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Today:

Why the memory hierarchy matters

Cache architecture

Cache performance



Memory is slow

Component Speed Unit Example Speed (Year) Impact of Memory Wall

Processor GHz 3.5 GHz (2023)

Faster processing 

leads to increased 

reliance on faster 

memory access

RAM MHz (Advertised)

DDR4-3200 MHz 

(2023)

Slower speed 

compared to processor 

can create bottlenecks

RAM MT/s (Actual)

6400 MT/s (DDR4-

3200)

While MT/s is higher, 

the gap with processor 

speed persists

Cache Memory MHz

L3 Cache: 3200 MHz 

(Example - High-End 

CPU, 2023)

Smaller size limits 

data storage, but 

faster access mitigates 

memory wall impact

3

It’s pointless to get a faster processor if it spends its time waiting for memory 



Solution: memory hierarchy

• Smaller is faster

Processor

Register 

File

L1 Cache

L2 Cache

Memory
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Solution: memory hierarchy

• Smaller is faster

Processor

Register 

File

L1 Cache

L2 Cache

Memory

small

a bit bigger

even bigger

big



Solution: memory hierarchy

• Why does this improve performance?

• Isn’t the slowest memory the bottleneck?



Solution: memory hierarchy

• Why does this improve performance?

• Isn’t the slowest memory the bottleneck?

• Software has two interesting properties

• Temporal locality

• Spatial locality



Solution: memory hierarchy

• Temporal locality

• If you used the datum once, you’ll probably use it 
again

• Spatial locality

• If you used the datum once, you’ll probably use the 
data close to it soon
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Solution: memory hierarchy

• Temporal locality

• If you used the datum once, you’ll probably use it 
again

• Spatial locality

• If you used the datum once, you’ll probably use the 
data close to it soon

for(i=0;i<100;i++) //i: temporal locality

 my_array[i] = 0; //my_array: spatial locality



Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x100 (32bits)



Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x100 (32bits)

Cache Miss (not on cache)



Cache behavior

• Access to main 
memory is slow

Processor

Register File

L1 Cache

Memory

request data @0x100, @0x104, @0x108…

(512bits) 



Cache behavior

Processor

Register File

L1 Cache

Memory

data sent to cache

(512bits) 



Cache behavior
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Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x104 (32bits)



Cache behavior

• Access to cache is fast

Processor

Register File

L1 Cache

Memory

request datum @0x104 (32bits)

Cache hit

data sent to 

processor

(32bits) 



Cache

• Keep in mind: 

• Except for a few exceptions (we’ll look at them soon)…

• Caches are microarchitectural

• Software behaves the same way, with or without caches

• Software is not aware of caches

• But performance differs



Cache

• How does a cache work?

   Direct-mapped

   N-way set associative

   Fully associative

   

Simplicity
Performance



Direct mapped cache

• Each memory block is directly mapped to a specific cache block

• E.g., cache has 8 blocks, each 64bits

64bits0

1

2

3

4

5

6

7

Cache

Memory

64bits 0

1

2

3

4

5
6
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8
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8bits



Direct mapped cache

• Each memory block is directly mapped to a specific cache block

• E.g., cache has 8 blocks, each 64bits

64bits0

1

2

3

4

5

6

7

Cache

Memory

0

1

2

3

4

5
6

7

64bits

8

9

10

11

…

8bits



Direct mapped cache

• In this example, both blocks 0 and 8 (memory) are mapped to 
cache block 0

• General rule: Cache block = memory block modulo number of 
blocks

• How do we know which memory block is in cache to determine hit 
or miss?

• Each cache block has an associated tag

Tags indicate which memory block is currently in cache



Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6  5 4 3   2 1 0 



Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6  5 4 3   2 1 0 

Selects the 

byte in 

block

(3 bits can 

select 8 

different 

bytes)



Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes
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Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6  5 4 3   2 1 0 

Selects the 

byte in 

block

(3 bits can 

select 8 

different 

bytes)

Selects 

which 

block

(3 bits can 

select 8 

different 

blocks)

Notice: 6 bits can 

address 64 different 

bytes (total cache)



Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6  5 4 3   2 1 0 

Selects the 

byte in 

block

(3 bits can 

select 8 

different 

bytes)

Selects 
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block

(3 bits can 

select 8 

different 

blocks)

This is the 

tag: tells us 

which 

memory 

block is in 

cache



Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes
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Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64 
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6  5 4 3   2 1 0 

Selects the 

byte in 

block

(3 bits can 

select 8 

different 

bytes)

Selects 

which 

block

(3 bits can 

select 8 

different 

blocks)

This is the 

tag: tells us 

which 

memory 

block is in 

cache

Notice: 10 bits can 

address 1024 

different blocks

65536 / 64 = 1024



Direct mapped cache

• A more complete picture:

64bits0
1
2
3
4
5
6
7

Cache 

blocks

Memory

64bits 0

1

2

3

4

5
6

7

8

9

10

11

…

10 bits

Cache 

tags

Cache

8bits



Direct mapped cache

• Processor requests address 65 (block 8, byte 1) 

• Binary 0000000001000001

0
1
2
3
4
5
6
7

Cache 

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

Cache 

tags

Cache

0x00
0xFF
0x00
0x00
0x00
0x00
0x00
0x00



Direct mapped cache

• Processor requests address 65 (block 8, byte 1) 

• Binary 0000000001000  001

0
1
2
3
4
5
6
7

Cache 

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

Cache 

tags

Cache

byte in 

block

0x00
0xFF
0x00
0x00
0x00
0x00
0x00
0x00



Direct mapped cache

• Processor requests address 65 (block 8, byte 1) 

• Binary 0000000001  000  001

0
1
2
3
4
5
6
7
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Memory

0

1
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3

4

5
6
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Direct mapped cache

• Processor requests address 65 (block 8, byte 1) 

• Binary 0000000001  000  001

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 0
1
2
3
4
5
6
7

Cache 

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

0000000001

Cache 

tags

Cache

byte in 

block

block in 

cache

0x00

0xFF
0x00

0x00

0x00

0x00

0x00

0x00

tag



Direct mapped cache

• Processor requests same address again

• Binary 0000000001  000  001

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 0

1

2

3

4

5

6

7

Cache 

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

0000000001

Cache 

tags

Cache

byte in 

block

block in 

cache

0x00

0xFF
0x00

0x00

0x00

0x00

0x00

0x00

tag

Tag compared with address: 

cache hit



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• Without cache: 800ms



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:

• Cache miss (100ms) – but loads the whole block 0 (bytes 0 to 
7)

Misses: 1

Hits: 0



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:

• 3 cache hits (3ms)

Misses: 1

Hits: 3



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:

• Cache miss (100ms) – but loads the whole block 1 (bytes 8 to 
15)

Misses: 2

Hits: 3



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:

• 3 cache hits (3ms)

Misses: 2

Hits: 6



Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8 

• With cache:

• Total time: 203ms (4x faster than without cache)

Misses: 2

Hits: 6

Hit Rate = 75%



Direct mapped cache

• To determine hit rates (whether something is on cache or not), you 
need to consider:

• Number of cache blocks

• Block size

• For every address, where is it mapped in cache, and how 
many other addresses are also cached (same block)



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Hit rate and execution time?  5 minutes



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 0)

Misses: 1

Hits: 0

Time: 100



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Misses: 1

Hits: 1

Time: 101



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Misses: 1

Hits: 2

Time: 102



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 2

Hits: 2

Time: 202



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 3

Hits: 2

Time: 302



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 4

Hits: 2

Time: 402



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 5

Hits: 2

Time: 502



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 1)

Misses: 5

Hits: 3

Time: 503



Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Hit rate: 44%

Misses: 5

Hits: 4

Time: 504



Direct mapped cache

• Works pretty well

• Simple to implement

• Downside:

• Performance suffers if there is heavy cache trashing (blocks are 
constantly being evicted)

• Address sequence: 0, 64, 0, 64, 0, 64…

• All mapped to block 0: all cache misses!



N-way set associative

• Solution:

• N-way set associative caches

• More complicated to implement

• Uses more hardware

• Potentially much higher performance



N-way set associative

• Example: 2-Way set associative

• Basically: 2 sets of tags, 2 sets of blocks



64bits0

1

2

3

4

5
6

7

Cache 

blocks Memory

64bits 0

1

2

3

4

5
6

7

8

9

10

11

…

10 bits

Cache 

tags

Way 1

8bits
64bits0

1

2

3

4

5

6

7

Cache 

blocks

10 bits

Cache 

tags

Way 0



2-Way set associative

• If an address is mapped to cache block 0

• It can be placed in either block 0, way 0

• Or in block 0, way 1

• This prevents cache thrashing

• For two addresses that are conflicting

• More addresses still result in thrashing….

• Require higher associativity



2-Way set associative

• On cache access

• All tags (every way) are checked in parallel

• If one of them matches, cache hit: great!

• If cache miss, one way has to be updated

• Which one?



2-Way set associative

• On cache access

• All tags (every way) are checked in parallel

• If one of them matches, cache hit: great!

• If cache miss, one way has to be updated

• Which one?

• Remember: temporal locality



2-Way set associative

• Keep what has been most recently used

• Replacement algorithm (choosing which way)

• LRU – Least Recently Used



2-Way set associative

• Keep what has been most recently used

• Replacement algorithm (choosing which way)

• LRU – Least Recently Used

• 2-Ways is easy:

• 1 bit – whenever way 0 is accessed, bit cleared; way 1, bit set

• Way to replace: NOT the bit



N-Way set associative

• What if there are 4 ways?

• LRU requires two bits per way

• so it can store “1st”, “2nd”, “3rd”, “4th” least recently accessed 
per way

• Plus logic that updates every single counter on every access

• This is not easy: expensive in terms of hardware



N-Way set associative

• 8-way:

• LRU requires 3 bits per way

• 16-way

• LRU requires 4 bits per way

• Logic gets expensive very quickly



N-Way set associative

• Which is why N-way set associative caches use 

• Pseudo-LRU

• Not as efficient in terms of way selection as true LRU

• But far easier to implement

• Good trade-off



Key point

• Something to remember:

• “Trade-off” is a critical aspect of computer architecture

• (and all design in general)

• It’s almost always impossible to improve one aspect without 
making another worse

• The art is in choosing something that gives you the right balance



Pseudo LRU

• Many different implementations

• Example: pointer chain (1 bit per pointer) on 4-way

• Always points to (pseudo) least recently used

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3



Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3



Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3



Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3



Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3



Can we go further?

• Direct mapped

• Each address can only go in one cache block

• N-Way set associative

• Each address can go into one of N blocks



Fully associative

• Any address can go anywhere

• Again, some pseudo-LRU allocation mechanism



Fully associative

• Any address can go anywhere

• Again, some pseudo-LRU allocation mechanism

• A useful visualization:

Direct mapped
2-Way set 

associative

Fully associative



Last bit about caches

• All our examples were about reading data from memory

• What about writing?

• Two ways

• Write through

• Write-back



Last bit about caches

• Write through

• Cache hit: update in cache, update in memory

• Cache miss: update in memory

• Write-back

• Cache hit: update in cache only

• Will update in memory when datum is evicted from cache



Last bit about caches

• Write back

• Cache miss?

• Depends on policy

• Allocate on miss: put datum in cache, update in memory 
when evicted

• No-allocate on miss: behave like write-through



Review

• Why the memory hierarchy is important

• Different cache implementations

• Cache replacement policies

• LRU and Pseudo-LRU

• Write types and policies
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