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Abstract—The increasing capacity of NAND flash memory
results in larger page size. Since the larger page requires longer
access time, the performance of a flash translation layer (FTL)
that stores its mapping table in flash pages is degraded. An
economical FTL named SCFTL is proposed to avoid such issues
caused by the larger page. In order to reduce spatial require-
ments, SCFTL employs a demand-based caching mechanism for
the page mapping table. Unlike other FTLs, SCFTL facilitates
two techniques for delicately exploiting the spatial locality and
customizes the replacement algorithm for reducing cache miss
penalty. The experiments show that the average overhead of
SCFTL in terms of access time is only 6.89%; this overhead
is 75.96% and 11.35% lower than the state-of-the-art FTLs. The
average cache hit ratio of SCFTL is as high as 0.92 despite
compact memory footprint. Because of the outstanding cache
utilization, SCFTL still achieves high performance even though
the page size is larger.

I. INTRODUCTION

Flash-based storage devices are prevalent in computer sys-
tems due to various benefits over ferromagnetic storage de-
vices. They are widely used in high performance systems
because of low access latency. In addition, the flash-based
storage devices are more robust to shock and consume less
energy; hence, they became an essential component in most
mobile systems.

However, these advantages do not come without restrictions.
Unlike ferromagnetic materials, NAND flash memory is un-
suitable for in-place update. In order to reprogram a flash page,
which consists thousands of flash cells, the page must be prior
erased. Due to the technology limitations, each page cannot
be erased individually. The smallest erasable unit is one block,
which is a group of hundreds pages. Moreover, the lifetime of
each flash cell is limited by its program/erase (P/E) cycles.
Consequently, a flash translation layer (FTL) is employed to
solve these problems and provide the sector-based file system
interfaces.

One of the main functions of an FTL is address translation.
Since the upper level locates data by logical addresses, an FTL
translates them to flash page locations or physical addresses
and memorizes pairs of mapped addresses in a page mapping
table [1]. Due to the fact that a flash memory contains millions
of pages, enormous memory capacity is required. For instance,
an 8GB flash memory with 4,096 blocks of 256 pages needs
4,096KB for the page mapping table while a block mapping

table [2] takes only 16KB. However, a block mapping table
translates the most significant bits of a logical address to a
physical block number while a physical address offset are
fixed to the least significant bits of the logical address. Owing
to more flexibility, the page-level address translation scheme,
which facilitates the page mapping table, usually yields better
performance and lifetime.

To reduce the spatial requirement, numerous research works
put constraints on their address translations [3]. Among these
research works, the log buffer-based scheme [4]–[6] is the
most popular. However, the log buffer-based scheme suffers
from costly merge operations, which are required for rearrang-
ing data in the log buffer. Then, another renowned approach
has been proposed to eliminate the merge operations [7],
[8]. This approach enables fine-grained page selections within
blocks and offloads the mapping table to the flash memory.
Even so, it cannot fully utilize the flash memory capacity
due to block dependency and therefore frequently needs block
reclamation.

Recently, a novel approach to lower the memory require-
ment of the page-level address translation [9]–[15] has been
invented. Instead of keeping the entire page mapping table
inside RAM, this approach offloads it to the flash memory and
caches only small portions. Therefore, the page-level address
translation, which is unconstrained, is retained. However, the
performance of this approach depends on its cache efficiency.

As one flash page can hold numerous mapping entries,
S-FTL [11] and CDFTL [12] exploit the spatial locality by
caching whole flash pages in their caches. Nevertheless, the
demand of gigantic capacity flash memory drives the flash
page size larger [16]. In consequence, caching the entire flash
page is too extravagant and causes undesirable effects.

Due to the fact that flash page programming time is substan-
tially longer than reading time, the cost of writing a modified
mapping entry back to the flash memory is several times
higher than rereading a victim back to the cache. Although the
amount of cache writes-back is usually only a small fraction
of cache misses, it considerably affects the average address
translation time. However, the traditional cache replacement
policies, such as LRU, treat modified and unmodified cache
blocks equally. Even the recent cache replacement policy [17]
is focusing on increasing cache hit rate without differentiating



modified cache blocks. These policies are not aware of the
asymmetrical access time of a flash memory. Even though
many cache replacement policies are customized for a flash
memory [18]–[20], they are not designed for caching the
mapping table of a flash memory. Hence, they cannot utilize
the localities of mapping table accesses.

Henceforth, we proposes a novel caching strategy for the
page-level address translation FTL named SCFTL. SCFTL
is designed to be an efficient FTL for a large page flash
memory and small RAM. By implementing two spatial locality
exploitation techniques and the specialized cache replacement
policy, SCFTL achieves the sublime performance of only
6.89% additional latency. It is less than half of the addi-
tional latency required by the state-of-the-art FTL, CDFTL.
In addition, the average cache hit of SCFTL is as high as
92.04% despite its compact cache capacity. Furthermore, the
customized cache replacement policy efficiently reduces the
average number of written-back cache victims to only 0.38%
of total cache accesses.

The rest of this paper is organized as follows. The related
FTLs are described in Section 2. Then, Section 3 presents the
proposed FTL, and its performance is evaluated in Section 4.
Finally, the paper is concluded in Section 5.

II. RELATED WORKS

Although the page-level address translation has many ad-
vantages, it is not widely adopted due to the infeasible spatial
requirement of the page mapping table. To implement a page-
level address translation in limited RAM space, DFTL [9]
stores the enormous page mapping table in several pages
of the flash memory. The translation page that contains the
corresponding physical address is located by a small mapping
table in RAM. However, one flash page read is required to
obtain the physical address, and updating the mapping table
also needs one page write, which drastically burdens the
performance. For these reasons, DFTL exploits the temporal
locality by caching some mapping entries in RAM to reduce
flash page reads and to postpone a translation page update
until its modified mapping entry is evicted. Furthermore, the
modified mapping entries of the same translation page are
combined together into one flash write when one of them is
evicted. However, the cache hit ratio of DFTL is not high
because it does not take advantage of the spatial locality.

In order to increase cache hit ratio, CFTL [10] and CAST
[15] add a consecutive field into their caches. Consecutive
logical addresses that are mapped to consecutive physical
addresses are grouped into single cache block as illustrated in
Fig. 1. Due to the nature of sequential writes, their physical
addresses are more likely to be consecutive. Hence, adding the
consecutive field improves overall performance. In addition,
CFTL improves the performance of infrequently accessed
mapping entries by using the block mapping table. On the
other hand, CAST biases its physical address selection to
prefer contiguous data locations and therefore increases the
chance of consecutive addresses.

TAG DATA
10 48
11 49
12 50
17 51

without consecutive field

-

TAG DATA C
10 48 2
17 51 0

with consecutive field

Fig. 1. An example of cache with consecutive field (C). As the physical
addresses of the logical addresses 10-12 are consecutive, they can be kept
together in the same cache block by setting the consecutive field to 2.

To further exploit the spatial locality, S-FTL [11] caches a
whole translation page as a single cache block. Furthermore,
it also reduces the cache space needed by compressing the
translation page. Caching full translation pages can guarantee
spatial locality exploitation; however, each translation page
still demands large portion of RAM despite the compression.
Hence, S-FTL is not suitable for a device with small RAM.

CDFTL [12] takes another approach to exploit the spatial
locality. It employs a two-level cache hierarchy. The first level
cache is similar to DFTL, while the second level cache stores
translation pages. Hence, the temporal locality is exploited on
the first level cache, while the spatial locality is handled by
the second level cache. Nevertheless, CDFTL also suffers from
the same problem as S-FTL.

Since the size of a flash page tends to grow larger [16],
S-FTL and CDFTL cannot maintain the same level of perfor-
mance without enlarging their caches. In addition, the larger
page size means the chance that a file is spanning to multiple
pages is lower; hence, the consecutive field will be less
effective. In order to utilize the page-level address translation
on the large page flash memory, SCFTL is introduced.

III. DESIGN OF SCFTL

SCFTL is a page-level address translation FTL that em-
ploys the efficient caching strategy. It consists of three main
components: page mapping table (PMT), translation page
directory (TPD) and cache mapping table (CMT). In order
to achieve the page-level address translation, SCFTL stores a
page mapping table in several translation pages (TPs). Each
translation page keeps a group of physical page numbers
mapped to consecutive logical addresses. Due to the gigantic
flash page size, each translation page holds thousands of
physical page numbers; hence, only few pages are needed for
the complete page mapping table. TPD keeps the addresses
of every translation page in RAM and indexes them by the
most significant bits of logical addresses. To prevent severe
performance degradation, several mapping entries are cached
in CMT. Furthermore, CMT integrates two spatial locality
exploitation techniques and a customized cache replacement
policy to enhance its efficiency.

A. Two-Level Address Translation

As the page mapping table of SCFTL is kept inside the
flash memory, the address translation has to be done by a
two-level process. Generally, the physical address of a request
is found in CMT; hence, the two-level address translation is
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Fig. 2. An example of the SCFTL address translation. Suppose a logical
address of the request is 11, and each translation page contains 8 physical
addresses; the index and offset of the logical address is 1 and 3, respectively.
(1) The access of the logical address 11 incurs a cache miss in CMT, and
the first cache block is selected as a victim. A write-back does not occur,
as the victim is not modified. Then, (2) the two-level address translation is
begun, and the translation page 1 is located at the page number 4. (3) The
translation page is read from the flash memory, and (4) the physical address of
the request is found at the offset 3. (5) Instead of storing only one mapping
entry in CMT, the consecutive physical addresses of the logical addresses
10 and 12 are fetched and stored together with the logical address 11. (6)
Assume that the spatial size is 4; another mapping entry 13 will be fetched
to CMT. Since this is a spatial fetching, the third cache block is selected as
a victim instead of the second cache block, which has MC value lower than
the threshold.

not triggered. However, the two-level address translation will
be executed in case of a cache miss.

The two-level address translation split a logical address into
two parts: index and offset. In the first level, TPD converts the
index into the location of the related translation page, and then
the located translation page is retrieved from the flash memory.
After that, the second level extracts the physical address from
the translation page by the offset, which is a position of the
physical address in the translation page. Therefore, the logical
address is finally translated to the corresponding physical
address. An example of the two-level address translation is
provided in step 2-4 of Fig. 2.

B. Efficient Caching Strategy

Owing to the temporal locality and the spatial locality of
storage accesses, several page reads can be omitted by caching
mapped physical page numbers. In addition, the caching allows
the update of a translation page to be postponed; the updates
on the same translation page can be combined together to
minimize the number of additional page writes. However, the
efficiency of CMT does not only depend on the temporal
locality; it is also highly influenced by the spatial locality.

1) Spatial Locality Exploitation: As a flash page, which
is the smallest read/write unit, can pack thousands of map-
ping entries, caching multiple entries each translation page
retrieving is convenient. However, caching an entry that will

TABLE I
VICTIM SELECTION ORDERS OF D-NRU

Attributes Normal Fetching Spatial Fetching

¬A ∧ ¬M 1 1
¬A ∧M ∧ (MCTP ≥ c) 2 2
¬A ∧M ∧ (MCTP < c) 3 -

A ∧ ¬M 4 3
A ∧M ∧ (MCTP ≥ c) 5 4
A ∧M ∧ (MCTP < c) 6 -

not be accessed is wasting the cache space. In order to avoid
caching unused mapping entries, a fine-grained spatial fetching
technique is introduced.

Despite increasing the cache block size to accommodate
more mapping entries, SCFTL spends several cache blocks to
exploit the spatial locality. As a result, the chance of cache
trashing can be controlled by limiting the amount of mapping
entries can be cached in each translation page read. since
SCFTL treats each mapping entry as an individual cache block,
a low demanded mapping entry can be independently replaced
without disturbing others. However, the fine-grained spatial
fetching technique forces SCFTL to reacquire the translation
page before writing back.

As the physical addresses of sequential writes are likely
to be assigned sequentially, facilitating the consecutive field
efficiently saves CMT capacity by combining several sequen-
tially mapped entries into one single cache block. In contrast,
the drawback of the consecutive field is the additional cache
eviction because a cache block is unable to retain the same
consecutive value after one of its mapping entries is updated.
Henceforth, the cache block has to be split into several cache
blocks. However, the split cache blocks can be merged back
if their mapping entries are subjected to sequential writes.

2) Cache Replacement Policy: In order to decrease the
number of translation page writes, the victim selection process
has to discriminate modified cache blocks from others. How-
ever, preventing modified cache blocks from being a victim
in the fully associative cache may cause inefficient cache
capacity utilization. Thus, SCFTL implements a customized
cache replacement policy named D-NRU.

D-NRU is very similar to NRU [21]. Each cache block
contains a 1-bit flag to indicate that it was recently accessed.
Besides, D-NRU takes a modified flag, which is existed in
every cache block, into account when it selects a victim.
Because the modified mapping entries from the same trans-
lation page can be written-back simultaneously, writing the
translation page that contains many modified mapping entries
is more economical. Hence, D-NRU considers the number of
modified mapping entries in each translation page when selects
a victim. The counters (MCs) are attached to TPD as shown
in Fig. 2. Each MC is very tiny, as it only needs to count until
its value reaches the worthwhile threshold.

D-NRU consists of two variants of NRU algorithms. The
algorithm selection is based on the type of a mapping entry
fetching: normal fetching or spatial fetching. The normal



TABLE II
8GB MLC NAND FLASH MEMORY SPECIFICATIONS [22]

Page Size 8,192 + 448 bytes (data + spare area)
Block Size 256 pages
Device Size 8GB (4,096 blocks)
Page Read Time 75µs
Page Program Time 1,300µs
Block Erase Time 3,800µs
Transfer Rate 50MB/s
Endurance 3,000 P/E cycles
Minimum ECC Requirement 24-bit ECC per 1,080 bytes

fetching has high priority, as it is caused by an I/O request.
Its victim selection prefers a cache block that is not recently
accessed (¬A), unmodified (¬M ) and modified (M ) with
high MC value (MCTP ), respectively. On the other hand, the
spatial fetching is initiated by spatial locality exploitation. As
its mapping entry may not be reference, the cost of bringing
it into the cache should be low. A modified cache block that
has the MC value lower than the threshold (MCTP < c) will
not become the victim of spatial fetching. Furthermore, the
recently accessed flag is not set for the cache block that is
brought in by spatial fetching. The orders of D-NRU victim
selection are provided in Table I, and examples are illustrated
in step 1 and 6 of Fig. 2.

IV. PERFORMANCE EVALUATION

In this section, SCFTL will be compared with two state-
of-the-art FTLs: DFTL and CDFTL. The experiments are
done on the 8GB NAND flash memory [22] as specify in
Table II. It is simulated by a customized FlashSim simulator
[23] with the cache size is roughly set to 16KB, which is equal
to the memory footprint required by a block mapping table.
As CDFTL prefers the second level cache to be large, the
two-level cache of CDFTL is configured to 2KB and 16KB,
respectively.

To evaluate the performance of the FTLs, several workload
traces are selected from Storage Performance Council (SPC)
[24] and Microsoft Research Cambridge (MSRC) [25]. In case
of SPC benchmarks, Financial are I/O traces from OLTP
applications, while WebSearch are I/O traces from a popular
search engine. For MSRC benchmarks, the traces from the
storage volume 0 of enterprise data centers running various
applications are selected. The details of these traces can be
found on their publication [25].

As shown in Table II, the page programming time is about
17 times longer than the reading; the penalty time of a cache
miss that requires a victim to be written back is much higher.
Consequently, the cache hit ratio is insufficient to measure
the performance of the cache in the FTLs. In this paper,
we introduce another metric called cache write-back ratio
(WB Ratio), which is a proportion between the number of
cache blocks that was written back (numwriteback) and the
number of cache accesses (numaccess) (1).

TABLE III
COMPARISON OF CACHE REPLACEMENT POLICIES ON SCFTL

Policy Miss Ratio (%) WB Ratio (%) TPC (%)

LRU 11.30 0.81 12.13
NRU 9.85 4.62 16.04

D-NRU-2 7.67 0.51 7.42
D-NRU-3 7.96 0.38 6.89
D-NRU-4 13.46 0.48 10.62

WB Ratio =
numwriteback

numaccess
(1)

Although the average system response time is a widely
adopted performance measurement of FTLs, its value is mainly
dominated by data access time. To observe the effect of
FTLs more precisely, we measure the percentage change
of the average system response time (TPC) from the ideal
page-level address translation FTL (PFTL) [1], which can be
calculated by (2). Since the page mapping table of PFTL is
completely held in RAM, the overhead of PFTL is neglectable.
Consequently, TPC is the percentage of extra time required
to complete address translation, and a lower value means
better performance. Furthermore, the percentage change is
already normalized; it can be fairly compared across various
benchmarks.

TPC =
T − TPFTL

TPFTL
× 100 (2)

A. Performance of the Efficient Caching Strategy

The performance of D-NRU is shown in Table III. The
suffix number of D-NRU is the number of MC bits. Ac-
cording to the design, D-NRU avoids cache trashing by not
setting a recently accessed flag for spatial fetching, which in
turn lowers cache miss ratio. In addition, it prevents spatial
fetching from replacing low beneficial modified cache blocks.
Consequently, cache write-back ratio significantly decreases as
preventing premature cache writing-back provides additional
time to gather more modified mapping entries from the same
translation page. However, over protecting, which means too
few victim candidates, will heighten the risk of cache trashing
and therefore results in high cache miss ratio.

In Fig. 3, SCFTL shows the average cache miss of 7.96%.
Due to the very small cache size configuration, the miss ratios
of DFTL are very high. Its average cache miss is significantly
higher than SCFTL by 75.96%. This enhancement is the
impact of the spatial locality exploitation. In addition, the
average cache miss of SCFTL is 11.13% lower than CDFTL
because SCFTL can preserve the diversity of logical addresses
better than the small first level cache of CDFTL.

The comparison of cache write-back ratios between FTLs
is shown in Fig. 4. Because D-NRU-3 in SCFTL works
efficiently, the average cache write-back is reduced to 0.38%,
which is 5.33% lower than DFTL. Due to the small size of
the second level cache in CDFTL, the number of cached trans-
lation pages is insufficient to absorb the amount of modified
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Fig. 3. Miss Ratio of 16KB cache configuration FTLs
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Fig. 4. WB Ratio of 16KB cache configuration FTLs

mapping entries evicted from the first level cache. As a result,
the average cache write-back of CDFTL is surprisingly high;
it is 46.22% higher than SCFTL.

Finally, the average system response time of FTLs are
compared in Fig. 5. Due to exceptional cache performance
of SCFTL, its average TPC is only 6.89%. It is lower than
DFTL and CDFTL, by 82.85% and 18.24%, respectively. The
exceedingly high TPC of DFTL in mds_0 is a result of
cache misses in densely read requests, which in turn causes
cumulative delay.

In order to match SCFTL performance, CDFTL needs
128KB of the second level cache. Furthermore, SCFTL is still
able to excel in 4KB cache configuration, which is smaller than
the flash page size and incapability for CDFTL, with 19.28%
average TPC .

B. Impact on Flash Memory Lifetime

Because the flash memory endurance is limited by the
P/E cycles, the number of extra block erases from PFTL is
measured. Owing to the very low cache write-back ratio of
SCFTL, the additional block erasure is barely needed. The
average block erase count of SCFTL is only 0.67% increased
from PFTL, while DFTL and CDFTL are 1.72% and 7.12%,
respectively. Consequently, SCFTL is having very little effect
on the flash memory lifetime.
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C. Memory Requirements

According to Table II, the total number of pages is
4096×256. As each page consists 8,192 bytes, 2,048 of 4-
byte physical address can be contained. Only 512 translation
pages, which are about 0.05% of the total pages, are required
for SCFTL, DFTL and CDFTL.

As SCFTL keeps TPD and CMT in RAM, the amount of
RAM needed is the summation of these two components. TPD
is a simple mapping table with counters. Each line contains a
4-byte translation page address and a 3-bit MC; hence, only
2.25KB of RAM is needed by TPD. Every cache block of
CMT consists a 4-byte tag, a 4-byte mapping entry, a 5-bit
consecutive field, a 1-bit valid flag, a 1-bit modified flag and
a 1-bit recently accessed flag; therefore, each cache block is
9 bytes. The total size of CMT is 18KB with 2,048 cache
blocks. Therefore, SCFTL requires only 20.25KB of RAM,
while DFTL and CDFTL require 18.50KB and 20.25KB of
RAM, respectively.

V. CONCLUSION

Since the flash memory tends to have larger pages, it is
necessary to include this constraint in the design of an FTL.
To overcome this restriction, we proposes SCFTL an efficient
caching strategy for a page-level address translation FTL. In
order to utilize the cache, SCFTL facilitates the fine-grained
spatial locality exploitation, the consecutive field and D-NRU,
which is a customized cache replacement policy. In spite
of limited memory space, SCFTL successfully exploits the
spatial locality and reduces the number of cache writes-back.
In the 16KB cache configuration, SCFTL needs only 6.89%
additional average system response time from the FTL that
keeps the complete page mapping table in RAM. The average
overhead time of SCFTL is 75.96% and 11.35% lower than
DFTL and CDFTL, respectively. In addition, the average cache
miss and cache write-back of SCFTL are as low as 7.96% and
0.38%, respectively.

Because the degree of spatial locality is varied in each
workload, dynamically adjusting the spatial fetching size
should further increase the efficiency of SCFTL. In addition,
SCFTL does not have any mapping restriction; it would



be interesting to discover the performance of cutting-edge
garbage collections and wear levelers on SCFTL.
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