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Abstract 
 

A stack-based processor where the instruction set 
acts on data resided on an evaluation stack, has its 
performance bottleneck due to the limit of access to 
the stack.  Although the stack-based processor has 
low performance, it is very low cost to implement.  
This paper proposes a method to improve the 
performance of a stack-based processor.  A number 
of fast registers are used to “cache” part of the 
evaluation stack.  This can be achieved without 
affecting the instruction set and most of the data 
path.  A detailed analysis of the control steps is 
given.  The performance gain is around 30% of the 
original processor. 
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architecture, stack frame caching 
 
1. Introduction 
 

A stack-based processor has the advantage of 
simplicity.  The stack-based instruction set is also 
compact.  This type of architecture is suitable for a 
low cost embedded system. However, it has one 
shortcoming, performance.  Due to the nature of 
stack access, only one item can be accessed at a time.  
This paper proposes a simple scheme to improve the 
performance of stack-based processors, called stack 
frame caching.  A number of fast registers are used to 
cache part of stack frame.  This allows concurrent 
access of two items from the stack.  Stack frame 
caching does not require any change in the 
instruction set; hence, it is applicable to wide range 
of stack-based processors.  The experiment shows 
that the performance improvement is around 30%.  
 
2. Reference processor 
 

To illustrate our proposed method, a stack-based 
processor will be used as a reference processor which 
will be augmented with the stack frame caching.  The 
reference processor is due to [1].  It is a simple stack-

based processor aimed for embedded applications. 
The entire stack is stored in the memory. 
 
There are seven special purpose registers (no visible 
user registers): TS, FP, SP, NX, FF, IR and PC. TS 
caches the top of stack value (Fig. 2). 
 

TS  top of stack 
FP  frame pointer 
SP  stack pointer 
NX  temp register 
FF  temp register 
IR  instruction register 
PC  program counter 

 
The program counter, PC, can be updated 
independent of other registers.  This allows fetching 
an instruction in one cycle.  The data path consists of 
one ALU connected to the register bank.  The output 
of ALU, tbus, goes back to the register bank. The 
memory is interfaced to the processor through the bus 
interface unit (BIU).  The BIU interfaces the data 
input, din, and the data output, dout, to the memory 
data bus. din is selected from TS or FP. The input of 
the register bank, bus, is multiplexed from tbus, 
dbus and PC.  The address bus, abus, is multiplexed 
from PC and tbus.  The PC can be updated with 
PC+1 or PC+arg or tbus. The ALU has two ports: 
p1, p2 and can perform usual arithmetic and logic 
functions. There are two flags: Zero, and Sign. 
 
Using 2-phase clock enables read-modify-write of 
registers in one cycle.  Reading from registers and 
memory will be on the positive edge and writing to 
registers will be on the negative edge. The basic 
cycles are:  
 

• read-modify-write registers 
• register transfer 
• memory read 
• memory write 

 



Register access 
 

The basic read-modify-write starts at the positive 
edge of the clock.  The data are read from the 
registers into the ALU ports through the multiplexor 
x and y.  The ALU outputs the result to tbus.  At the 
negative edge, tbus is fed back to the input of 
registers, bus, through the multiplexor b and is 
latched into the designated register. 
 
Read-modify-write a register 
 

pos edge: R -> alu -> tbus 
neg edge: tbus -> R 

 
Register transfer 
 

pos edge: R1 -> tbus 
neg edge: tbus -> R2 

 
A number of changes have been made to improve the 
performance of the reference processor. 
 
1) The instruction format is a fixed length 32-bit 

with 8-bit opcode and 24-bit argument.  This 
allows fast instruction fetch. 

2) The data width is increased to 32 bits to match 
with the instruction width.   

 
Control steps notation 
 
The notation used in describing an execution step is 
as follows. 
 

src->dest 
 
denotes the event that transfer data from a source to a 
destination where source and destination can be a 
wire or a register.  A wire represents a connection or 
the input/output of a component.   
 

alu(p1 op p2)->dest 
 
denotes the ALU performing the “op” on its two 
input ports, p1 and p2, and its output is connected to 
dest, where dest can be a wire or a register. 
 

mR(ads)->dest 
src->mW(ads) 

 
mR denotes memory read with the address from the 
source ads, the data is transferred to dest.  mW 
denotes memory write with the data sets to the 
source, src, and the address is ads.  src and dest 
can be a wire or a register.  The concurrent events are 
specified by writing them on the same line.  Each 
event is separated from other event by “,”.  The order 

of events in the same line is unimportant because 
they occur in the same clock cycle.  However, some 
event occurs on the positive edge of the clock, some 
event occurs on the negative edge of the clock.  
Reading from registers and memory will be on 
positive edge and writing to registers will be on 
negative edge. 

 
src->dest, mR(ads)->dest, ... 

 
We have a shorthand notation for SP. 
 

sp-1     is alu(sp-1)->sp 
sp+1     is alu(sp+1)->sp 

 
Let the shorthand notation of  push/pop be 
 

push x is    
  sp+1->sp 
  x->mW(sp) 
 
pop x is 
  mR(sp)->x 
  sp-1->sp 

 
3. Stack frame caching 
 

Almost all instructions of stack-based processors 
perform push and pop.  This is because two reasons. 
The first reason is that it is the nature of the stack-
based instruction set to access data from the 
evaluation stack. The second reason is that the top of 
stack is cached in TS, therefore there is a lot of traffic 
between TS and the stack segment.  In the reference 
processor, push and pop do one memory access and 
use ALU to do increment/decrement SP.  The most 
frequently used instruction is “get” (loading a local 
variable from the stack frame to top of stack register).  
ALU is used to calculate the address of variable to be 
loaded from the stack frame which is stored in the 
memory, address = FP-arg, where arg is the 
reference of the local variable. It has the following 
control steps. 

 
<get>  
sp+1 
ts->mW(sp) 
alu(fp-arg)->tbus, mR(tbus)->ts 
 

There are two key ideas to improve the performance. 
 

1) The operations push/pop can be done in one 
cycle if SP can be incremented/decremented 
independent of ALU and they can achieve 
pre-increment and post-decrement at the 
proper negative-edge of the clock.  



2) To improve “get”, the local variable must be 
stored in a register instead of memory as 
push/pop also access memory.  If it is done 
properly “get” will take just one cycle.  

 
Let v[.] denotes the caching register bank.  It is 
connected to TS in the data path (see Fig. 2). Using 
the caching register bank will allow accessing a local 
variable and TS at the same time.  The “get” can be 
done in one cycle. 

 
<get> 
$1 push ts, $2 v[arg]->ts 

 
Where $1 denotes positive-edge and $2 denotes 
negative-edge, v[.] is the cache register.  The old 
value TS is pushed into memory at $1, before the new 
value from v[arg] is written to TS at $2.  
 
Push/pop 
 
To push a register to memory in one cycle, the 
“sp+1” must appear at the address bus from the 
beginning of $1, TS is presented to data bus at the 
same time, at the beginning of $2 memory write 
signal is ended (it is assumed that the value is written 
into memory here), the value of “sp+1” is also 
written to SP at this time. With the new scheme, 
push becomes 

 
$1 sp+1->abus, ts->dbus, $2 mW(abus), 
sp+1->sp 

 
Popping a register can be done in one cycle.  The 
value “sp” is presented to the address bus at $1. The 
memory is read.  At $2, the data is latched to a 
register, at the same time, “sp-1” is written to SP 
(post-decrement). pop becomes 

 
$1 sp->abus, mR(abus)->dbus,$2 dbus-> 
x, sp-1->sp 

 
With this new push/pop, most instructions will be 
faster. For example, “push a literal” takes only 
one cycle for execution. 
 

<lit>  
$1 push ts, $2 arg->ts 

 
“load” cannot be done in one cycle as it reads the 
memory twice, the first one to push TS, the second 
one for getting the value. Therefore “load” takes 2 
cycles. 
 

<load> 
push ts 
mR(arg)->ts    

All the binary operations now take 2 cycles.  
 

<bop>  
pop ff 
alu(ts op ff)->ts 

 
Implementing the SP unit 
 
To perform increment/decrement on SP in concurrent 
with other ALU operations, SP must be a separate 
unit. The SP unit performs pre-increment at $1, post-
decrement at $2, and loads a value from bus at $2.  
There is a feed forward path from the adder “sp+1” 
to achieve the pre-increment.  All multiplexors are 
asserted at $1, latching the register SP is at $2 
(Fig.1). 

 
Figure 1   The SP unit 

 
 
Stack frame 
 
A number of registers are used to cache a part of 
stack frame. The stack frame remains unchanged 
from the original design. The local variables, 
lv1..lvn, are cached into v[1]..v[n] the cache 
registers.  When the context is changed by 
call/ret, these registers are affected.  Before a new 
activation record is created the old cached registers 
must be written back to the current activation record.  
And vice versa, upon returned from a call, after the 
activation record is deleted and the old one restored, 
the cache registers must be refreshed (re-cached) 
from the activation record. The pseudo code 
call/ret are as follows.  
 

<call> 
* save v to the current stack frame 
  push ts (flush stack) 
  create a new frame 
 save fp' and return address 
* cache v from the new frame 
  update sp 

 
<ret> 
  restore return address, sp 
  restore the old frame 
* cache v of this current frame (restore old v) 
  if it is “ret” pop ts 

sp 

 
+/−

 

 

bus 

 1 

sp + 1 



The lines with * are the additional work that must be 
done to do stack frame caching.  The control steps for 
call/ret for saving/caching v[.] are as follows. 
 

<save v> 
alu(fp-n)->fp 
vn->mW(fp), alu(fp+1)->fp 
... 
v1->mW(fp), alu(fp+1)->fp  

 
<cache v> 
alu(fp-n)->fp 
mR(fp)->vn, alu(fp+1)->fp 
... 
mR(fp)->v1, alu(fp+1)->fp 

 
If the size of caching register is n then the extra cycle 
in call/ret instruction is O(3(n+1)). 
 
The simple analysis of the previous section has the 
worst case additional running time for using stack 
frame caching in O(3(n+1)) cycles.  However, it is 
not the case that a function call will use all v 
registers.  Let maxv be the number of v registers, fs 
be the size of activation record.  If the size of 
activation record is less than maxv then only 
v[1]..v[fs] must be saved/cached. Let u be 
max(fs, maxv); it is stored in the register U. The U 
register is used to skip a number of control steps to 
achieve this effect.  The control signal “skipu” sets 
the next control step to mpc+(maxv-u), where mpc is 
the current control step. Assume the size of caching 
register is 4 (maxv = 4). The control steps below 
show the part to save v registers at the function call.  
  

<save v> 
alu(fp-u)->fp, skipu 
v[4]->mW(fp), fp+1->fp 
v[3]->mW(fp), fp+1->fp 
v[2]->mW(fp), fp+1->fp 
v[1]->mW(fp), fp+1->fp     

 
Caching v registers can be achieved similarly.  In 
fact, when calling a function, not even u registers 
need to be cached, only the passing parameters (p) 
need to be cached from the evaluation stack (it is a 
save when p < u).  However, it becomes too complex 
to do in a simple control unit such as this due to the 
ordering the variables.  Therefore, a tradeoff has been 
made not to exploit this fact.   
 
The “call” instruction saves the return address to TS 
and saves v registers.  The “fun” creates the new 
activation record and caches the passing parameters 
from the evaluation stack to v registers. 
 

<call>              
; store  ret ads on ts 
ts->mW(sp+1), sp+1->sp, pc+1 ; flush ts 
pc->ts, arg->pc, if u=0 <fetch> 
<save v> 
alu(fp-u)->fp, skipu    
v[4]->mW(fp), fp+1->fp 
v[3]->mW(fp), fp+1->fp 
v[2]->mW(fp), fp+1->fp 
v[1]->mW(fp), fp+1->fp 
<fun> 
fp->mW(sp+k), sp+k->sp ; save fp, new sp 
sp->fp                 ; new fp 
u->mW(sp+1), iru->u, sp+1->sp  ; push u 
pc+1 
<cache v> 
alu(fp-u)->fp, skipu 
mR(fp)->v[4], fp+1->fp 
mR(fp)->v[3], fp+1->fp 
mR(fp)->v[2], fp+1->fp 
mR(fp)->v[1], fp+1->fp 

 
<ret> 
sp-1->ff 
alu(fp=ff), ifF <r2>  ; test for retv 
ts->pc                ;  ret ads on TS 
mR(sp)->u             ; pop u 
alu(fp-arg)->sp 
mR(sp)->ts, sp-1->sp, if u=0 <r3>  
; if u=0 skip cachev 
mR(fp)->fp, <cachev> 
<r2> 
alu(fp+2)->tbus, mR(tbus)->ff 
; ret ads on frame 
ff->pc 
alu(fp+1)->tbus, mR(tbus)->u  ; pop u 
alu(fp-arg)->sp, if u=0 <r3>  
; skip cachev 
mR(fp)->fp, <cachev> 
<r3> 
mR(fp)->fp, <fetch>    ; restore fp 

 
When arg > maxv, the “get” accesses normal 
memory.  Even in this case the step of execution is 
faster due to the SP unit. When arg <= maxv, the 
access in on v registers and the execution takes only 
one cycle. The instruction decoder performs a check 
on the argument of “get” and branches to the proper 
“get x” where x is 1..maxv. The pre-increment 
using “sp+1” feed-forward path can be seen. 
 

<get> 
ts->mW(sp+1), sp+1->sp   ; push ts 
alu(fp-arg)->tbus, mR(tbus)->ts, pc+1 
 
<get1> 
ts->mW(sp+1),v[1]->ts,sp+1->sp, pc+1 
 



<get2> 
ts->mW(sp+1),v[2]->ts,sp+1->sp, pc+1 
 
<get3> 
ts->mW(sp+1),v[3]->ts,sp+1->sp, pc+1 
 
<get4> 
ts->mW(sp+1),v[4]->ts,sp+1->sp, pc+1 

 
“put” is similarly decoded.  The post-decrement of 
SP unit allows the instruction to be executed in one 
cycle. 
 
4. Performance 
 

A number of benchmark programs are compiled 
and then run on the augmented processor.   Table 1 
below reports the number of instruction (noi) and the 
number of cycle (cycle) for each program. 
 
“bubble” is a bubble sort program sorting an array of 
20  integers, initially the value in the array is in 
descending order and sort to ascending order. “hanoi” 
is a program to solve Hanoi problem with 6 disks.  
“matmul” is a matrix multiplication program; the 
input is two matrices of the size 4 × 4.  “perm” is a 
program to do all permutation of {0,1,2,3}.  “queen” 
is a program to find all configurations of 8-queen 
problem.  “quick” is a quicksort program with a 
similar input to “bubble”.  “sieve” is a program to 
find prime numbers less than 1000 using “Sieve of 
Eratosthenes” algorithm.  “aes” is a program to do 
AES (Advanced Encryption Standard) block cipher 
(128, 128) bit key.  The average cycle-per-instruction 
number of the reference processor is 4.3.   
 
The average CPI of the augmented processor is 2.9.  
From the table, comparing the number of clock 
between the reference processor and the processor 
with stack frame caching, the average ratio is 0.70.  
That is, the augmented processor is 30% faster than 
the reference processor. 
 
Table 1  The performance comparison 
 

  Ref  Improved 

program noi cycle noi cycle 

bubble 10068 44214 10262 32090 
hanoi 2312 10092 2377 7544 
matmul 3043 12880 3097 9348 
perm 4868 20932 4935 14663 
queen 618665 2576210 620724 1717782 
quick 3172 13539 3224 9551 
sieve 28026 124338 28029 75204 
aes 30579 131560 30724 90498 

5. Related work 
 

The most well-known stack-based instruction set 
is JVM, the Java virtual machine [2].  It has many 
implementations, a commercial one is from SUN, 
PicoJava [3, 4, 5].  The other one from research 
community is JOP [6].  PicoJava uses a form of 
“register window” to cache stack frame.  It also 
employs “instruction folding” to merger two 
instructions into one special instruction for a faster 
operation.  JOP uses special microcode to accelerate 
the operation, it also employs pipeline.  A low cost 
commercial stack-based processor is also available 
[7]. It aims for embedded applications.  The proposed 
method is quite different from these works.  Stack 
frame caching uses fast registers in the processor to 
cache the stack values. 
 
6. Conclusion 
 

To improve the performance of stack-based 
processors, we employ the technique of stack frame 
caching.  The stack frame caching relies on fast 
registers to cache a part of the stack frame so that the 
access to these variables takes only one cycle. The 
separation of SP from the ALU path to have its own 
increment/decrement, the SP unit, helps to shorten 
the cycle of the push/pop values from the evaluation 
stack.  There are many approaches to enhance the 
performance of a processor. In general, the memory 
sub-system has the major impact on performance. 
However, in our presentation, the speed of memory, 
its access time, is assumed to be one cycle, therefore 
it does not affect our design.  This is not a realistic 
assumption for a general purpose processor but in the 
context of implementing the design on FPGA with its 
internal memory block, this is correct. 
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Figure 2  The augmented data path 
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