
Extract Semantic Web Knowledge from Wikipedia

Tables and Lists

Julthep Nandakwang

Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

julthep@nandakwang.com

Prabhas Chongstitvatana

Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

prabhas@chula.ac.th

Abstract—Wikipedia is currently one of the most significant

knowledge base for human but it is still hard to access

automatically by machines. Nowadays, there are much efforts to

transform the knowledge resides in Wikipedia to machine

readable information in the form of Linked Data to be used in

many intelligent applications with Semantic Web technology.

However, the knowledge extracted from Wikipedia focused on

some structured elements such as Infoboxes and Categories.

There are many important semi-structured and unstructured

elements that have not yet been extracted to Linked Data. This

work proposes a method to extract two elements of the rich

informative part of Wikipedia which are Tables and Lists. Some

sets of newly created schema and ontology are provided to

support the extracted information.

Keywords—knowledge extraction; Linked Data; list; Semantic

Web; table; Wikipedia

I. INTRODUCTION

Wikipedia has been used widely as a platform of
Knowledge Management. Wikipedia use wiki concept to
collect all the knowledge in nearly all domain by letting its
users contribute and review the contents in the system. The big
issue of Wikipedia is its contents (called “articles”). They are
in the form of human readable and editable. It is hard for a
machine to extract, analyze or infer the knowledge from the
repository for further processing. Wikipedia content have to be
transformed to the machine readable and “understandable”
format by incorporate “meaning” to the textual content in
Wikipedia.

This paper proposes a method to extract tables and lists
data. The aim is to provide more Linked Data that are currently
missing. First of all, we illustrate the structure of a Wikipedia
article. We will review related studies of the methods,
techniques and mechanisms used to transform semi-structured
or unstructured data to structured data.

II. WIKIPEDIA ARTICLE ANATOMY

Wikipedia articles have the same common elements as
illustrated in Fig. 1, nothing more nothing less, with little
different only in the length of the contents. These elements are
described as followings:

 Article Title – the name of the article

 Abstract – the brief description of the article

 Infobox Template – the at-a-glance data

 Geolocation – the absolute position of subject

 Table of Contents – automatically generate from...

 Section Headers – use for content segmentation

 Languages – to switch between Wikipedia sites

 Wikitext – the textual content of the article

 Wikilink – the intra-link between articles

 Pictures – the thumbnails to the full-sized pictures

 Lists – listed items in bulleted or numbered

 Tables – values arrange in tabular form

 References – citations of the information

 Related Articles – list of related articles

 External Links – links to external websites

 Navbox Template – navigator to articles collection

 Categories – classification of the article

Fig. 1. Sample of a Wikipedia article entitled “Chulalongkorn University”

III. RELATED RESEARCHES AND METHODOLOGY

There are several studies on information extraction from
Wikipedia to Linked Data. Some works related to the
extraction of table-type data such as spreadsheet to RDF
triples. These works can be categorized into group hierarchy as
shown in Fig. 2. However, we focus on DBpedia and YAGO
due to their widespread use.

Fig. 2. Wikipedia textual content extraction approaches

DBpedia [1], is a research of the Free University of Berlin
and Leipzig University, intended to extract Wikipedia’s
structured information (Abstract, Infoboxes and Categories) to
Linked Data. It also supports multiple languages. The goal of
the project is to be the nucleus of Linked Data. Isbell and
Butler [2] at Digital Media Systems Laboratory of HP studies
the transformation mainly from Infoboxes but cover wide
aspects of Wikipedia semi-structured and unstructured data
with generalized methodology. YAGO [3] is a research of the
Max Planck Institute for Informatics to extract structured
information from Wikipedia by using the Categories data
together with the Synsets data from WordNet project of
Princeton University. RDB2RDF survey [4] is a report of W3
Incubator Group covers many research projects related to
Relational Database to RDF conversion method. Although, it
does not cover Wikipedia contents, it can be applied to
transform article tables. RDF123 project [5] intended to create
offline and online tools to convert the data in spreadsheet to
RDF triples. TIPSTER, ATLAS and GATE are Natural
Language Processing projects that could be used to extract and
transform unstructured Wikitext to structured graph-based
information. Semantic MediaWiki [6] is an extension to
MediaWiki (the system is used as the core of Wikipedia) to let
Wikipedian manually annotate a semantic information directly
to Wikitext.

IV. EXTRACT INFORMATION TO LINKED DATA

Compared with the whole structure of Wikipedia, only
some elements have been transformed to Linked Data such as
Abstract, Infoboxes and Categories. Many of remaining
elements have not been transformed yet. In this paper, we focus
on two of the most important and rich informative elements of
Wikipedia which are Tables and Lists. Let us start with an
illustration of kinds of information that we would like to
extract from Wikipedia articles.

To retrieve Abstract information from Linked Data that
transform by DBpedia from Wikipedia article entitled
“Chulalongkorn University”. A SPARQL query is shown
below:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?value

WHERE {

 dbr:Chulalongkorn_University dbo:abstract ?value.

}

The output is shown below:

“Chulalongkorn University, officially abbreviated as CU
and commonly abbreviated as Chula, is the oldest university
under the Thai modern educational system, founded in 1917 by
King Vajiravudh (Rama VI) who named it after his father, King
Chulalongkorn (Rama V). It is one of the best universities in
Thailand and Southeast Asia according to several university
rankings. It comprises nineteen faculties and institutes. Its
campus occupies a vast area in downtown Bangkok. Diplomas
were traditionally handed out at graduation by the King of
Thailand, created and begun by King Prajadhipok (Rama VII).
But at present, King Bhumibol Adulyadej (Rama IX) delegates
the role to one of his daughters, Princess Maha Chakri
Sirindhorn.”

Suppose we are interested in the university ranking. To find
the ranking of this university, we need to look further from the
tables in the original Wikipedia article, such as in TABLE I.

TABLE I. RANKING TABLE IN CHULALONGKORN UNIVERSITY ARTICLE

University World Ranking in 2005 – 2012 by QS World University Rankings

 2012 2011 2010 2009 2008 2007 2006 2005

Overall 201 171 180 138 166 223 161 161

Arts &
Humanities

113 69 78 49 119 136 – –

Natural

Sciences

140 138 186 136 171 159 – –

Engineering
& IT

106 104 101 78 86 100 – –

Social

Sciences

80 68 78 51 72 83 – –

Life
Sciences

92 78 130 51 108 138 – –

If we are interested in the organization of this university,
we need to look back to the same Wikipedia article. They are
in the form of multi-level list, as in Fig. 3

List of faculties and institutes
Health Sciences
 • Faculty of Allied Health Sciences
 • Faculty of Dentistry

 • Faculty of Medicine
 • Faculty of Nursing
 • Faculty of Pharmaceutical Sciences
 • Faculty of Psychology
 • Faculty of Sport Sciences
 • Faculty of Veterinary Science
Sciences and Technologies
 • Faculty of Architecture
 • Faculty of Engineering
 • Faculty of Science
Social Sciences and Humanities
 • Faculty of Arts
 • Chulalongkorn Business School
 • Faculty of Communication Arts
 • Faculty of Economics
 • Faculty of Education
 • Faculty of Fine and Applied Arts
 • Faculty of Law
 • Faculty of Political Science

Fig. 3. Institutes list in Chulalongkorn University article from Wikipedia

It is important that there should be a way to extract
information from Wikipedia tables and lists to provide more
data to fill-up the missing information in Linked Data.

V. SCHEMA, ONTOLOGY AND ALGORITHM

To accommodate data extract from Wikipedia tables and
lists, we need to create a set of schema and ontology to provide
additional vocabularies for creating triples derived from the
extraction. And we will demonstrate the examples of algorithm
used to extract tables and lists out as RDF triples.

A. Tables

The RDF schema to represent table is created, as shown
below:

tlo:lastRow rdfs:domain rdfs:Resource .

tlo:lastRow rdfs:range rdfs:Literal .

tlo:lastColumn rdfs:domain rdfs:Resource .

tlo:lastColumn rdfs:range rdfs:Literal .

tlo:hasIndex rdfs:domain rdfs:Resource .

tlo:hasIndex rdfs:range rdfs:Literal .

tlo:hasColumn# rdfs:domain rdfs:Resource .

tlo:hasColumn# rdfs:range rdfs:Literal .

tlo:Table rdfs:subClassOf rdfs:Class .

tlo:ColumnHeader rdfs:subClassOf rdfs:Class .

tlo:TableCell rdfs:subClassOf rdfs:Class .

The example of the structure to represent a 2 × 2 table with
RDF triples using the above schema is presented below:

_:Table1 rdf:type tlo:Table .

_:Table1 tlo:lastRow 2 .

_:Table1 tlo:lastColumn 2 .

_:Row0 tlo:hasIndex 0 .

_:Row0 rdf:type tlo:ColumnHeader .

_:Row0 tlo:hasColumn1 "ColumnHeader1" .

_:Row0 tlo:hasColumn2 "ColumnHeader2" .

_:Row1 tlo:hasIndex 1 .

_:Row1 rdfs:label "RowHeader1" .

_:Row1 rdf:type tlo:TableCell .

_:Row1 tlo:hasColumn1 "Row1Cell1" .

_:Row1 tlo:hasColumn2 "Row1Cell2" .

_:Row2 tlo:hasIndex 2 .

_:Row2 rdfs:label "RowHeader2" .

_:Row2 rdf:type tlo:TableCell .

_:Row2 tlo:hasColumn1 "Row2Cell1" .

_:Row2 tlo:hasColumn2 "Row2Cell2" .

 An algorithm to generate a set of RDF triples from all
tables in a Wikipedia article is shown in Fig. 4. The algorithm
consists of three nested loops: the outer loop scans all tables in
the article and generates a set of triples to represent the header
of each table. The next loop scans all rows of the table to
generate the triples for each row. The innermost loop scans all
columns in the row to generate the triples to represent a cell
value.

Algorithm: Transform Wikipedia tables to RDF triples
Output() is an RDF triple serializer
ItemType[] is one of {tlo:Table, tlo:ColumnHeader, tlo:TableCell}

GenTable()
For i = 1 to LastTable of current article
 Output(_:TableNode%i rdfs:label %TableLabel[i] .)
 Output(_:TableNode%i rdf:type %TableType[i] .)
 Output(_:TableNode%i tlo:lastRow %LastRow .)
 Output(_:TableNode%i tlo:lastColumn %LastColumn .)
 For j = 0 to LastRow of current table
 Output(_:TableNode%i-%j tlo:hasIndex %j .)
 Output(_:TableNode%i-%j rdfs:label %RowLabel[i][j] .)
 If j = 0
 Output(_:TableNode%i-%j rdf:type tlo:ColumnHeader .)
 Else
 Output(_:TableNode%i-%j rdf:type tlo:TableCell .)
 For k = 1 to LastColumn of current row
 Output(_:TableNode%i-%j tlo:hasColumn%k %Cell[i][j][k] .)

Fig. 4. The algorithm to generate RDF from tables

An example of Wikipedia table from TABLE I. being
transformed into a series of RDF triples is shown in Fig. 5.

_:TableNode1 rdfs:label "University World Ranking in

 2005 – 2012 by QS World University Rankings" .

_:TableNode1 rdf:type tlo:Table .

_:TableNode1 tlo:lastRow 7 .

_:TableNode1 tlo:lastColumn 9 .

_:TableNode1-0 tlo:hasIndex 0 .

_:TableNode1-0 rdfs:label "" .

_:TableNode1-0 rdf:type tlo:ColumnHeader .

_:TableNode1-0 tlo:hasColumn1 "2012" .

_:TableNode1-0 tlo:hasColumn2 "2011" .

_:TableNode1-0 tlo:hasColumn3 "2010" .

_:TableNode1-0 tlo:hasColumn4 "2009" .

_:TableNode1-0 tlo:hasColumn5 "2008" .

_:TableNode1-0 tlo:hasColumn6 "2007" .

_:TableNode1-0 tlo:hasColumn7 "2006" .

_:TableNode1-0 tlo:hasColumn8 "2005" .

_:TableNode1-1 tlo:hasIndex 1 .

_:TableNode1-1 rdfs:label "Overall" .

_:TableNode1-1 rdf:type tlo:TableCell .

_:TableNode1-1 tlo:hasColumn1 "201" .

_:TableNode1-1 tlo:hasColumn2 "171" .

_:TableNode1-1 tlo:hasColumn3 "180" .

_:TableNode1-1 tlo:hasColumn4 "138" .

_:TableNode1-1 tlo:hasColumn5 "166" .

_:TableNode1-1 tlo:hasColumn6 "223" .

_:TableNode1-1 tlo:hasColumn7 "161" .

_:TableNode1-1 tlo:hasColumn8 "161" .

. . .

_:TableNode1-6 tlo:hasIndex 6 .

_:TableNode1-6 rdfs:label "Life Sciences" .

_:TableNode1-6 rdf:type tlo:TableCell .

_:TableNode1-6 tlo:hasColumn1 "92" .

_:TableNode1-6 tlo:hasColumn2 "78" .

_:TableNode1-6 tlo:hasColumn3 "130" .

_:TableNode1-6 tlo:hasColumn4 "51" .

_:TableNode1-6 tlo:hasColumn5 "108" .

_:TableNode1-6 tlo:hasColumn6 "138" .

_:TableNode1-6 tlo:hasColumn7 "-" .

_:TableNode1-6 tlo:hasColumn8 "-" .

Fig. 5. Sample of RDF triples output generated from table in TABLE I.

The RDF triples will be connected to the Linked Data with
the owl:sameAs semantic link as shown below:

dbr:Chulalongkorn_University owl:sameAs

 tlr:Chulalongkorn_University .

tlr:Chulalongkorn_University tlo:hasItem

 _:TableNode1 .

We could use SPARQL query to get the data in any cell of
table by just knowing the name of row and column of that cell.
For example, if we want to know the value of “Engineering &
IT” row and “2009” column of the “University World Ranking
in 2005 – 2012 by QS World University Rankings” table, the
query will be like this:

 PREFIX rdfs: <http://w3.org/2000/01/rdf-schema#>

 PREFIX tlo: <http://tulip.cba.net/ontology/>

 SELECT ?value

 WHERE {

 ?column tlo:hasIndex 0 .

 ?column ?hasColumn "2009" .

 ?row rdfs:label "Engineering & IT" .

 ?row ?hasColumn ?value .

 }

The result is 78. We can also present the transformed RDF
triples in various ways. Fig. 6 shows the presentation of results
in Fig. 5 as a line chart.

Fig. 6. A trend line chart generate from RDF triples in Fig. 5

B. Lists

To represent Wikipedia Lists with RDF triples, it is
important to preserves the ordering of List items whether the
List is ordinal (numbered) or nominal (bulleted). (in this
section, we differentiate the “article List” from the “list data
structure” by initial capital letter, except the word ItemList
which is the camel case, and rdf:List which is an RDF class).
According to W3 specification of the RDF, the preservation of
the ordering of objects is implement as recursive lists
terminated with an empty list. The RDF schema are defined by
the W3 as follows:

rdf:first rdfs:domain rdf:List .

rdf:first rdfs:range rdfs:Resource .

rdf:rest rdfs:domain rdf:List .

rdf:rest rdfs:range rdf:List .

rdf:nil rdf:type rdf:List . (empty list instance)

We need an additional schema defined as follows:

tlo:hasItemList rdfs:domain rdfs:Resource .

tlo:hasItemList rdfs:range rdf:List .

An example of the structure to represent a 3-item List by
RDF triples is shown below, and illustrated as RDF Graph in
Fig. 7.

_:List1 tlo:hasItemList _:ItemList1 .

_:ItemList1 rdf:first _:Item1 .

_:ItemList1 rdf:rest _:ItemList2 .

_:ItemList2 rdf:first _:Item2 .

_:ItemList2 rdf:rest _:ItemList3 .

_:ItemList3 rdf:first _:Item3 .

_:ItemList3 rdf:rest rdf:nil .

_:ItemList

1

_:ItemList

2

_:ItemList

3

:Item3:Item2_:Item1

_:List1

tlo:hasItemList

ref:first

rdf:rest

rdf:first

rdf:rest

rdf:first

rdf:nilref:rest_:ItemList1 _:ItemList2 _:ItemList3

_:Item3

_:List1

rdf:nil

Fig. 7. RDF graph represented the sample list triples

The example shows that _:List1 has _:ItemList1 as a list
of items which is rdf:List class. The _:ItemList1 consists of
the first element _:Item1 which is rdfs:Resource class and
the remaining members of the list are _:ItemList2 and so on
which are again rdf:List class. The final item is the list is
_:ItemList3. It is followed by rdf:nil which is the empty list
which finally complete this list. The _:List1 can be presented
as a recursive list as shown here.

:List1 = {:Item1, {_:Item2, {_:Item3, {} }}}

To reduce the cost of accessing last items in the list
sequence, the generation of RDF triples based on standard
definition of W3 are considered (Allemang and Hendler, p.49)
[7]. It is necessary to create an additional set of schema to help
retrieving ordered information. In the creation of RDF triples,
we can generate both forms of representation and include them
together in the same graph. Our approach is to represent
ordered List by adding a predicate that directly point to
individual elements of a List and adding another predicate that
specifies the index of each element, as follows:

:List1 = {{:Item1,1}, {_:Item2,2}, {_:Item3,3}}

This approach enables us to access individual elements in
an ordered List just the same way as unordered List. Now there
are indexes of each element, which directly reflect the order of
that item. These indexes are optional when represent the
unordered data. The additionally RDF schema is defined as
follows:

tlo:hasItem rdfs:domain rdfs:Resource .

tlo:hasItem rdfs:range rdfs:Resource .

tlo:hasIndex rdfs:domain rdfs:Resource .

tlo:hasIndex rdfs:range rdfs:Literal .

tlo:NumberedList rdfs:subClassOf rdfs:Class .

tlo:BulletedList rdfs:subClassOf rdfs:Class .

tlo:NoBulletList rdfs:subClassOf rdfs:Class .

tlo:Terminal rdfs:subClassOf rdfs:Class .

The previous example updated with additional information
is shown below, and illustrated as graph in Fig. 8.

_:List1 tlo:hasItemList _:ItemList1 .

_:List1 tlo:hasItem _:Item1 .  Additional

_:ItemList1 rdf:first _:Item1 .

_:Item1 tlo:hasIndex 1 .  Additional

_:ItemList1 rdf:rest _:ItemList2 .

_:List1 tlo:hasItem _:Item2 .  Additional

_:ItemList2 rdf:first _:Item2 .

_:Item2 tlo:hasIndex 2 .  Additional

_:ItemList2 rdf:rest _:ItemList3 .

_:List1 tlo:hasItem _:Item3 .  Additional

_:ItemList3 rdf:first _:Item3 .

_:Item3 tlo:hasIndex 3 .  Additional

_:ItemList3 rdf:rest rdf:nil .

_:ItemList1 _:ItemList2 _:ItemList3

:Item3:Item2_:Item1

_:List1

tlo:hasItemList

ref:first

rdf:rest

rdf:first

rdf:rest

rdf:first

rdf:nilref:rest

tlo:hasItem
tlo:hasItem

tlo:hasItem

1 2 3

tlo:hasIndex tlo:hasIndex tlo:hasIndex

Fig. 8. RDF graph represents the sample list triples with indexes

The algorithm to transform all Lists in a Wikipedia article
to RDF triples is shown in Fig. 9. The algorithm starts from
GenList() which contain the main loop to scan all lists in an
article to generate the list header. GenItem() scans all items in
each list. However, any item in the list could be an inner list (or
list of lists), so GenItem() is called recursively to handle this
issue. It generates a set of triples repeatedly until the terminal
item is found.

Algorithm: Transform Wikipedia lists to RDF triples
Output() is an RDF triple serializer
ItemType[] is one of {tlo:NumberedList, tlo:BulletedList,
 tlo:NoBulletList, tlo:Terminal}

GenList()
For i = 1 to LastList of current article
 Output(_:ListNode%i rdfs:label %ItemLabel[i] .)
 Output(_:ListNode%i rdf:type %ItemType[i] .)
 GenItem(i)

GenItem(i as string)
For j = 1 to LastItem of current list
 If j = 1
 Output(_:ListNode%i tlo:hasItemList _:ItemList%i-%j .)
 Output(_:ListNode%i tlo:hasItem _:ListNode%i-%j .)
 Output(_:ItemList%i-%j rdf:first _:ListNode%i-%j .)
 Output(_:ListNode%i-%j tlo:hasIndex %j .)
 Output(_:ListNode%i-%j rdfs:label %ItemLabel[i][j] .)
 Output(_:ListNode%i-%j rdf:type %ItemType[i][j] .)

 If ItemType[j] != Terminal
 GenItem(i & "-" & j)
 If j != LastItem
 Output(_:ItemList%i-%j rdf:rest _:ItemList%i-%(j+1) .)
 Else
 Output(_:ItemList%i-%j rdf:rest rdf:nil .)

Fig. 9. Lists to RDF triples generator algorithm

An example of Wikipedia Lists in Fig. 3 has been
transformed by the proposed algorithm to a series of
represented RDF triples shown in Fig. 10.

_:ListNode1 rdfs:label "List of faculties and institutes" .

_:ListNode1 rdf:type tlo:NoBulletList .

_:ListNode1 tlo:hasItemList _:ItemList1-1 .

_:ListNode1 tlo:hasItem _:ListNode1-1 .

_:ItemList1-1 rdf:first _:ListNode1-1 .

_:ListNode1-1 tlo:hasIndex 1 .

_:ListNode1-1 rdfs:label "Health Sciences" .

_:ListNode1-1 rdf:type tlo:BulletedList .

_:ListNode1-1 tlo:hasItemList _:ItemList1-1-1 .

_:ListNode1-1 tlo:hasItem _:ListNode1-1-1 .

_:ItemList1-1-1 rdf:first _:ListNode1-1-1 .

_:ListNode1-1-1 tlo:hasIndex 1 .

_:ListNode1-1-1 rdfs:label "Faculty of Allied Health Science".

_:ListNode1-1-1 rdf:type tlo:Terminal .

_:ItemList1-1-1 rdf:rest _:ItemList1-1-2 .

_:ListNode1-1 tlo:hasItem _:ListNode1-1-2 .

_:ItemList1-1-2 rdf:first _:ListNode1-1-2 .

_:ListNode1-1-2 tlo:hasIndex 2 .

_:ListNode1-1-2 rdfs:label "Faculty of Dentistry" .

_:ListNode1-1-2 rdf:type tlo:Terminal .

_:ItemList1-1-2 rdf:rest _:ItemList1-1-3 .

. . .

_:ListNode1-1 tlo:hasItem _:ListNode1-1-8 .

_:ItemList1-1-8 rdf:first _:ListNode1-1-8 .

_:ListNode1-1-8 tlo:hasIndex 8 .

_:ListNode1-1-8 rdfs:label "Faculty of Veterinary Science".

_:ListNode1-1-8 rdf:type tlo:Terminal .

_:ItemList1-1-8 rdf:rest rdf:nil .

_:ItemList1-1 rdf:rest _:ItemList1-2 .

_:ListNode1 tlo:hasItem _:ListNode1-2 .

_:ItemList1-2 rdf:first _:ListNode1-2 .

_:ListNode1-2 tlo:hasIndex 2 .

_:ListNode1-2 rdfs:label "Sciences and Technologies" .

_:ListNode1-2 rdf:type tlo:BulletedList .

. . .

_:ListNode1-3 tlo:hasItem _:ListNode1-3-8 .

_:ItemList1-3-8 rdf:first _:ListNode1-3-8 .

_:ListNode1-3-8 tlo:hasIndex 8 .

_:ListNode1-3-8 rdfs:label "Faculty of Political Science" .

_:ListNode1-3-8 rdf:type tlo:Terminal .

_:ItemList1-3-8 rdf:rest rdf:nil .

_:ItemList1-3 rdf:rest rdf:nil .

Fig. 10. Sample RDF triples output generated from the Lists in Fig. 3

The result RDF triples will be connected to the Linked Data
with the owl:sameAs semantic link as shown below:

dbr:Chulalongkorn_University owl:sameAs

 tlr:Chulalongkorn_University .

tlr:Chulalongkorn_University tlo:hasItem

 _:ListNode1 .

The transformed RDF triples can be presented on many
Semantic Web browsers in various ways. Fig. 11 shows the
results from Fig. 10 in a mind map using SWIMM (Semantic
Web Inspired Mind Map) [ref] tool.

Fig. 11. SWIMM mind map output from the RDF triples in Fig. 10

VI. CONCLUSION

Many of information in Wikipedia are in the form of tables
and lists. Several important information was not been written
(or could not be written) in a descriptive essay format, but
instead arranged as tables and lists. In addition, some articles
are consisted of only tables or lists. Wikipedia also have a
special set of articles which the title begins with “List of …”
obviously, contents within these articles are only the lists.
Therefore, the Linked Data extracted from Wikipedia tables
and lists could provide additional information to the various
Semantic Web applications, and allow them to be used more
efficiently. This work proposed an algorithm to extract these
information. The ultimate goal is to provide a tool to convert
large body of knowledge presented in the web into “structured”
machine searchable form.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“DBpedia: A Nucleus for a Web of Open Data,” in Proceedings of the
6th International Semantic Web Conference, 2nd Asian Semantic Web
Conference, Busan, Korea, 2007, pp. 722-735.

[2] J. Isbell, and M. H. Butler, Extracting and re-using structured data from
wikis, HPL-2007-182, Digital Media Systems Laboratory of Hewlett-
Packard Development Company, Bristol, 2007.

[3] F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: A Core of
Semantic Knowledge Unifying WordNet and Wikipedia,” in
Proceedings of the 16th international conference on World Wide Web,
Banff, Alberta, Canada, 2007, pp. 697-706.

[4] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S. Auer,
J. Sequeda, and A. Ezzat, A survey of current approaches for mapping of
relational databases to RDF, W3C RDB2RDF Incubator Group, 2009.

[5] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi, “RDF123: From
Spreadsheets to RDF,” The Semantic Web - ISWC 2008, Lecture Notes
in Computer Science A. Sheth, S. Staab, M. Dean, M. Paolucci, D.
Maynard, T. Finin and K. Thirunarayan, eds., pp. 451-466: Springer
Berlin Heidelberg, 2008.

[6] M. Völkel, M. Krötzsch, D. Vrandečić, H. Haller, and R. Studer,
“Semantic Wikipedia,” in Proceedings of the 15th international
conference on World Wide Web, Edinburgh, Scotland, 2006, pp. 585-
594.

[7] D. Allemang, and J. Hendler, Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL: Morgan Kaufmann, 2008.

