Self-Study

Implement the circuit to fully understand the behavior of the state machine.

Self Study

- Download a simple circuit simulator "DIGITAL" from github
- https://github.com/hneemann/Digital?tab=read me-ov-file
- Unzip the file and it's ready to use!

Add gates and inputs from the menu bar

Add gates and inputs from the menu bar

Labeling by right click on the components

Start the simulation

Running the simulator

- You can click on the input A to change from 0 to 1 and vice versa

Dark green = 0 (off)
Light green = 1 (on)

Display the graph

N Simulation Analysis Components Windows Help

The graph will give you a better idea of how the values change over time.

Note: ignore the glitch of the Clock in these two spots. The clock supposes to have a steady cycle of 1 s and 0 s

Simulate the circuit from the last class
 We want one output to be " 1 "
 - Whenever "A" is 1 for 3 clock cycles in a row

State machines

| Q_{1} | Q_{0} | A | D_{1} | D_{0} | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

Simulate the circuit

Try to build the simple vending machine

- Design a simple vending machine that sells drink for 15 baht.
- Inputs are
- Sensors that detect 5 baht coin, 10 baht coin, drink picked up.
- Outputs are
- Drink (changes to 1 when the coins received equals to15 or 20 baht)
- Change (changes to 1 when the coins received equals to 20 baht)
- Assume that users cannot insert more than 20 baht and the sensor to detect drink picked up is activated when the drink has been released only.

Simple vending machine

- How many states required to build this machine?
-How many D-flipflops are needed?

