently looks at the selected candidates then returns the 
final answer. The algorithm is illustrated in Figure 5. 
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Fig. 4 Parallelization of Evaluate the population algorithm 

 

 

 
Fig. 5 Parallelization of Update the generator algorithm 

V. EXPERIMENTAL EVALUATION 

A. Experiment Environment 
The environment used in the experiment is the processor 

with a quad-core 3.30 GHz Intel Core i5 and 8 MB main 
memory, running Windows 7 64-bit with service pack 1. The 
algorithm is implemented in C++ using Microsoft Visual 
Studio 2010 and Intel Parallel Studio XE 2011 with Intel TBB 
3.0. The four TSP problems use symmetric TSPs data sets 
from TSPLIB [9]. The problems are Eil51, Eil76, Eil101 and 
Ch130. The main objective is to measure the performance of 
the computation time of the proposed algorithm. Computation 
time is obtained from the beginning to the end of the 
processing. The performance measurements are compared 
between a sequential version and parallel version of the same 
algorithm. 

B. Result 
The algorithm of COIN has a special parameter, the leaning 

step is set to 0.1. Other parameters use the same setting, the 
max generation is 500 and the population size is 500. 

TABLE I shows the performance of the proposed algorithm 
for solving the TSP problems. The result shows a comparison 
of single-core with dual-core and single-core with quad-core. 
The speedup of the algorithm running on dual-core is 78% 
over single-core and the speedup of quad-core over single-
core is 230%. The computation time reported the average 
value from 10 runs of the test. The standard deviation (S.D.) 
explains the spread of data, a low S.D. shows that the data 
values trend to be close to the mean, whereas high S.D. 
indicates that the data values are spread out in a large range. 
The S.D. of all four problems are small. That means the data 
points are reliable. 

VI. CONCLUSION 
This paper proposed to improve the performance of COIN 

algorithm with a parallel computation on multi-core platform. 
The result of the test by solving 4 TSP problems is faster than 
the sequential version of the algorithm. Based on the 
experiment, when solving the larger problem, the algorithm 
takes longer time but both of parallel implementation are still 
faster than the sequential implementation. 

TABLE I 
 PERFORMANCE OF COMPUTATION TIME COMPARE WITH SINGLE CORE CPU 

COIN on CPU 
core(s) 

TSP Problems 

Eil 51 Eil 76 Eil 101 Ch 130 

Time (seconds) S.D. Time (seconds) S.D. Time (seconds) S.D. Time (seconds) S.D. 

Single-core 38.84 0.30 115.65 2.38 252.42 17.53 531.23 25.97 

Dual-core 21.80 0.50 66.83 0.36 152.38 1.38 309.87 3.87 

Quad-core 12.08 0.47 35.06 1.32 77.72 1.40 160.32 2.84 

Speed up of 2 cores 78.17%  73.05%  65.65%  71.44%  
Speed up of 4 cores 221.52%  229.86%  224.78%  231.36%  
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