

Abstract— This paper presents an implementation of

Coincidence Algorithm on multi-core processors. The algorithm is
suitable to solve combinatorial problems. The implementation uses
Intel Threading Building Blocks library for parallel computation. The
performance improvement is measured using several Traveling
Salesman Problems. The result shows that a speedup of a dual-core
processor over a single-core processor is 76% and 230% for a quad-
core processor.

Keywords— coincidence algorithm, evolutionary computation,

multi-core system, parallel processing.

I. INTRODUCTION
INDING an optimal solution of complex problems usually
is a difficult task and mostly not very efficient on today

computers. One popular approach for solving these problems is
Evolutionary Algorithm (EA). Traveling Salesman Problem
(TSP) represents a typical optimization problems of this class.
Coincidence Algorithm (COIN) is an evolutionary algorithm
specialized in combinatorial problems. TSP belongs to this
class of problems. A typical EA consumes long running time,
therefore to improve the execution time a parallel computation
is introduced. Presently, the technology has changed very fast
and the multi-core processors now already a common place in
the market. This paper presents to an implementation of COIN
algorithm with parallel programming on multi-core processors.

The structure of this paper is organized as follows. Section II
presents the related work. Section III gives an overview the
coincidence algorithm. Section IV presents a parallel
implementation on multi-core processors. The experimental
evaluation is shown in Section V and the conclusion is
presented in Section VI. 1

II. RELATED WORK
Parallel processing is well known today. Many work show

how to improve the computing performance. For example,
Hongzhong Shan proposes a hybrid programming for
multicore processors [1]. His research used MPI and OpenMP
programming model. He reported the result on performance
and memory usage. The research investigates three problems:
Lower-Upper Symmetric Gauss-Siedal (LU), Scalar Penta-
diagonal (SP) and Block Tri-diagonal (BT). The memory

W. Srimook and P. Chongstitvatana are with the Computer Engineering
Department, Engineering Faculty of Chulalongkorn University, Bangkok,
Thailand (email: rathebest@gmail.com and prabhas.c@chula.ac.th)

usage depends on number of MPI process. The performance,
when using MPI and OpenMP is better than pure MPI model.
The limitation is when there is more MPI process, the load
imbalance will occur. Parallel K-Nearest Neighbor Algorithm
on CUDA-enabled GPU (CUNN) proposed by Shenshen
Liang et al. [2]. The research uses two CUDA kernels,
distance calculation and selection. The experimental
evaluation shows that the processing time is reduced by 46.71
percent for the synthetic datasets and 42.49 percent for the
physical simulation dataset. The I/O cost is included.

However to implement a parallel program for GPU, the
developer has to use thread and manage a low level details
such as block selection, thread control and data transfer
between main memory and GPU memory. Salman Yussof et al.
demonstrates a parallel genetic algorithm for shortest path
routing problem [3]. Coarse-grained GA has been chosen and
is implemented on MPI cluster. The computation time is faster
than GA but the accuracy of an algorithm will decrease when
using more computing nodes.

III. COINCIDENCE ALGORITHM (COIN)
COIN was proposed in 2009 [4]. It is an algorithm in the

class of Estimation Distribution Algorithms (aka a modern GA)
which employs a model. The model in COIN is a Markov
Chain Matrix. This matrix is used to generate the next
generation population. COIN generates the population by
probability of each coincidence. The representation of solution
for TSP is a tour designated by a permutation of label of each
city. A coincidence is a pair of adjacent labels. For example,
we have path of ten cities TSP problem and represented by A,
B, C, D, E, F, G, H, I and J.

ABCDEFGHIJ

From this tour, we have ten coincidences namely A-B, B-C,

C-D, D-E, E-F, F-G, G-H, H-I, I-J and J-A back to the start
point. Using these pair the probability in the matrix can be
updated. The steps of COIN can be summarized as follows:

Step 1 Initialize the matrix
Step 2 Sampling the population
Step 3 Evaluate the population
Step 4 Select the candidates
Step 5 Update the matrix
Step 6 repeat Step 1-5 until converge
The most important step is the update step.

An Implementation of Coincidence Algorithm
on Multi-core Processors

W. Srimook and P. Chongstitvatana

F

International Conference on Computer and Information Technology (ICCIT'2012) June 16-17, 2012, Bangkok

76

(2)

(1)

A. The Generator
COIN algorithm used the generator for sampling the

population and represented by matrix, H, of size 𝑛 × 𝑛
containing probability of each pair of member. In the proposed
algorithm each Hxy, where x represented as a row and y
represented as a column of the matrix, has a value between 0.0
to 1.0 (except the diagonal are always zero) and the sum over
each row equals 1.0.

B. Initial the Generator
The generator, for the beginning, all Hxy except Hxx are

updated with a value 1
(𝑛−1) where n is a problem size.

C. Sampling the Population
The starting point is sampled, says it is x and the next

sample point is y. This denotes the edge xy of the tour. The
probability of sample depends on Hxy. The next edge is again
generated from H starting from y. This process is repeat until
the length of problem size (n) is reached. All population are
generated in the same way.

D. Evaluate the Population
Every candidate is evaluated for it fitness by the function

according to the objective.

E. Selection the Candidates
All of population is ranked by the fitness value. Then select

c percent of top as a better-group and c percent of bottom as a
worse-group.

F. Update the Generator
The better-group is use for reward by increase of Hxy. Every

pair of xy founded in this group is use for update. The reward
equation is:

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛 − 1) �𝑟𝑥𝑦
(𝑡 + 1)�

−
𝑘

(𝑛 − 1)2 ��𝑟𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1

�

 The punishment is to decrease of Hxy of any pair of xy

founded in the worse-group. The punishment equation is:

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) −
𝑘

(𝑛 − 1) �𝑝𝑥𝑦
(𝑡 + 1)�

+
𝑘

(𝑛 − 1)2 ��𝑝𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1

�

 The new value of Hxy when founded in both group, the

equation with combining from both is:

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛 − 1) �𝑟𝑥𝑦(𝑡 + 1) − 𝑝𝑥𝑦(𝑡 + 1)�

+
𝑘

(𝑛 − 1)2 ��𝑝𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1

−�𝑟𝑥𝑗(𝑡 + 1)
𝑛

𝑗=1

�

Where k denotes the learning step, n is the length of

problem size, rxy the number of xy founded in better-group, pxy
the number of xy founded in worse-group. The incremental
and decrease step is 𝑘

(𝑛−1) and term 𝑘
(𝑛−1)2

�∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 −

∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 � represents the step to adjust all other Hxj

where 𝑗 ≠ 𝑥 and 𝑗 ≠ 𝑦 to keep the sum of each row remain to
one.

IV. IMPLEMENTATION
Most programs in the past decades are written for serial

computers running on a single computer with a single-core. In
the present, the technology has been changed, the processor
was developed with increasing number of cores and in the next
5-10 years the processor will comes out with tens or even a
hundred of cores [5]. For use full account of processor
performance the parallel programming is important.

A. Intel Threading Building Blocks (TBB)
This techniques for parallelism have been developed in

many languages for ease of programming. The Intel Threading
Building Blocks (TBB) library [6], [7] is one of parallelism
library extension use in high level language (C++) for
multithreads applications. Intel TBB is a task-base parallel
developed by Intel. It operates by defining tasks that can be
executed concurrently. Intel TBB performing parallelism by
using the work-stealing task schedules to distribute tasks and
balance a load between the available threads [8].

1) The Operation: Intel TBB for generic parallel
algorithm using the parallel_for, parallel_reduce,
parallel_scan, parallel_do, pipeline, parallel_pipeline,
parallel_sort and parallel_invoke. The simplest of parallelism
is a loop of iterations, in TBB parallel_for function template is
used and also it provides parallel_reduce for calculation of a
reduction and parallel_scan for calculation of a parallel prefix.
TBB applies to a range of elements concurrently [8]. An
advance algorithm for streams uses parallel_do, parallel_sort
and pipeline. The parallel_for template works with a fixed
number of independence loop iterations. It breaks iteration
space into a chunk which run on separate threads. The first
parameters of the template is a blocked_range object that
describes the lower bound and the upper bound of the iteration
space. The second parameter is the function object which calls
the body object. The overload the operator method is applied
to each subrange.

B. COIN Parallel on Multi-core Processors
The parallel computation for COIN algorithm takes place in

three modules, 1) generate the population, 2) evaluate the
population and 3) update the generator. This section shows the

(3)

International Conference on Computer and Information Technology (ICCIT'2012) June 16-17, 2012, Bangkok

77

differences between the Sequential and the Parallel algorithm
implemented by TBB.

1) Generate the Population: Each population is
independent from the others. The goal of this module is to use
full account the concurrency of population generating
processed in the different tasks. Generation of the population
can be fully parallelized. This algorithm generates, for each
generation, the population by breaking the amount of
population into subgroups for different tasks (thread). The
process is illustrated in Figure 1. The implementation of the
algorithm using TBB code shown in Figure 3. For
parallelization of the algorithm, parallel_for of TBB library is
used. In this code at line 19 creates the task scheduler object
for mapping tasks to physical threads. The parallel_for
function in line 22, the block_range, the first argument,
defined whole range of the population. The grain size, the
iRange, is defined by dividing with 10 in this case. The
Generate class, the second argument, to generate the
population is defined in lines 1 thru 8. The parallel_for
invokes the Generate class on each subranges. At line 4, the
call range.begin() method returns the start of subrange and
range.end() methods returns the end of subrange. The
sequential code of the Generate population is shown in Figure
2. The function uses a normal for-loop, in line 7, to generate
the population.

Fig. 1 Parallelization of Generate the population algorithm

Fig. 2 The sequential algorithm of Generate the population

Fig. 3 The Generate population algorithm implemented by TBB

2) Evaluate the Population: Once the population has been
generated, evaluation of the population is performed to
calculate the fitness value and to rank all candidates. The
fitness value calculation is computed as the tour length of
every candidates in the generation. With data-parallelism, we
can concurrently calculate the fitness value of the population.
First, the population is divided into subgroups map to TBB
task (see Figure 4 (a)). Second, each subgroup contained
multiple candidates and will be processed in a sequential
method. The length of the tour is the sum of distance between
each pair of the tour. Since pairs of the tour are independent,
the distance calculation can be performed in a parallel (see
Figure 4 (b)).

3) Update the Generator: Before generating the next
population, the generator have to be updated. The algorithm to
update the generator has two major steps. First, increase the
probability of each pair found in the good group. Second,
decrease the probability of each pair found in the worse group.
The parallel algorithm to update the generator is described in
two parts. Part one, traversing the matrix. We separate the
matrix by row into subgroups for concurrent update. Part two,
counting the number of occurrence of pairs from the selected
candidates (good and worse groups). Counting method
concurrently looks at the selected candidates then returns the
final answer. The algorithm is illustrated in Figure 5.

International Conference on Computer and Information Technology (ICCIT'2012) June 16-17, 2012, Bangkok

78

Fig. 4 Parallelization of Evaluate the population algorithm

Fig. 5 Parallelization of Update the generator algorithm

V. EXPERIMENTAL EVALUATION

A. Experiment Environment
The environment used in the experiment is the processor

with a quad-core 3.30 GHz Intel Core i5 and 8 MB main
memory, running Windows 7 64-bit with service pack 1. The
algorithm is implemented in C++ using Microsoft Visual
Studio 2010 and Intel Parallel Studio XE 2011 with Intel TBB
3.0. The four TSP problems use symmetric TSPs data sets
from TSPLIB [9]. The problems are Eil51, Eil76, Eil101 and
Ch130. The main objective is to measure the performance of
the computation time of the proposed algorithm. Computation
time is obtained from the beginning to the end of the
processing. The performance measurements are compared
between a sequential version and parallel version of the same
algorithm.

B. Result
The algorithm of COIN has a special parameter, the leaning

step is set to 0.1. Other parameters use the same setting, the
max generation is 500 and the population size is 500.

TABLE I shows the performance of the proposed algorithm
for solving the TSP problems. The result shows a comparison
of single-core with dual-core and single-core with quad-core.
The speedup of the algorithm running on dual-core is 78%
over single-core and the speedup of quad-core over single-
core is 230%. The computation time reported the average
value from 10 runs of the test. The standard deviation (S.D.)
explains the spread of data, a low S.D. shows that the data
values trend to be close to the mean, whereas high S.D.
indicates that the data values are spread out in a large range.
The S.D. of all four problems are small. That means the data
points are reliable.

VI. CONCLUSION
This paper proposed to improve the performance of COIN

algorithm with a parallel computation on multi-core platform.
The result of the test by solving 4 TSP problems is faster than
the sequential version of the algorithm. Based on the
experiment, when solving the larger problem, the algorithm
takes longer time but both of parallel implementation are still
faster than the sequential implementation.

TABLE I
 PERFORMANCE OF COMPUTATION TIME COMPARE WITH SINGLE CORE CPU

COIN on CPU
core(s)

TSP Problems

Eil 51 Eil 76 Eil 101 Ch 130

Time (seconds) S.D. Time (seconds) S.D. Time (seconds) S.D. Time (seconds) S.D.

Single-core 38.84 0.30 115.65 2.38 252.42 17.53 531.23 25.97

Dual-core 21.80 0.50 66.83 0.36 152.38 1.38 309.87 3.87

Quad-core 12.08 0.47 35.06 1.32 77.72 1.40 160.32 2.84

Speed up of 2 cores 78.17% 73.05% 65.65% 71.44%
Speed up of 4 cores 221.52% 229.86% 224.78% 231.36%

International Conference on Computer and Information Technology (ICCIT'2012) June 16-17, 2012, Bangkok

79

REFERENCES
[1] Hongzhong Shan, "Hybrid Programming for Multicore Processors," in

2011 Fourth International Joint Conference on Computational Sciences
and Optimization (CSO), Yunnan , 2010, pp. 261-262.

[2] Shenshen Liang, Ying Liu, Cheng Wang, and Liheng Jian, "Design and
evaluation of a parallel k-nearest neighbor algorithm on CUDA-enabled
GPU," in 2010 IEEE 2nd Symposium on Web Society (SWS), Beijing,
2010, pp. 53-60.

[3] S. Yussof, R.A. Razali, and Ong Hang See, "A Parallel Genetic
Algorithm for Shortest Path Routing Problem," in 2009 International
Conference on Future Computer and Communication, Kuala Lumpur,
2009, pp. 268-273.

[4] W. Wattanapornprom, P. Olanviwitchai, P. Chutima, and P.
Chongstitvatana, "Multi-objective Combinatorial Optimisation with
Coincidence algorithm," in 2009 IEEE Congress on Evolutionary
Computation, Trondheim, 2009, pp. 1675-1682.

[5] http://www.intel.com/ [Online].
[6] J. Reinders, Intel Threading Building Blocks, Outfitting C++ for Multi-

core Processor Parallelism.: O'Reilly, 2007.
[7] http://threadingbuildingblocks.org/ [Online].
[8] Wooyoung Kim and M. Voss, "Multicore Desktop Programming with

Intel Threading Building Blocks," IEEE Software, vol. 28, no. 1, pp. 23-
31, Jan.-Feb. 2011.

[9] http://comopt.ifi.uni-heidelberg.de/index.html [Online].

International Conference on Computer and Information Technology (ICCIT'2012) June 16-17, 2012, Bangkok

80

