
Memory hierarchy

Dr. Warisa Sritriratanarak

Chulalongkorn University

Today:

Why the memory hierarchy matters

Cache architecture

Cache performance

Memory is slow

Component Speed Unit Example Speed (Year) Impact of Memory Wall

Processor GHz 3.5 GHz (2023)

Faster processing

leads to increased

reliance on faster

memory access

RAM MHz (Advertised)

DDR4-3200 MHz

(2023)

Slower speed

compared to processor

can create bottlenecks

RAM MT/s (Actual)

6400 MT/s (DDR4-

3200)

While MT/s is higher,

the gap with processor

speed persists

Cache Memory MHz

L3 Cache: 3200 MHz

(Example - High-End

CPU, 2023)

Smaller size limits

data storage, but

faster access mitigates

memory wall impact

3

It’s pointless to get a faster processor if it spends its time waiting for memory

Solution: memory hierarchy

• Smaller is faster

Processor

Register

File

L1 Cache

L2 Cache

Memory

Solution: memory hierarchy

• Smaller is faster

Processor

Register

File

L1 Cache

L2 Cache

Memory

small

Solution: memory hierarchy

• Smaller is faster

Processor

Register

File

L1 Cache

L2 Cache

Memory

small

a bit bigger

Solution: memory hierarchy

• Smaller is faster

Processor

Register

File

L1 Cache

L2 Cache

Memory

small

a bit bigger

even bigger

Solution: memory hierarchy

• Smaller is faster

Processor

Register

File

L1 Cache

L2 Cache

Memory

small

a bit bigger

even bigger

big

Solution: memory hierarchy

• Why does this improve performance?

• Isn’t the slowest memory the bottleneck?

Solution: memory hierarchy

• Why does this improve performance?

• Isn’t the slowest memory the bottleneck?

• Software has two interesting properties

• Temporal locality

• Spatial locality

Solution: memory hierarchy

• Temporal locality

• If you used the datum once, you’ll probably use it
again

• Spatial locality

• If you used the datum once, you’ll probably use the
data close to it soon

12

Solution: memory hierarchy

• Temporal locality

• If you used the datum once, you’ll probably use it
again

• Spatial locality

• If you used the datum once, you’ll probably use the
data close to it soon

for(i=0;i<100;i++) //i: temporal locality

 my_array[i] = 0; //my_array: spatial locality

Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x100 (32bits)

Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x100 (32bits)

Cache Miss (not on cache)

Cache behavior

• Access to main
memory is slow

Processor

Register File

L1 Cache

Memory

request data @0x100, @0x104, @0x108…

(512bits)

Cache behavior

Processor

Register File

L1 Cache

Memory

data sent to cache

(512bits)

Cache behavior

Processor

Register File

L1 Cache

Memory

data sent to

processor

(32bits)

Cache behavior

Processor

Register File

L1 Cache

Memory

request datum @0x104 (32bits)

Cache behavior

• Access to cache is fast

Processor

Register File

L1 Cache

Memory

request datum @0x104 (32bits)

Cache hit

data sent to

processor

(32bits)

Cache

• Keep in mind:

• Except for a few exceptions (we’ll look at them soon)…

• Caches are microarchitectural

• Software behaves the same way, with or without caches

• Software is not aware of caches

• But performance differs

Cache

• How does a cache work?

 Direct-mapped

 N-way set associative

 Fully associative

Simplicity
Performance

Direct mapped cache

• Each memory block is directly mapped to a specific cache block

• E.g., cache has 8 blocks, each 64bits

64bits0

1

2

3

4

5

6

7

Cache

Memory

64bits 0

1

2

3

4

5
6

7

8

9

10

11

…

8bits

Direct mapped cache

• Each memory block is directly mapped to a specific cache block

• E.g., cache has 8 blocks, each 64bits

64bits0

1

2

3

4

5

6

7

Cache

Memory

0

1

2

3

4

5
6

7

64bits

8

9

10

11

…

8bits

Direct mapped cache

• In this example, both blocks 0 and 8 (memory) are mapped to
cache block 0

• General rule: Cache block = memory block modulo number of
blocks

• How do we know which memory block is in cache to determine hit
or miss?

• Each cache block has an associated tag

Tags indicate which memory block is currently in cache

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Selects

which

block

(3 bits can

select 8

different

blocks)

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Selects

which

block

(3 bits can

select 8

different

blocks)

Notice: 6 bits can

address 64 different

bytes (total cache)

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Selects

which

block

(3 bits can

select 8

different

blocks)

This is the

tag: tells us

which

memory

block is in

cache

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Selects

which

block

(3 bits can

select 8

different

blocks)

This is the

tag: tells us

which

memory

block is in

cache

Notice: 10 bits can

address 1024

different blocks

Direct mapped cache

• Let’s say addresses are 16 bits, access at byte level

• Processor can address a total range of 65536 bytes (0 - 0xFFFF)

• Cache has 8 blocks, each 64 bits (8bytes), total of 8*8 = 64
bytes

• Address bits: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Selects the

byte in

block

(3 bits can

select 8

different

bytes)

Selects

which

block

(3 bits can

select 8

different

blocks)

This is the

tag: tells us

which

memory

block is in

cache

Notice: 10 bits can

address 1024

different blocks

65536 / 64 = 1024

Direct mapped cache

• A more complete picture:

64bits0
1
2
3
4
5
6
7

Cache

blocks

Memory

64bits 0

1

2

3

4

5
6

7

8

9

10

11

…

10 bits

Cache

tags

Cache

8bits

Direct mapped cache

• Processor requests address 65 (block 8, byte 1)

• Binary 0000000001000001

0
1
2
3
4
5
6
7

Cache

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

Cache

tags

Cache

0x00
0xFF
0x00
0x00
0x00
0x00
0x00
0x00

Direct mapped cache

• Processor requests address 65 (block 8, byte 1)

• Binary 0000000001000 001

0
1
2
3
4
5
6
7

Cache

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

Cache

tags

Cache

byte in

block

0x00
0xFF
0x00
0x00
0x00
0x00
0x00
0x00

Direct mapped cache

• Processor requests address 65 (block 8, byte 1)

• Binary 0000000001 000 001

0
1
2
3
4
5
6
7

Cache

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

Cache

tags

Cache

byte in

block

block in

cache

0x00

0xFF
0x00

0x00

0x00

0x00

0x00

0x00

Direct mapped cache

• Processor requests address 65 (block 8, byte 1)

• Binary 0000000001 000 001

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 0
1
2
3
4
5
6
7

Cache

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

0000000001

Cache

tags

Cache

byte in

block

block in

cache

0x00

0xFF
0x00

0x00

0x00

0x00

0x00

0x00

tag

Direct mapped cache

• Processor requests same address again

• Binary 0000000001 000 001

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 0

1

2

3

4

5

6

7

Cache

blocks

Memory

0

1

2

3

4

5
6

7

0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00 8

9

10

11

…

0000000001

Cache

tags

Cache

byte in

block

block in

cache

0x00

0xFF
0x00

0x00

0x00

0x00

0x00

0x00

tag

Tag compared with address:

cache hit

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• Without cache: 800ms

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

• Cache miss (100ms) – but loads the whole block 0 (bytes 0 to
7)

Misses: 1

Hits: 0

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

• 3 cache hits (3ms)

Misses: 1

Hits: 3

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

• Cache miss (100ms) – but loads the whole block 1 (bytes 8 to
15)

Misses: 2

Hits: 3

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

• 3 cache hits (3ms)

Misses: 2

Hits: 6

Direct mapped cache

• Let’s examine performance:

• Memory access takes 100ms

• Cache access takes 1ms

• Address sequence (remember, bytes, not blocks):

• 0, 1, 2, 3, 8, 1, 2, 8

• With cache:

• Total time: 203ms (4x faster than without cache)

Misses: 2

Hits: 6

Hit Rate = 75%

Direct mapped cache

• To determine hit rates (whether something is on cache or not), you
need to consider:

• Number of cache blocks

• Block size

• For every address, where is it mapped in cache, and how
many other addresses are also cached (same block)

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Hit rate and execution time? 5 minutes

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 0)

Misses: 1

Hits: 0

Time: 100

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Misses: 1

Hits: 1

Time: 101

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Misses: 1

Hits: 2

Time: 102

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 2

Hits: 2

Time: 202

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 3

Hits: 2

Time: 302

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 4

Hits: 2

Time: 402

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache miss (block 1)

Misses: 5

Hits: 2

Time: 502

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 1)

Misses: 5

Hits: 3

Time: 503

Direct mapped cache

• 8-bit address space (256 addresses)

• Each cache block is 2 bytes

• Direct mapped cache, 16 blocks

• Memory access, 100ms, Cache access, 1ms

• Address sequence: 0, 0, 1, 2, 34, 2, 34, 35, 1

• Cache hit (block 0)

Hit rate: 44%

Misses: 5

Hits: 4

Time: 504

Direct mapped cache

• Works pretty well

• Simple to implement

• Downside:

• Performance suffers if there is heavy cache trashing (blocks are
constantly being evicted)

• Address sequence: 0, 64, 0, 64, 0, 64…

• All mapped to block 0: all cache misses!

N-way set associative

• Solution:

• N-way set associative caches

• More complicated to implement

• Uses more hardware

• Potentially much higher performance

N-way set associative

• Example: 2-Way set associative

• Basically: 2 sets of tags, 2 sets of blocks

64bits0

1

2

3

4

5
6

7

Cache

blocks Memory

64bits 0

1

2

3

4

5
6

7

8

9

10

11

…

10 bits

Cache

tags

Way 1

8bits
64bits0

1

2

3

4

5

6

7

Cache

blocks

10 bits

Cache

tags

Way 0

2-Way set associative

• If an address is mapped to cache block 0

• It can be placed in either block 0, way 0

• Or in block 0, way 1

• This prevents cache thrashing

• For two addresses that are conflicting

• More addresses still result in thrashing….

• Require higher associativity

2-Way set associative

• On cache access

• All tags (every way) are checked in parallel

• If one of them matches, cache hit: great!

• If cache miss, one way has to be updated

• Which one?

2-Way set associative

• On cache access

• All tags (every way) are checked in parallel

• If one of them matches, cache hit: great!

• If cache miss, one way has to be updated

• Which one?

• Remember: temporal locality

2-Way set associative

• Keep what has been most recently used

• Replacement algorithm (choosing which way)

• LRU – Least Recently Used

2-Way set associative

• Keep what has been most recently used

• Replacement algorithm (choosing which way)

• LRU – Least Recently Used

• 2-Ways is easy:

• 1 bit – whenever way 0 is accessed, bit cleared; way 1, bit set

• Way to replace: NOT the bit

N-Way set associative

• What if there are 4 ways?

• LRU requires two bits per way

• so it can store “1st”, “2nd”, “3rd”, “4th” least recently accessed
per way

• Plus logic that updates every single counter on every access

• This is not easy: expensive in terms of hardware

N-Way set associative

• 8-way:

• LRU requires 3 bits per way

• 16-way

• LRU requires 4 bits per way

• Logic gets expensive very quickly

N-Way set associative

• Which is why N-way set associative caches use

• Pseudo-LRU

• Not as efficient in terms of way selection as true LRU

• But far easier to implement

• Good trade-off

Key point

• Something to remember:

• “Trade-off” is a critical aspect of computer architecture

• (and all design in general)

• It’s almost always impossible to improve one aspect without
making another worse

• The art is in choosing something that gives you the right balance

Pseudo LRU

• Many different implementations

• Example: pointer chain (1 bit per pointer) on 4-way

• Always points to (pseudo) least recently used

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3

Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3

Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3

Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3

Pseudo LRU

• Pointer chain

• Access to pointed one: change all correct pointers

pointer

pointer pointer

Way 0 Way 1 Way 2 Way 3

Can we go further?

• Direct mapped

• Each address can only go in one cache block

• N-Way set associative

• Each address can go into one of N blocks

Fully associative

• Any address can go anywhere

• Again, some pseudo-LRU allocation mechanism

Fully associative

• Any address can go anywhere

• Again, some pseudo-LRU allocation mechanism

• A useful visualization:

Direct mapped
2-Way set

associative

Fully associative

Last bit about caches

• All our examples were about reading data from memory

• What about writing?

• Two ways

• Write through

• Write-back

Last bit about caches

• Write through

• Cache hit: update in cache, update in memory

• Cache miss: update in memory

• Write-back

• Cache hit: update in cache only

• Will update in memory when datum is evicted from cache

Last bit about caches

• Write back

• Cache miss?

• Depends on policy

• Allocate on miss: put datum in cache, update in memory
when evicted

• No-allocate on miss: behave like write-through

Review

• Why the memory hierarchy is important

• Different cache implementations

• Cache replacement policies

• LRU and Pseudo-LRU

• Write types and policies

	Slide 1: Memory hierarchy
	Slide 2: Today:
	Slide 3: Memory is slow
	Slide 4: Solution: memory hierarchy
	Slide 5: Solution: memory hierarchy
	Slide 6: Solution: memory hierarchy
	Slide 7: Solution: memory hierarchy
	Slide 8: Solution: memory hierarchy
	Slide 9: Solution: memory hierarchy
	Slide 10: Solution: memory hierarchy
	Slide 11: Solution: memory hierarchy
	Slide 12
	Slide 13: Solution: memory hierarchy
	Slide 14: Cache behavior
	Slide 15: Cache behavior
	Slide 16: Cache behavior
	Slide 17: Cache behavior
	Slide 18: Cache behavior
	Slide 19: Cache behavior
	Slide 20: Cache behavior
	Slide 21: Cache
	Slide 22: Cache
	Slide 23: Direct mapped cache
	Slide 24: Direct mapped cache
	Slide 25: Direct mapped cache
	Slide 26: Direct mapped cache
	Slide 27: Direct mapped cache
	Slide 28: Direct mapped cache
	Slide 29: Direct mapped cache
	Slide 30: Direct mapped cache
	Slide 31: Direct mapped cache
	Slide 32: Direct mapped cache
	Slide 33: Direct mapped cache
	Slide 34: Direct mapped cache
	Slide 35: Direct mapped cache
	Slide 36: Direct mapped cache
	Slide 37: Direct mapped cache
	Slide 38: Direct mapped cache
	Slide 39: Direct mapped cache
	Slide 40: Direct mapped cache
	Slide 41: Direct mapped cache
	Slide 42: Direct mapped cache
	Slide 43: Direct mapped cache
	Slide 44: Direct mapped cache
	Slide 45: Direct mapped cache
	Slide 46: Direct mapped cache
	Slide 47: Direct mapped cache
	Slide 48: Direct mapped cache
	Slide 49: Direct mapped cache
	Slide 50: Direct mapped cache
	Slide 51: Direct mapped cache
	Slide 52: Direct mapped cache
	Slide 53: Direct mapped cache
	Slide 54: Direct mapped cache
	Slide 55: Direct mapped cache
	Slide 56: Direct mapped cache
	Slide 57: Direct mapped cache
	Slide 58: Direct mapped cache
	Slide 59: N-way set associative
	Slide 60: N-way set associative
	Slide 61
	Slide 62: 2-Way set associative
	Slide 63: 2-Way set associative
	Slide 64: 2-Way set associative
	Slide 65: 2-Way set associative
	Slide 66: 2-Way set associative
	Slide 67: N-Way set associative
	Slide 68: N-Way set associative
	Slide 69: N-Way set associative
	Slide 70: Key point
	Slide 71: Pseudo LRU
	Slide 72: Pseudo LRU
	Slide 73: Pseudo LRU
	Slide 74: Pseudo LRU
	Slide 75: Pseudo LRU
	Slide 76: Can we go further?
	Slide 77: Fully associative
	Slide 78: Fully associative
	Slide 79: Last bit about caches
	Slide 80: Last bit about caches
	Slide 81: Last bit about caches
	Slide 82: Review

