Memory hierarchy

g

Dr. Warisa Sritriratanarak

Chulalongkorn University



Today:

Why the memory hierarchy matters

Cache architecture

Cache performance



Memory is slow

Faster processing
leads to increased
reliance on faster
Processor GHz 3.5 GHz (2023) memory access
Slower speed
DDR4-3200 MHz compared to processor
RAM MHz (Advertised) (2023) can create bottlenecks
While MT/s is higher,
6400 MT/s (DDR4-  the gap with processor
RAM MT/s (Actual) 3200) speed persists
Smaller size limits
L3 Cache: 3200 MHz data storage, but
(Example - High-End  faster access mitigates
Cache Memory MHz CPU, 2023) memory wall impact

It’s pointless to get a faster processor if it spends its time waiting for memory
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Solution: memory hierarchy

* Smaller is faster
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Solution: memory hierarchy

* Why does this improve performance?
* Isn’t the slowest memory the bottleneck?



Solution: memory hierarchy

* Why does this improve performance?
* Isn’t the slowest memory the bottleneck?

e Software has two interesting properties

* Temporal locality
« Spatial locality



Solution: memory hierarchy

* Temporal locality

* If you used the datum once, you’ll probably use it
again

« Spatial locality

* If you used the datum once, you’ll probably use the
data close to it soon
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Solution: memory hierarchy

* Temporal locality

* If you used the datum once, you’ll probably use it
again

« Spatial locality

* If you used the datum once, you’ll probably use the
data close to it soon

for (1i=0;1i<100;i++) //1: temporal locality
my array[i] = 0; //my array: spatial locality



Cache behavior

Memory

I

L1 Cache

request datum @0Ox100 (32bits)

Processor J L |

Register File




Cache behavior
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Cache behavior

* Access to main Memory
memory is slow

request data @0x100, @0x104, @0x108...
(512bits)
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Cache behavior
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Cache behavior

* Access to cache is fast

Memory

L1 Cache
data sent to request datum @0x104 (32bits)
processor Cache hit
(32bits)

- |
Processor J L

Register File




Cache

* Keep in mind:
* Except for a few exceptions (we’ll look at them soon)...

 Caches are microarchitectural
» Software behaves the same way, with or without caches
o Software is not aware of caches

e But performance differs



Cache

e How does a cache work?

Simplicity

AN

Direct-mapped

N-way set associative

Fully associative

Performance



Direct mapped cache

Each memory block is directly mapped to a specific cache block
* E.g., cache has 8 blocks, each 64bits
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Direct mapped cache

Each memory block is directly mapped to a specific cache block
* E.g., cache has 8 blocks, each 64bits
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Direct mapped cache

* |In this example, both blocks O and 8 (memory) are mapped to
cache block O

* General rule: Cache block = memory block modulo number of
blocks

 How do we know which memory block is in cache to determine hit
or miss?

* Each cache block has an associated tag

Tags indicate which memory block is currently in cache



Direct mapped cache

» Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)
e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

* Address bits: 1514 131211109876 543 210



Direct mapped cache

* Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)

e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

* Address bits: 1514131211109876 543210

Selects the
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(3 bits can
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different
bytes)



Direct mapped cache

* Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)

e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

* Address bits: 15141312 11 109876\543A210}
\ \[

I |

Selects Selects the
which byte in
block block

(3 bits can(3 bits can
select8 select8
different different

blocks) bytes)




Direct mapped cache

* Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)

e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64

bytes
 Address bits: 1514 1312 11 109876\543A210}
f f

Selects Selects the

which byte in

block block
(3 bits can(3 bits can

Notice: 6 bits can select8 select 8
address 64 different different different

bytes (total cache) blocks)  bytes)




Direct mapped cache

* Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)

e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64

bytes
e Address bits: \15 14 13121110987 6A543A2 10}
! | |
This is the Selects Selects the
tag: tells us which byte in
which block block
memory (3 bits can(3 bits can
block is in select8 select 8
cache different different

blocks) bytes)



Direct mapped cache

* Let's say addresses are 16 bits, access at byte level
* Processor can address a total range of 65536 bytes (O - OXFFFF)

e Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64

bytes
* Address bits: \15 14 13121110987 6A543A2 10}
! | |
This is the Selects Selects the
. . tag: tells us which byte in
Notice: 10 bits can which block block
address 1024 ' memory (3 bits can(3 bits can
different blocks block is in select8 select8
cache different different

blocks) bytes)



Direct mapped cache

* Let's say addresses are 16 bits, access at byte level

* Processor can address a total range of

65536

bytes (O - OXFFFF)

* Cache has 8 blocks, each 64 bits (8bytes),

t\xtal of 8*8 =

64

bytes

‘,

65536 / 64 = 1024

 Address bits:

\1514131211109876A543A210}

! | |
/ This is the Selects Selects the
. . tag: tells us which byte in
Notice: 10 bits can which block block
address 1024 ' memory (3 bits can(3 bits can
different blocks block is in select8 select8
cache different different

blocks) bytes)



Direct mapped cache

A more complete picture:
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Direct mapped cache

* Processor requests address 65 (block 8, byte 1)

* Binary 0000000001000001
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Direct mapped cache

/1_0x00
/[ ox00
/[ 0x00
/ 0x00
* Processor requests address 65 (block 8, byte 1) 0x00
« Binary 0000000001000 {001 gxgg
\_;J / X
byte in OXOQ ,
block i .
Cache P P
14
g RN /10
0 \ ¥Ee)
600,0%00,0x00,0x00,0%00,0x00, FF 0x00 ,’, 8
2 %E ,
3 7
5 6
1 5
0 \\\\\\\ 4
3
Cache Cache \\\\\\\\\ 2
tags blocks \\\\\\\\\ 1
0

Memory



Direct mapped cache

* Processor requests address 65 (block 8, byte 1)
e Binary 0000000001\009 001
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Direct mapped cache
/1 0x00
/7 |_ox00
0x00
* Processor requests address 65 (block 8, byte 1) 0x00
. BinaryPOOOOOOOOl 000|001 0x00
/ OxFF
Y block in byte in OXO? :
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Direct mapped cache

* Processor requests same address again

* Binary|0000000001 |000) P01 |
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Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

«0,1,23,8,1,2,8



Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):
«0,14,2,3,8,1,2,8

 Without cache: 800ms



Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):
«0,14,2,3,8,1,2,8

 With cache:



Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

«10,11,2,3,8,1,2,8 M.iSSGSI 1
\ Hits: O
* With cache:

e Cache miss (100ms) - but loads the whole block O (bytes O to
7)



Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

'O,

1,2,3

. 8,1,2,8

\

 With cache:

» 3 cache hits (3ms)

Misses: 1
Hits: 3




Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

. 012 3/8|1, 2.8 Misses: 2

/ Hits: 3

 With cache:

e Cache miss (100ms) - but loads the whole block 1 (bytes 8 to
15)




Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms

e Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

«0,1,23,8,/1,2,8

* With cache:
» 3 cache hits (3ms)

Misses: 2
Hits: 6




Direct mapped cache

* Let’s examine performance:

 Memory access takes 100ms
 Cache access takes 1ms

* Address sequence (remember, bytes, not blocks):

¢« 0,1,23,8,1,2,8 M.iSSGSI 2
Hits: 6
Hit Rate = 75%

* With cache:
* Total time: 203ms (4x faster than without cache)



Direct mapped cache

* To determine hit rates (whether something is on cache or not), you
need to consider:

* Number of cache blocks
* Block size

* For every address, where is it mapped in cache, and how
many other addresses are also cached (same block)



Direct mapped cache

» 8-bit address space (256 addresses)

Each cache block is 2 bytes
Direct mapped cache, 16 blocks

Memory access, 100ms, Cache access, 1ms

Address sequence: 0,0, 1, 2, 34, 2,34, 35, 1

* Hit rate and execution time? 5 minutes



Direct mapped cache

» 8-bit address space (256 addresses)

Misses: 1

Hits: O
Each cache block is 2 bytes Time: 100
Direct mapped cache, 16 blocks

Memory access, 100ms, Cache access, 1ms

Address sequence:| O,

/

0,1,2,34,2,34,35,1

* Cache miss (block 0)



Direct mapped cache

» 8-bit address space (256 addresses)

Misses: 1

Hits: 1
Each cache block is 2 bytes Time: 101
Direct mapped cache, 16 blocks

Memory access, 100ms,

Address sequence: 0, O,

/

Cache access, 1ms

1,2,34,2,34,35,1

* Cache hit (block O)



Direct mapped cache

» 8-bit address space (256 addresses)

Misses: 1

Hits: 2
Each cache block is 2 bytes Time: 102
Direct mapped cache, 16 blocks

Memory access, 100ms, Cache access, 1ms

Address sequence: O, O,|1,

d

2,34,2,34,35,1

* Cache hit (block O)



Direct mapped cache

» 8-bit address space (256 addresses)

Each cache block is 2 bytes

Direct mapped cache, 16 blocks

Misses: 2
Hits: 2
Time: 202

Memory access, 100ms, Cache access, 1ms

Address sequence: 0, 0, 1,|2

/

34,2,34,35,1

* Cache miss (block 1)



Direct mapped cache

» 8-bit address space (256 addresses)

Misses: 3
Hits: 2
* Each cache block is 2 bytes Time: 302
* Direct mapped cache, 16 blocks

Memory access, 100ms, Cache access, 1ms

Address sequence: O, O, 1, 2, 2,34,35,1

* Cache miss (block 1)



Direct mapped cache

» 8-bit address space (256 addresses)

Each cache block is 2 bytes
Direct mapped cache, 16 blocks

Misses: 4
Hits: 2
Time: 402

Memory access, 100ms, Cache access, 1ms

Address sequence: 0, 0, 1, 2, 34, 2,

* Cache miss (block 1)

34,35,1



Direct mapped cache

» 8-bit address space (256 addresses)

Each cache block is 2 bytes
Direct mapped cache, 16 blocks

Misses: 5
Hits: 2
Time: 502

Memory access, 100ms, Cache access, 1ms

Address sequence: 0, 0, 1, 2, 34, 2,34

, 39, 1

/

* Cache miss (block 1)




Direct mapped cache

» 8-bit address space (256 addresses)

Misses: 5

Hits: 3
Each cache block is 2 bytes Time: 503
Direct mapped cache, 16 blocks

Memory access, 100ms, Cache access, 1ms

Address sequence: 0O, O, 1, 2, 34, 2, 34,35

e Cache hit (block 1)

, 1




Direct mapped cache

» 8-bit address space (256 addresses)

Each cache block is 2 bytes
Direct mapped cache, 16 blocks

Misses: 5

Hits: 4

Time: 504

Memory access, 100ms, Cache access, 1ms

Address sequence: 0O, O, 1, 2, 34, 2, 34, 35,|1

R

* Cache hit (block O)

Hit rate: 44%




Direct mapped cache

* Works pretty well
e Simple to implement

 Downside:
* Performance suffers if there is heavy cache trashing (blocks are
constantly being evicted)

* Address sequence: 0, 64, 0, 64, 0, 64...

* All mapped to block O: all cache misses!



N-way set associative

e Solution:

* N-way set associative caches
 More complicated to implement
* Uses more hardware

* Potentially much higher performance



N-way set associative

 Example: 2-Way set associative

* Basically: 2 sets of tags, 2 sets of blocks



Way O
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2-Way set associative

* If an address is mapped to cache block O

* It can be placed in either block O, way O
* Orin block O, way 1

* This prevents cache thrashing
* For two addresses that are conflicting

* More addresses still result in thrashing....

* Require higher associativity



2-Way set associative

* On cache access

* All tags (every way) are checked in parallel
 If one of them matches, cache hit: great!

 If cache miss, one way has to be updated

* Which one?



2-Way set associative

* On cache access

* All tags (every way) are checked in parallel
 If one of them matches, cache hit: great!

 If cache miss, one way has to be updated

* Which one?

 Remember: temporal locality



2-Way set associative

 Keep what has been most recently used

* Replacement algorithm (choosing which way)

* LRU - Least Recently Used



2-Way set associative

 Keep what has been most recently used

* Replacement algorithm (choosing which way)

* LRU - Least Recently Used

« 2-Ways is easy:
* 1 bit - whenever way O is accessed, bit cleared; way 1, bit set
* Way to replace: NOT the bit



N-Way set associative

 What if there are 4 ways?
* LRU requires two bits per way

* S0 it can store “1st”, “2nd” «3rd” “4th” Jegst recently accessed
per way

* Plus logic that updates every single counter on every access

* This is not easy: expensive in terms of hardware



N-Way set associative

e 8-way:
* LRU requires 3 bits per way

e 16-way
* LRU requires 4 bits per way

* Logic gets expensive very quickly



N-Way set associative

* Which is why N-way set associative caches use

* Pseudo-LRU
* Not as efficient in terms of way selection as true LRU
e But far easier to implement

 Good trade-off



Key point

* Something to remember:

* “Trade-off” is a critical aspect of computer architecture
* (and all design in general)

* |t's almost always impossible to improve one aspect without
making another worse

 The artis in choosing something that gives you the right balance



Pseudo LRU

* Many different implementations
 Example: pointer chain (1 bit per pointer) on 4-way

* Always points to (pseudo) least recently used

Way 0

Way 1

Way 2

Way 3

pointer

pointer

pointer




Pseudo LRU

* Pointer chain

* Access to pointed one: change all correct pointers

U

Way 0
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Way 2

Way 3

pointer

pointer

pointer




Pseudo LRU

* Pointer chain

* Access to pointed one: change all correct pointers
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Pseudo LRU

* Pointer chain

* Access to pointed one: change all correct pointers

4

Way 0

Way 1
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Pseudo LRU

* Pointer chain

* Access to pointed one: change all correct pointers

pointer

Way 0 W/av 1 Wai 2 Way 3
pointer pointer




Can we go further?

* Direct mapped

 Each address can only go in one cache block

* N-Way set associative

* Each address can go into one of N blocks



Fully associative

* Any address can go anywhere

* Again, some pseudo-LRU allocation mechanism



Fully associative

* Any address can go anywhere

* Again, some pseudo-LRU allocation mechanism

* A useful visualization:

2-Way set

Direct mapped o
associlative

Fully associative




Last bit about caches

 All our examples were about reading data from memory

* What about writing?

* Two ways
* Write through

* Write-back



Last bit about caches

* Write through

* Cache hit: update in cache, update in memory
* Cache miss: update in memory

* Write-back

* Cache hit: update in cache only
* Will update in memory when datum is evicted from cache



Last bit about caches

* Write back

e Cache miss?
* Depends on policy

* Allocate on miss: put datum in cache, update in memory
when evicted

* No-allocate on miss: behave like write-through



Review

Why the memory hierarchy is important

Different cache implementations

Cache replacement policies
 LRU and Pseudo-LRU

Write types and policies
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