IW1aunNsSn
UK1DNE1Q Y

CHULALONGKORN UNIVERSITY

Optimizing Hard Problems With Quantum Computer

Prabhas Chongstitvatana



More Information

e Search “Prabhas Chongstitvatana”
* Go to me homepage




What is a quantum computer?

*a computer that relies on special memory,
"quantum bit", to perform massively parallel
computing.



What is a quantum bit?

*a basic unit of memory that uses superposition
of "quantum" effect (entanglement) to store
information.

*a "qubit" stores the probability of information. It
represents both "1" and "0" at the same time.



Quantum Bits (Qubits)

e Classical bits vs. Quantum bits
* Qubits are mathematical objects (similarly to 0/1 in classical bits)

Prob. Prob.



What is the advantage?

*|t is very very fast compared to conventional
computers

*|t has very large memory



Recent work

*google quantum lab's paper

*claim of 100,000,000x speed up



What is the Computational Value of Finite Range Tunneling?

Vasil S. Denchev,! Sergio Boixo.! Sergei V. Isakov,! Nan Ding.! Ryan
Babbush,! Vadim Smelyanskiy,! John Martinis,? and Hartmut Neven!

'Google Inc., Venice, CA 90291, USA
2Google Ine., Santa Barbara, CA 93117, USA
(Dated: December 31, 2015)

Quantum annealing (QQA) has been proposed as a quantum enhanced optimization heuristic ex-
plotting tunneling. Here, we demonstrate how finite range tunneling can provide considerable com-
putational advantage. For a crafted problem designed to have tall and narrow energy barriers
separating local minima, the D-Wave 2X quantum annealer achieves significant runtime advantages
relative to Simulated Annealing (SA). For instances with 945 variables, this results in a time-to-99%-
success-probability that is ~ 10® times faster than SA running on a single processor core. We also
compared physical QA with Quantum Monte Carlo (QMC), an algorithm that emulates quantum
tunneling on classical processors. We observe a substantial constant overhead against physical QA:
D-Wave 2X again runs up to ~ 10° times faster than an optimized implementation of QMC on a
single core. We note that there exist heuristic classical algorithms that can solve most instances
of Chimera structured problems in a timescale comparable to the D-Wave 2X. However, we believe
that such solvers will become ineffective for the next generation of annealers currently being de-
signed. To investigate whether finite range tunneling will also confer an advantage for problems of
practical interest, we conduct numerical studies on binary optimization problems that cannot yet
be represented on gquantum hardware. For random instances of the number partitioming problem,
we find numerically that QMC, as well as other algorithms designed to simulate QA, scale better
than SA and better than the best known classical algorithms for this problem. We discuss the
implications of these findings for the design of next generation quantum annealers.

I. INTRODUCTION standard time-dependent Hamiltonian used for QA is
. . . N
Simulated annealing (SA) [I] is perhaps the most B -
widely used algorithm for global optimization of pseudo- H(t) = —A(t) Z 75 + B(t)Hp , (2)

Boolean functions with little known structure. The ob- i=1

jective function for this general class of problems is where Hp is written as in Eq. (]ID hut with the spin vari-

I [EURPRUER, [P U I I R, 1. A
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Example of quantum computers

*|BM 5 and 50 qubits
* D-wave two, quantum annealing



IBM 50 qubits quantum computer
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IBM 5 qubits processor




Google Nasa, D-Wave 2x machine

STEPHEN LAM / REUTERS



Impact of quantum computer on industry

* Four industry (near future)
 Pharmaceuticals
e Chemicals
* Automotive
* Finance

* Four use cases
e Quantum Simulation
* Quantum Al and Machine learning
* Quantum Optimization
* Quantum Factorization



SECTION 1 Optimization problems

Toward solving optimization problems with a quantum computer

Optimization
problems




SECTION 2 Variational quantum algorithms

Variational quantum algorithms
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SECTION 3 Quantum variational eigensolver

Quantum variational eigensolver
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SECTION 4 Quantum approximate optimization algorithm

Quantum approximate optimization algorithm (QAOA)

do -.— do —-— o

e e To T
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as
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Preparing an initial state The mixing unitary The problem unitary
[¥(8,7)) =U(B)U(Y) - --U(B)U()[%) ________*
pt-:L:l:lES .'.,________7— I'l,

U(B) = e Pz and U(~y) = e 1P

where Hj is the mixing Hamiltonian and H, is the problem Hamiltonian.

Goal: find (BoptsYopt) to get (U(Bopt; Yopt )| Hr|[(Bopt; Yopt)) ".___-—————f,—/""—'
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Quantum gates

Operator
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Common quantum logic gates by name (including abbreviation), circuit form(s) and the 3



SECTION 4 Quantum approximate optimization algorithm

Quantum approximate optimization algorithm (QAOA)
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SECTION 5 Quantum-inspired evolutionary algorithm

Quantum-inspired evolutionary algorithm

* One approach to tackle the optimization problem is to use evolutionary
algorithms such as Genetic algorithms (GAs) and Compact genetic
algorithm (cGA).

* Quantum-inspired genetic algorithms: the algorithms are still executed
in the classical computers but took some of the ideas of quantum
phenomena and translate them into classical analogue.

21



SECTION 6 Quantum-assisted genetic algorithms 9

Quantum-assisted genetic algorithms

 Quantum-assisted genetic algorithms perform mutation operator while
crossover and population update are on the classical side.

 Compact genetic algorithm represents the population as a a probability
distribution in a quantum register. The quantum variable is then

updated toward the winner via qubit rotation

e Redefining the GA in the context of qguantum computation by creating a
population with superposition of all states.

22



SECTION 7 Grover-asisted compact genetic algorithm

Grover-assisted Compact Genetic Algorithm (cGA¥)

Initial Probability Vector and
current best individual

complete the second individual’s
fitness and the current best
individual’s fitness and select the
winner to be the second individual

complete the first and the second
individual to find the winner

update the probability vector
towards the winner

update the current best individual

Is vector
converged?

Initial quantum register, classical
register, and circuit
Generate the first individual
using qubit rotation only

Generate the second individual

using qubit rotation and Grover’s
algorithm

The schematic of Grover-assisted compact genetic algorithm.
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SECTION 7 Grover-asisted compact genetic algorithm

Grover’s Search Algorithm

* “For what value of x does f(x) = k, for some number k?”

A quantum computer allows us to calculate f(x) for a superposition of all values of x at the
same time

* We use the result to increase the amplitude of the good values of x and repeat until we
have a high probability of reading out the value we want.

* |f there are N possible values for x, we will have to try half of them (N/2) on average before
finding the answer.

e Grover's algorithm uses entanglement and interference to grow those probability
amplitudes faster than a simple linear check of all possible values. Instead of N/2 tries,

around VN calculations will be enough.
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SECTION 7 Grover-asisted compact genetic algorithm

The Stages of Grover’s Search Algorithm

4.

Initialization : All qubits are set to be in superposition. All states have the amplitude 1/v'N

Oracle : The oracle function marks the state x’ that satisfies the condition f(x’) = 1 by
performing a phase flip.

Amplification : phase flips the amplitudes around the average amplitude. The flip causes
the target state’s amplitude to increase and the others to decrease.

Measurement : The qubits are read, and output given.

Grover iteration (repeat oracle and amplification stages) requires apprommately%\/;where

N is the number of states and t is the number of target solutions.

25



SECTION 7 Grover-asisted compact genetic algorithm

Grover-assisted Compact Genetic Algorithm (cGA*)

Initialization 1 Grover iteration Measurement

——————————————

5

4 ,
At Oracle Diffusor

The quantum circuit of Grover’s search algorithm.
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SECTION 7 Grover-asisted compact genetic algorithm

Grover-assisted Compact Genetic Algorithm (cGA*)

An arbitrary single-qubit state 1h) = cos g 10) + € sin g 1)
The qubit rotation for angle(6) angle(0) = (probability(p) — 0.5) x 7
= o 1550 T
. - - "
2 - v - -
v - v - —H-

A circuit to initial the state based on the probability which
encoding problem with 4 qubits.

A diffuser circuit which encoding problem with 4
qubits.
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SECTION 7 Grover-asisted compact genetic algorithm

Travelling Salesman Problem

 Find a shortest route that a salesman visits every city exactly once and returns to the
starting point.

* Define an oracle to recognize all feasible solutions.

e TSP is mapped to an Ising model with scales (N — 1)? spins are required, where N is the
number of cities, and we designate city 1 to appear first in the route.

1 A ENENENES
7 '” ) 1 1 0 O
i “ 2 0 1 0

3 0 0 1

The TSP 3 cities and 4 cities. Matrix represents the route 1-» 2 —» 3 > 1.
28



SECTION 7 Grover-asisted compact genetic algorithm

Travelling Salesman Problem

 The oracle to check a feasible solution on the quantum state:

var_qubit 0 —s . 4

the oracle to verify a solution of TSP 3-city,
var _qubit 1 ' -

we need to check all 4 clauses include:
(X2,2r X2,3): (Xz,z , Xa,z)' (Xz,s , X3,3)' and (X3,2 , X3,3)-

var_qubit_2 -

var_qubit 3 »

clause_qubit_0 —£3—E&»
clause_qubit_1 O—<
clause qubit 2 OO

*
»
*~—
—
—
clause qubit 3 €
output qubit 0 -._. L

An example of oracle circuit for TSP 3 cities.
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SECTION 7 Grover-asisted compact genetic algorithm

Travelling Salesman Problem

e Classical optimizer:
» the graph is fully connected.
» three components in a single objective function to be minimized, and we get the following:

\

Energy -—I(Z wW; j Z XipXjpp1+ 1 Total distance
I &g P |
e ~
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| i. |

| zp: ; P) | The constraints to check a feasible path
| 2 |
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where B is the weight of the penalty term, it has a large enough weight to avoid an infeasible solution.
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SECTION 7 Grover-asisted compact genetic algorithm

Experiment results

TSP is mapped to an Ising model with (n — 1)? spins, where n is the number of cities
* The total cost of quantum state preparation is 0(n? — 1).

* The total quantum complexity is 0(1%\/%) , Where [ is the circuit depth for Grover iteration

at first, n is the number of cities, and t is the number of solutions from oracle.

m #Ancilla qubits #CNOT Circuit depth

(n—1)2 2(n—1) 2+ 99g
4 (n—1)? 2(n—1) 315g 1+ 549g

n is the number of cities, and g is the number of Grover iterations.
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SECTION 8 Observation

Observation

Increasing the number of shots aids in obtaining a probability distribution of results,
mitigating stochastic errors.

Quantum algorithms we have today only offer modest speed-ups over their classical
counterparts.

Quantum algorithms don’t seem to offer exponential speedups for black box optimization
problem. However, it’s possible that there may be some exponential speedup in cases
where you know a bit more about the problem.

32
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