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Abstract—Genetic Algorithms (GAs) are powerful search 

techniques. However when they are applied to complex problems, 

they consume large computation power. One of the choices to 

make them faster is to use a parallel implementation. This paper 

presents a parallel implementation of Combinatorial 

Optimisation with Coincidence Algorithm (COIN) on Graphic 

Processing Units. COIN is a modern GA. It has a wide range of 

applications. The result from the experiment shows a good 

speedup in comparison to a sequential implementation on 

modern processors. 
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I.  INTRODUCTION 

Genetic Algorithm (GA) is a popular technique to solve 
complex problems.  GA can find optimal solutions but it 
consumes large computation power. There are many works on 
parallel GAs [1]. They make GAs run faster by performing 
parallel execution on multiple processors. This work presents 
an implementation of a modern Genetic Algorithm called 
Coincidence Algorithm (COIN) [2]. This algorithm is based on 
a second generation of GAs, Estimation of Distribution 
Algorithm (EDA). COIN is shown to be competitive with well-
known EDA algorithms such a MIMIC[3], TREE[4], 
EBNA[5], UMDA[6]. In COIN, besides the usual positive 
knowledge where the evolution depends on the recombination 
of the better solutions, the negative knowledge is also 
exploited. The worse solutions are used to enhance the search 
by avoiding the reproduction of undesired solutions. The 
speedup of COIN comes from parallel programming on 
Graphic Processing Units (GPU). 

This paper is organized as follows. In the preliminary 
section, an overview of COIN algorithm is given. The GPU 
used in this work is introduced. Then, in the implementation 
section, the detail of the method to parallelize the COIN 
algorithm on GPU is explained. The next section describes the 
experimental setup.  The results are discussed based on a 
comparison of the execution time between CPU and GPU and 
the quality of solutions from both methods. The last section 
presents the conclusion. 

II. PRELIMINARIES 

A. GPU and CUDA Architecture 

Graphic Processing Units are powerful and inexpensive.  
This explains why many researchers and developers have 
interest in this computation device.  GPU has tremendous 
computation and memory bandwidth. Therefore, many well-
known algorithms can be speed up against the implementation 
on CPU. For example, Manavski [7] showed speed up 541% 
for AES cipher on GPU. Su Chang [8] showed the speed up 
525% of the implementation of MD5 cipher. The 
implementation on GPUs shows a very high speed-up against 
the implementation on CPU.  GPU is also low cost so it is 
attractive for researchers. 

A Graphic Processing Unit (GPU) has two key advantages. 
First it has many core processors which dedicate to compute-
intensive therefore it is highly parallel. The performance 
advantage of a GPU is illustrated in Fig. 1. Second, GPU has a 
very high memory bandwidth, for example 141 GBps on the 
NVIDIA GeForce GTX 280 [9]. This allows high data transfer 
rate and high throughput between its device memory. However 
there is some overhead such as the slow speed data transfer 
between host memory and device memory (8 GBps on the 
PCIe x16 Gen2) [9].  This must be minimized to gain the speed 
up as much as possible. 

 

Figure 1.  Floating-Point operation per second for the CPU and GPU 
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NVIDIA introduced Compute Unified Device Architecture 
(CUDA) in 2006. It is a general purpose parallel computing 
architecture. CUDA introduces a new parallel programming 
model and an instruction set architecture. This facilitates the 
use of the parallel computing engine in NVIDIA GPUs to solve 
many complex computational problems. 

CUDA architecture consists of a host which is a CPU side 
and one or more computing device (GPU) side. They work 
together to produce high throughput of data computation. The 
computing structure in devices is arranged in a hierarchy of 
blocks and threads as shown in Fig 2. The data can be 
simultaneously computed on GPU. The kernel calling from 
host side will trigger GPU to execute tasks on its processors 
which are arranged in blocks and threads. 
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Figure 2.  Hierarchy of computing structure in a GPU. Kernel function can be 

executed by calling from host.  A number of blocks and threads are assigned 

to the kernel function. 

B. Coincidence Algorithm 

The Coincidence algorithm (COIN) was introduced by 
Wattanapornprom W. et al. in 2009 [2]. The main idea is to 
model combinatorial problems as Markov Chain.  This 
representation can be realised by a matrix.  This matrix is used 
as a distribution model of solutions.  A population is drawn 
from this model. The evolution of solutions progresses by 
sampling from this matrix and adjusting the weights in the 
matrix according to the patterns learned from the population.  

The learning is derived from selected subpopulation to 
apply reward and punishment to adjust the weights in the 
matrix. The distinct character of COIN is that besides learning 
from the better subpopulation, it also learns a negative 
knowledge from the worse subpopulation. This allows the 
algorithm to avoid sampling the undesired population. 

COIN consists of six steps.  In the first step, the matrix is 
initialized. In the second step, the population is sampling from 
the matrix. The population is evaluated by a fitness function 
(problem dependent) in the third step. In the fourth step the 
selected population is divided into two groups, good and bad 
according to fitness values. The fifth step, the matrix is updated 
dependent on the patterns found in good and bad population. 
The final step repeats the second step to the last step until the 
terminating condition is met. 

 

Figure 3.  The steps of COIN algorithm 

The Markov Chain is modeled as a matrix of size n×n. 

Each column in a row contains the joint probability  (     ). 
   indicates the row of the matrix, while    indicates the 

column.   ,    is a coincidence of the event. A coincidence . 

  ,    means the event    is followed by the event    . The 

coordinate       indicates the joint probability  (     ).  For 

example, the solution of Traveling Saleman Problem (TSP) is 

the shortest paths which we can travel through all cities 

without visiting the same city twice. The solutions for TSP 

five cities are represented by X1X2X3X4X5 where    = {A, B, C , 

D, E} we can go to every cities B, C, D or E from A. The 

path        from A to B is represented by      and joint 

probability  (     ) is written as  (     ).  
 

Next, the detail of each step of the algorithm is explained. 

 

Initializing the generator  

The generator is initialized by filling  (     )with 
 

(   )
  

except    where i = j.  This initialization represents a uniform 

distribution of each coincidence.  
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Figure 4.   the matrix 5x5 filled up with an initial joint probability 

Sampling the population 
To generate a solution,  (     ) is sampling as follows:  
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(1) 

(2) 

(3) 

1. Begin with the first node,    chosen by its empirical 

probability  (  ). 

2. Sampling the next node   , i ≠ j from the matrix.  

3. Start from the node    repeat Step 2 until a solution 

with length n is attained.  The solution is composed of 
  ,   , ...,    where all indexes are distinct. 

4. The population is sampling by drawing each solution 
until the desired size is reached. 

Evaluate the population 
To Each solution in the population is evaluated for its 

fitness value. The fitness evaluation function is dependent on 
the problem. For example, in Traveling Salesman Problem, the 
fitness value is a summation of all paths in the tour. 

Selection of the candidates 
After all members in the population have their fitness 

values. They are ranked and divided into two groups: above 
and below average fitness. The above average group is a better 
group. The below average group is a worse group.  The size of 
each group is determined so that its member's fitness is ranged 
±2σ (of the fitness value). 

Update the matrix 
Both better and worse groups are used to update the 

weights in the matrix.  For each coincidence   ,    found in 
the better group, the matrix  (     ) is rewarded according to 

the equation (1) where k is the learning step size,      is the 

total number of coincidence. Vice versa for the worse group, 
the matrix is punished according to the equation (2) 
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The reward and punishment can be combined into one 
equation.  Given a coincidence     ,    found in both better 
and worse group then the combined equation is: 
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The code for COIN on a generic CPU can be found at 
http://www.cp.eng.chula.ac.th/faculty/pjw/project/coin/index-
coin.htm 

III. IMPLEMENTATION ON GPU 

COIN algorithm can be implemented by breaking down a 
task in each original step to many parallel tasks as follows.  

 

i. The population generation 

Each solution in the population is sampling independently 
so generating population task can be distributed into k threads 
which reside in n blocks where n is calculated from population 
size m divided to k threads. Fig 5 illustrates this step with the 
task distribution of m population to n blocks and k threads. The 
important point is to make sure that the number of threads 
assigned to each block is sufficient to exploit multiprocessor in 
GPU. Each task in k threads is the same as the original task, a 
solution is sampling from the matrix.  
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Figure 5.  The population generation task can be assigned to n blocks and k 

threadswhere n is calculated from population size divided to number of thread.  

ii. The fitness evaluation 

The fitness of each solution (a tour in TSP) is calculated. 
Each solution is also independent therefore the whole 
population can be done in parallel. Again, n blocks and k 
threads is assigned to evaluate the fitness of a solution. 
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Figure 6.  The evaluation of population can be assigned to n blocks and k 

threads. 

iii. The population sorting 

An important task which is not mentioned on the original 
paper on COIN is the sorting.  Sorting the population is done 
before selection.  The comparison function is the fitness value.   

For population size 500 and 1000, it is considered as small 
for sorting and CPU can outperform GPU. The roundtrip time 
for memory transfer between CPU and GPU is fast, it is in 
microsecond. 
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iv. The matrix update 

The last two key steps for COIN algorithm are selecting 
candidates from the population and updating the matrix. The 
uniform selection divides the population into two groups: better 
and worse. An implementation of the selection method is 
simply by marking the candidates. When updating the matrix, 
these candidates can be accessed. 

The implementation of the matrix update is divided into 
two steps. The first step begins from counting coincidences 

found in each candidate. Both        and        are stored into a 

temporary matrix of size 2jk
2
 to the co-ordinate   ,    as 

illustrated in Fig. 8. The second step is the calculation of the 
equation (3) and updates the matrix. 
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Figure 7.  (a) Selecting the candidates and counting the coincidence. (b) 

Update the matrix. 

IV. EXPERIMENTS 

A. Experimental setup 

To evaluate the parallel version of COIN on GPU, TSP 
problems are used.  There are four problems with different size: 
Grostel24, Grostel48, Padberg/Rinaldi76, kroA100 [10].  Two 
population sizes are tested: 500 and 1000.  

For the comparison, the sequential COIN runs on the CPU 
Intel core i3-2310M 2.1GHz, with memory 8 GB.  The parallel 
COIN uses GPU GEFORCE 540M, clock 672 MHz, with 
memory DDR3 2GB. Each problem is iterated to 200 
generations. To report the execution time, each experiment is 
repeated 10 times and the results are averaged. 

B. Results 

The execution time from the sequential and parallel version 
is compared. The speedup is calculated as timeseq/timepar.  

Table I shows the results of the speedup values of four 
problems, each with two population sizes. To ascertain the 
quality of the solutions, Table II records the actual values of 
the tours, best and average.  The optimum solutions for these 
benchmarks are known.  

TABLE I.  SPEEDUP IN TSP PROBLEM  

Problem Population Platform Avg .Time(s) 

grostel24 

500 

CPU 2.360 

GPU 0.333 

speedup 7.083 

1000 

CPU 4.672 

GPU 0.534 

speedup 8.746 

grostel48 

500 

CPU 6.017 

GPU 0.878 

speedup 6.854 

1000 

CPU 12.815 

GPU 1.349 

speedup 9.503 

pr76 

500 

CPU 14.121 

GPU 2.179 

speedup 6.481 

1000 

CPU 29.901 

GPU 3.835 

speed up 7.796 

kroA100 

500 

CPU 18.776 

GPU 3.536 

speedup 5.311 

1000 

CPU 41.662 

GPU 6.338 

speedup 6.574 

 

From Table I, it is clear that the larger size of population 
yields higher speedup by GPU.  It is also true that the more 
computation load the higher speedup by GPU.  This fact can be 
observed by comparing the speedup of two population size 
(500 and 1000) across all benchmark problems. 

TABLE II.  SOLUTION OF TSP PROBLEM  

 
*Optimal Grostel24  1272 

        Grostel48  5046 
                Pr76          108159 

                kroA100    21282 
**Total runs 200 generations  

 

Problem Population Platform Best Avg.  

Grostel24 

500 
CPU 1272 1318 

GPU 1272 1283 

1000 
CPU 1272 1291 

GPU 1272 1275 

Grostel48 

500 
CPU 5648 5975 

GPU 5414 5529 

1000 
CPU 5606 5909 

GPU 5170 5379 

Padberg/Rinaldi 

76 

500 
CPU 135218 142694 

GPU 137041 143889 

1000 
CPU 124292 134268 

GPU 131592 135548 

kroA100 

500 
CPU 38698 39950 

GPU 36127 37309 

1000 
CPU 35616 38417 

GPU 33065 34172 

129



V. CONCLUSION 

This paper presents an implementation of COIN algorithm 
on Graphic Processing Units. A parallel version of COIN has 
been designed to minimize data transfer between a host and 
devices. The experiment is carried out to compare the 
execution time of the sequential COIN runs on CPU and the 
parallel COIN runs on GPU. The results show that a good 
speedup can be achieved on a large population. 
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