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ABSTRACT
Quantum computer has shown the advantage over the classical computer
to solve some problems using the laws of quantum mechanics. With a
combination of knowledge of machine learning and quantum computing,
Quantum neural networks adapted the concept from classical neural net-
works and apply parameterized quantum gates as neural network weights.
In this paper, we present an application of quantum neural networks with
real-world data to predict token price used in a course bidding system. The
experiments were carried out on the Qiskit quantum simulator. The result
shows that quantum neural networks can achieve a good prediction result
compared to the classical neural network. The best model configuration
has the lowest RMSE 6.38%. This approach opens an opportunity to ex-
plore the benefit of quantum machine learning in many research fields in

Article information:

Keywords: Quantum Com-
puting, Quantum Neural Net-
work, Neural Networks, Course

Bidding, Bid Allocation

Article history:

Received: February 14, 2022

Revised: April 2, 2022

Accepted: November 6, 2022

Published: February 10, 2024
(Online)

the future.

DOI: 10.37936/ ecti-cit.2024181.247613

1. INTRODUCTION

Machine learning and Quantum computing are two
research areas that have attracted considerable atten-
tion in recent years and have evolved into a new field
known as Quantum machine learning [1]. Many re-
search papers include [2, 3, 4, 5, 6] show the potential
advantages such as speed up in training a model and
in [7] has shown the power of using quantum neu-
ral networks to train machine learning model. One
promising way to implement Quantum algorithms in
the Noisy Intermediate Scale Quantum (NISQ) [8, 9]
is using a technique call variational quantum circuits
or trainable quantum circuits as a machine learning
model [10, 11, 12, 13, 14].

Quantum Neural Networks take advantage of a
quantum computer using quantum mechanics such
as superposition, entanglement, on quantum bits to
perform the calculation [15]. The motivation behind
this research is to present the application of Quantum
Neural networks with real-world data and practical
challenges that are yet to be solved by using the new
method on near-term quantum devices.

In this paper, we propose a quantum computing
method to predict the token price to suggest and pro-
vide information to users in a course bidding system.

2. QUANTUM COMPUTING

In the classical computer, the basic unit of infor-
mation is known as Bit but in the quantum computer,
the smallest unit is the qubit or quantum bit. In a
classical system, a bit would have to be in one state
(0 or 1). However, a quantum bit may be in a super-
position of both states simultaneously. This means
that the probabilities of measuring 0 or 1 for a qubit
are in general neither 0.0 nor 1.0.

An important distinguishing feature between
qubits and classical bits is that multiple qubits can re-
veal quantum entanglement. Quantum entanglement
is a quantum mechanical phenomenon when two or
more qubits can interact, communicate, or correlate
with each other no matter how far apart they are in
space, their states remain linked and share a common
quantum state. Measurements of one of the qubit
automatically influence the other and once we have
knowledge of one quantum state, we automatically
know the quantum state of any entangled qubits

2.1 Quantum circuit model of computation

A quantum circuit is a prescription for quantum
operations we will perform on some set of the quan-
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tum state similar to classical circuits in which a com-
putation is a sequence of quantum gates to represent
the quantum program or algorithm.

As we will see the quantum circuits are built out
of a small set of gates. We will list a few of the most
important gates that we will encounter in this paper
in Table 1. Quantum gates are represented by unitary
matrices and their circuit form.

2.1.1  Single Qubit gate

A single qubit gate is a gate that acts on a single
qubit. There are some common quantum gates such
as Hadamard Gate and Pauli gates (X, Y, Z) in most
quantum circuit. Hadamard Gate is a basic quantum
gate that maps the basis state |0) or |1) to superposi-
tion state. Pauli gates are a single qubit gate rotation
through 7 radians around the X, Y, and Z axes of the
Bloch sphere showing in Fig. 1. The Pauli-X gate is
the quantum equivalent of the NOT gate for classical
computers.

|0)

1)

Fig.1: Bloch sphere.

2.1.2  Multi Qubit gate

A Multi-qubit gate is a quantum gate that acts on
multiple qubits and utilizes the true power of quan-
tum computing through the interactions between
qubits or entanglement between qubits.

CNOT or Controlled NOT gate operates on 2
qubits by using the first qubit as a control bit and
will flip the second qubit if and only if the first qubit
is |[1). The quantum truth table of the CNOT gate is
shown in Table 2.

2.1.3 Parameterized gate

The parameterized gate or rotation operator gate
is a special quantum gate that can specify the rotation
angle 8. The Rx, Ry, and Rz are similar to Pauli-
X, Y, Z gates but we can specify the rotation angle
instead of 7 radians in the Pauli gate.

3. QUANTUM NEURAL NETWORK

A Quantum neural network is an algorithm de-
signed for execution on a NISQ device by combin-
ing quantum computers with classical computers. It
is a subclass of variational quantum algorithms us-
ing trainable quantum circuits as a machine learning
model. Quantum computers will be used as hardware
accelerators co-working with a classical computer.

3.1 Variational quantum algorithms (VQAs)

A quantum algorithm is an algorithm or step-by-
step procedure for solving a certain problem by using
quantum superposition and quantum entanglement
to perform a calculation on a quantum computer.

Mostly we use a quantum circuit model of compu-
tation to perform a quantum algorithm. The well-
known quantum algorithm is Shor’s algorithm for
solving Integer factorization or Prime decomposition
and Grover’s algorithm for Unstructured search al-
gorithm or Brute-force searching based on amplitude
amplification.

In the NISQ era, VQAs are algorithms that allow
near-term quantum advantage, comprised of an iter-
ative quantum-classical optimization loop between a
classical computer and a quantum computer. In each
iteration the classical computer sends the set of quan-
tum logic gate parameters € to the quantum circuit
then the circuit was executed on the quantum de-
vice. The estimated expectation value is sent back to
the classical computer where the classical optimizer is
running and suggests a new set of parameters for the
subsequent iteration to minimized or maximized the
cost function. The well-known algorithm using the
concept of variational quantum algorithms is Quan-
tum Approximate Optimization Algorithm (QAOA)
(16, 17).

3.2 Parameterized quantum circuits as ma-
chine learning

In [10] Marcello Benedetti et al., and [13] Yuxuan
Du et al., propose parameterized quantum circuit as
a machine learning model. Maria Schuld [5][14] pro-
pose Circuit-centric quantum classifiers for use in su-
pervised learning by using a technic called Low-depth
variational quantum algorithm to train a machine
learning model. It is a hybrid loop of calculation be-
tween the quantum computer and classical computer
(Hybrid quantum-classical gradient descent).

The greatest strength of a Low-depth variational
quantum algorithm is using fewer learnable param-
eters or parametrized gates compared to other algo-
rithms. The number of parameters grows in Poly-
logarithmic by the input dimension so that the quan-
tum circuit is smaller and can work on the NISQ de-
vice.
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Table 1: Ezxample of Quantum gates.

Name Circuit form Matrices representation
1
Hadamard Gate q _m_ H= 72 [} _11]
Pauli-X gate q _._ X= (1) (1)]
Pauli-Y gate q _._ Y= [? Bi
Pauli _[ o
auli-Z gate q _._ Z= [0 _1]
1 0 0 0
Go —¢— 0100
CNOT gate CNOT =
-0 0 0 01
0 01 0
[ cos(8/2) —isin(8/2)
Rx gate ql - Rx(6) = [—1‘ sin(8/2)  cos(8/2)
_ [cos(8/2) —sin(6/2)
Ry gate q0 — Rr — Ry(8) = [sin(G/Z) c0s(8/2)
exp(—i0/2 0
Rz gate q2 - Rz _ Rz(8) = [ p( 0 2 exp(iB/Z)]
Table 2: The quantum truth table of the CNOT gate.
Before After
Control Target Control Target
[0) [0) 0) [0)
[0} [1) |0) [1)
[1) [0) [1) [1)
[1) [1) [1) |0)
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Fig.2: The dataset from a course bidding system.
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Fig.3: Correlation score.

3.3 Second-order Pauli-Z evolution circuit

Second-order Pauli-Z evolution circuit (ZZFea-
turemap) is a quantum feature map circuit that trans-
forms classical input data to a quantum state. It
takes a classical data point and translates it into a set
of parameterized quantum gates in a quantum circuit.
Z7Featuremap is based on the Pauli Expansion cir-
cuit which uses the RZ-gate as a parameterized gate
and CNOT gate to control entanglement and inter-
ference between qubits.

Entanglement in the system is achieved via CNOT
gates. The entanglement strategies are full and linear,
corresponding to the full (or all-to-all) and linear (or
next-neighbor coupling) entangler maps.

3.4 Quantum neural network model

QNN is inspired by a classical neural network that
tries to mimic the structure of a classical neural net-
work and use the parameterized quantum gates as
the weights within a neural network. The training
data are encoded into a quantum state via the feature
map circuit. The number of qubits used depends on
the training data attributes, one attribute per qubit.
The feedforward and hidden layer are in the form of
the variational quantum circuit. The backpropaga-
tion part measures all qubit output and calculates
through loss function minimization. The goal is to
optimize over a parameterized circuit, then set op-
timized parameters back to the variational quantum
circuit.

4. TOKEN ALLOCATION FOR COURSE
BIDDING

In paper [18] presents previous work about the Ma-
chine learning model used to predict the token price
for allocation to course through a course bidding sys-
tem. Three machine learning models are compared:
Decision Tree, Random Forest, and Artificial Neuron
Network (ANN) . The dataset is from a course bid-
ding system showing in Fig. 2 and was pre-processed
into eight input variables with the highest correla-
tion score and one output variable. ANN is the best
performing method to predict token price, with two
hidden layers and one output layer, in each hidden
layer has eight neurons fully connected.

The result of the experiment shows that ANN is
the best method with the lowest RMSE 3.98% over
Decision Tree with RMSE 4.18% and Random Forest
with RMSE 4.13%. This result inspired us to im-
plement ANN in a new proposed quantum machine
learning method to demonstrate the ability to use
QNN with the real-world data set.

5. METHOD

In this paper, we focus on implementing the QNN
model by using a quantum simulator from Qiskit [19].
The quantum computer is very difficult to simulate
classically and the resource required to grow expo-
nentially with the number of qubits or the depth of
the circuit. From this limitation, we limit the num-
ber of the qubit to only four qubits. This means the
input for this model needs to be select from the most
important by highest correlation score in Fig. 3, four
attributes shown in Table 3 were selected and data
point was filtered by course interesting in which val-
ues more than two are used.

Table 3: Input and output variable.

Input Output
course interesting
all_mean
enrolled_min

enrolled_mean

Token price

5.1 Data Encoding

The first step is to translate classical data into the
quantum state. We use a Second-order Pauli-Z evo-
lution circuit (ZZFeatureMap) developed in [20] with
four qubits and two repeated circuits. Hadamard gate
applies on each qubit, followed by a layer of RZ-gates
used to encode data and CNOT-gates on every pair
of a qubit. With full entanglement, each qubit is en-
tangled with all the others. The output of the feature
map circuit is quantum state and will be used as in-
put of the quantum neural network. ZZFeatureMap
circuit is shown in Fig. 4.
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Fig.4: Second-order Pauli-Z evolution circuit (ZZFeatureMap) with two repeated circuits, Hadamard gate
applies on each qubit, followed by a layer of RZ-gates and CNOT-gates on every pair of a qubit.

5.2 QNN Model

For QNN, we used RealAmplitudes variational cir-
cuit shown in Fig. 5, The circuit consists of 4 qubits
with Full entanglement. The layer of parameterized
RY-gates is applied to each qubit and used as neural
network weights. Increasing the depth of the varia-
tional circuit means we have more trainable parame-
ters in the model. The number of weight or trainable
parameters can be calculated as d = (D+1)S, where
S is an input size or the number of qubits and D is
the depth of the circuit (the number of the repeated
circuit).

% gt atd y atd
@G ot a8
a g4 aé oftor
a g6 ) ath Bl

Fig.5: RealAmplitudes circuit with two repeated cir-
cuits, Layer of RY-gates followed by CNOT-gates is
applied on every pair of a qubit. The circuit has a
total of 12 trainable parameters.

5.3 Model Training

In this paper, we experiment on the number of
repeated circuits to find the best model structure. We
trained the model for 500 iterations on circuit depth
range from 2-5, ADAM [21] optimizer with learning
rate 0.001 and 100 iterations on circuit depth range
from 4-7. ADAM optimizer with learning rate 0.1
is used to shorten the training time. Both use the

same MSE loss function. The overview of the training
process is shown in Fig. 6-7 and the training loss
values are plot in Fig.8-9

Quantum Computer

_ pa —
—— Classical data o | Feature map Variation modelEEE MSE loss
10>

Updated parameters

Classical Computer

Optimizer

Fig.6: Overview the quantum neural network train-
ing process. Feature map and Variation model are
erecuted on quantum computer and optimization is
on a classical computer.

6. RESULT

The result of the QNN model prediction is shown
in Table 4. We measure model performance by using
RMSE on the testing data. Testing data was selected
randomly for 30% of the samples.

Increasing the number of repeated circuits from
2-5, the model can perform better and RMSE values
are decreasing dramatically. Increasing the number of
repeated circuits to more than five, the model seems
to be overfitting. RMSE values from testing data of
repeated circuits 6-7 are very close to 5.

The best model configuration is five repeated cir-
cuits with 24 trainable gates, with a learning rate of
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Train-Test Split
Train: 70%, Test: 30%

Fig.7: Flow chart of the training process.
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Fig.8: ADAM optimizer with learning rate 0.001,
Mean squared error loss as a function of training.
The number of repeated circuit range from 2-5. We
find that five repeated circuits have the lowest loss
value.
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Fig.9: ADAM optimizer with learning rate 0.1,
Mean squared error loss as a function of training.
The number of repeated circuit range from 4-7. We
find that five repeated circuits still have the lowest loss
value.

0.001 has the lowest RMSE at 7.8%, learning rate
of 0.1 has RMSE at 6.38%. RMSE values from 500
iterations are plotted in Fig. 10.

Table 4: FExperiment result.

Number of Number of RMSE
repeated circuits | trainable gates | [r = 0.001 | ir = 0.1
2 12 0.0952 -
3 16 0.1198 -
4 20 0.1097 0.0691
5 24 0.0780 0.0638
6 28 - 0.0632
7 32 - 0.0633
Quantum Computer
— La I
— Classical data —2— Feature map Variation model MSE loss

| | I

Updated parameters

Classical Computer

Optimizer

Fig.10: ADAM optimizer with learning rate 0.001,
RMSE on four different model. QNN Model with five
repeated circuit has shown the lowest error.

7. CONCLUSION

In this paper, The result has shown that the Quan-
tum Neural Network model can be trained and can
perform regression tasks on real-world data set with a
good result compared to the classical neural network.
Our Quantum Neural network model with a limited
input size of 4 and 24 weight parameters has the low-
est RMSE 6.38% compared to the ANN model in pa-
per [18] with 8 inputs and 153 weight parameters has
the lowest RMSE 3.98%. The variational algorithms
only employ shallow depth quantum circuits and can
be implemented on noisy intermediate-scale quantum
(NISQ) devices. It has shown the potential of using
Quantum computers in Machine learning.
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In addition, increasing repeated circuit or RY-gate
is similar to increasing the number of nodes in a clas-
sical neural not only increases the capacity of a model
network but also helps reduce training loss value and
reduce the error of the predicted result.
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