Visually-Guided Reaching by Genetic Programming

Jumpol Polvichai

Prabhas Chongstitvatana

Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University, Bangkok 10330, Thailand
email: g37jpv@chulkn.car.chula.ac.th & fengpjs@chulkn.car.chula.ac.th

Abstract

This work describes a hand-eye system that can learn from
its experience. The task is to visually-guide the hand to the
target avoiding obstacles. The path planning problem is
solved by genetic programming. The vision system maps
the experiment onto an image plane which is used to do
simulation run during the genetic programming process.
The genetically created programs are validated by the actual
runs on the robot successfully.

1 Introduction

One aim to achieve general intelligence in the field of
artificial intelligence is to have a system that can learn. A
learning system can extract information from an unknown
environment, especially when an accurate model of
environment is not available. Agents having a continuous
existence can also learn for experience, they should be able
to learn how to solve new problems when the circumstances
arise.

One technique of learning in artificial intelligence is
genetic programming method. In genetic programming
paradigm genetically breeds populations of computer
programs are used to solve problems. The individuals in the
population are compositions of functions and arguments. An
evolutionary process is driven by the measure of fitness of
each individual computer program in handling the problem
environment.

Visually-guided robotics task is a good domain for
experimentation in learning as it maps perceptual tasks in
the world in which the relevant laws and interrelationships
between an active agent and the environment are highly
reliable.

2 Previous Work

Visual feedback has been used to guide robots in hand-eye
coordination tasks since the early days of robotics research.

Jones [4] demonstrated the use of visual tracking methods
to perform block stacking and loose insertion.

In motion planning for hand-eye coordination task, the
system such as HANDEY [9] relies on geometrical
modeling of the environment and robots. The system plans
collision free paths in configuration space. It does rely on
accurate models which makes the system unable to cope
with uncertainty.

In Mel [10], MURPHY, a robot motion planning system
in presented. The system approaches the problem of
visually-guided reaching using connectionist method.
MURPHY uses neural-like units to learn the association
between visual perception and robot arm motions in which
it learns both forward kinematics and inverse differential
kinematics. To plan a collision free path , the system uses
heuristic search the sequences of arm configurations which
move the hand to the target. MURPHY moves the arm
randomly and does gradient descent in the distance to the
target, backtracking if it fails and tries other paths if a
current path is blocked by obstacles. It is this motion
planning part that this paper attacks by genetic
programming.

A good introduction to genetic programming can be
found in Koza [7]. A similar approach to genetic
programming is genetic algorithms which is pioneered by
John Holland of the University of Michigan (Holland [3]).
A lot of background can be found in Goldberg [2]. Koza
and Rice [8] applied genetic programming to generate robot
programs. Their example is that a mobile robot searching
for a box and pushs it to the wall. The application of genetic
algorithms to robot arm planning is numerous, for
examples: Khoogar, Parker and Goldberg [5] solved inverse
kinematics of redundant robots; Khoogar and Parker [6] did
the obstacle avoidance; Chan and Zalzala [1] planned
minimum-time trajectories.

3 Problem Statement

The system consists of a robot arm and a camera. The
camera looks at the arm and the environment (as in figure
1). The task is visually specified : to move the hand to the
target while avoiding obstacles.

Figure 1 The picture of the robot arm and the
environment looking through the camera.

4 Experiments

A vision system is used to identify the target, the obstacles
and the robot arm. To simplify the vision algorithms, the
robot arm has a distinctive color and two different
thresholds are used to distinguish the robot arm from the
obstacles and the target. A simple heuristic is used to locate
three joints of the robot arm. The shoulder joint is the one
near the bottom left of the image. The fingertip has a
triangular shape. The wrist is then the joint that is near to
the fingertip and, lastly, the elbow is the remainder joint.

The target, the obstacles and the arm are represented
directly in the image. Therefore checking the collision and
the out of bound condition are done in the image plane.
This is, in a way, similar to the analogical representation
paradigm.

In running the experiments, a forward kinematics model
is built by instantly various parameters measured by the
camera in the beginning of the run. This model is used
during the simulated run of each program that is genetically
generated

For preparing to use genetic programming, the set of
terminals are identified to include six primitive servo motor
functions and the system checking functions in the terminal
set. Thus, the terminal set T for this problem is T = { s+, s-,
et, e-, w+, w-, HIT?, SEE?, INC?, DEC?, OUT?}. A set of
functions for this problem, the function set F consists of F
= { [F-AND, IF-OR, IF-NOT}.

The function s+ (shoulder up) drives the shoulder motor
up 1 step and s- (shoulder down) drives the shoulder motor
down 1 step. The similar meaning applied for e+, e- (elbow)
and w+, w- (wrist). All of these functions will return true, if
the servo motor can move to its position. If the servo motor

can not move, as a result of] hitting an obstacle, moving out
of the image, or moving to the limit of the servo motor, the
function returns false.

The function HIT? checks whether each link of the robot
arm hits the obstacle or not. This function depends on the
value of PAIN-variable. When the arm crashes against an
obstacle, 10 is added to the PAIN-variable, otherwise, 1 is
substracted from the PAIN-variable if it is not equal to zero.
The function returns true if the PAIN-variable is not equal
to zero, . The function SEE? checks whether the path from
the fingertip to the goal has any obstacle or not. The
function INC? checks whether the distance between the
fingertip and the goal is increasing or not. The function
DEC? checks the opposite, the decreaing of the distance
between the fingertip and the target. The function OUT?
checks if each joint of the robot arm moves out of bound or
not.

The function IF-AND is a four-argument comparative
branching operator that executes its third argument if its
first argument and its second argument are true, or
otherwise, executes the fourth argument. The function IF-
OR is a four-argument operator that executes its third
argument if its first argument or its second argument is true,
or otherwise, executes the fourth argument. The function IF-
NOT is a three-argument operator that executes its second
argument if the negative of its first argument is true, or
otherwise, executes the third argument.

5 Genetic Programming Process

There are five stages in one cycle of the genetic
programming process in the experiment.

Stage 1 : Creation of an initial population

The first step generates an initial population of computer
program that randomly mixes the functions and the
terminals. A sample of computer program shows in figure 2.
The size of population is 40 computer programs.

(IF-AND w+ w+ e+ (IF-AND (IF-NOT (IF-NOT OUT? s-
w+) (IF-AND e+ s- e- (IF-OR (IF-NOT w+ s+ e+) s+ e- e-))
(IF-OR (IF-NOT SEE? w- e-) w+ e+ et)) w- (IF-OR SEE?
(IF-OR e- (IF-OR (IF-OR HIT? e+ s+ e-) INC? w- e-) st
w+) (IF-AND (IF-NOT w- e- e-) w- w- w+) s-) et)))

Figure 2 A sample of computer program which is
randomly generated.

Stage 2
program

In each generation, iteratively execute each program
until one of the termination criterions has been qualified.
The termination criterions is described as follows:

Verification of each computer

- Maximum execution time :
execution times.
- Maximum time : not over 50 seconds.
- Dead condition : There are two conditions.
1.The arm has the same final position over 50
execution times.
2.The value of PAIN-variable is over 2,000

not over 1,000

units.
- Successful : the arm can reach to the goal position.

Stage 3 : Evaluation of each program

The fitness (or performance) of individual programs is
evaluated with respect to the following conditions.

First, start with Fitness = 5,000. In case that the arm is
not successful, subtract a multiple of k-constance and the
distance between the fingertip position and the goal position
from the fitness. If in the final position, the path from the
fingertip to the target is blocked by an obstacle, substract
1,000 from the fitness. Next, if the arm is in the dead
position, then subtract 4,000 from the fitness. If successful,
add 3,000 to the fitness.

Stage 4 : Selection of the best ten programs

Based on the individual fitness of each program, the best
ten programs are selected.

Stage 5 : Genetic manipulation

The manipulation process uses genetic operators to
create a new population of individual programs. There are
four main operations : reproduction, crossover, addition and
extension. The reproduction is the operation that copies the
best ten programs into the next generation. The crossover is
the operation that creates the new ten programs by
recombining randomly chosen parts of two of the existing
best ten programs. The addition operation generates an
additional node from the root node (firgure 3). The
extension operations does likewise but from a terminal node
(figure 4).

I+
T+
2 No 3+
2*/ E\N'O — 4 / 7
/ \ % NoO
o ‘w1 \

Figure 3 The addition operation.

'+ +
S VS
2 NO — * +
/N /N |/ \
N N1 N N1 | NO N1

Figure 4 The extension operation.

In each generation, if there are no successful programs
and the best ten programs of each generation have the same
final position over 4 times, then mutation comes into action.
The mutation operator performs random changes of the
command code in every individual program in the
population. The probability of this changing is 1/3.

6 Results and discussion

The experiments are run for 100 generations. In each
generation the number of successful plan is record. The
average performance is calculated from 12 experiments.
The best program is then validated by running it on the real
robot with the actual feedback (HIT?, SEE?, INC?, OUT?)
from the camera. It performs successfully.

best result

—Caverage

No.of successful plan
&
t

50+
60 +
70 +
80+
90 +
100l

'
T
=
=t

0
10 +
20 +
30 +

Generation

Figure 5 Performance plotted against generation for these
experiments. The fat line shows the average performance of
the population, and the thin line represents the
performance of the best result of each generation.

In figure 5, the learning cure shows that the performance
improves rapidly from the generation 10 to 40 and then
level off by still increasing until the 100th generation. A
sample of experiment as show in figure 6, the run of the best
program on the actual robot is same as the run in the
simulation. Some of experiments, the run on the actual
robot is not exactly same as the run in the simulation. This
is caused by the discrepancy in position predicted by the
kinematics model and the actual position of the robot arm.
The reason for this error comes from the non-linearity of the
camera field of view. In theory, Instead of using the
simulation run for GP, the actual run can be performed. But
this will take unacceptable amount of time. An actual run of

a typical program takes about 120 second. It will take 40 x
120 x 100 s., or about 130 hours to complete an experiment.

7 Conclusions

This work has shown that the genetic programming method
can be used to solve the path planning part in visually-
guided reaching. The system improves its performance by
learning from experience. The vision system maps the
environment directly into the internal representation. This
representation is use successfully as a simulated
environment for genetic programming.

The ongoing work is on eliminating the current forward
kinematics and constructing the actual mental image of arm
configurations. This will enable the system to better reflect
the real world in its simulation run phase.

Acknowledgements

This research was supported by the National Science and
Technology Development Agency.

References

K. K. Chan and A. M.S. Zalzala, “Genetic-Based
Minimum-Time Trajectory Planning of Articulated
Manipulations with Torque Constraints,” IEE
Colloquium on "Genetic Algorithms for Control
Systems Engineering"(Digest No. 1993/130), pp. 4/1-
3, 1993.

(1]

[2[D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. MA: Addison-

Wesley, 1989.

[3] J. H. Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan

Press, 1975.

[4] V. lJones, “Tracking: An Approach to Dynamic Vision
and Hand-Eye Coordination,” Ph.D thesis. University
of Illinois, Urbana Champaign, 1974.

[5] A. R. Khoogar, J. K. Parker and D. E. Goldberg,
“Inverse Kinematics of Redundant Robots using
Genetic ~ Algorithms,” Proceedings.1989 IEEE
International Conference on Robotics and Automation,

pp. 271-276, vol. 1, 1989.

[6] A.R. Khoogar and J. K. Parker, “Obstacle Avoidance
of Redundant Manipulators Using Genetic
Algorithms,” IEEE Proceedings of

SOUTHEASTCON'91, pp. 317-320, vol. 1, 1991.

J. R. Koza, “Genetically Breeding Populations of
Computer Programs to Solve Problems in Artificial
Intelligence,” Proceedings of the 2nd International

(7]

8]

[9]

[10]

IEEE Conference on Tools for Artificial Intelligence,
pp- 819-827, 1990.

J. R. Koza and J. P. Rice, “Automatic Programming of
Robots using Genetic Programming,” AAAI-92
Proceedings, Tenth National Conference on Artificial
Intelligence, pp. 194-201, San Jose, California, July
12-16, 1992.

T. Lozano-Perez, J. L. Jones, E. Mazer and P. A.
O'Donnell, HANDEY A Robot Task Planner.
Cambridge, Massachusetts, MIT Press, 1992.

B. W. Mel, Connectionist Robot Motion Planning, A
Neurally-Inspired Approach to Visually-Guided
Reaching. Academic Press, Inc, 1990.

Figure 6 A sample of experiment which show the movement of the arm on the actual robot (above) and
in the simulation (below).

