

•Logical operations (Boolean algebra)

•named after George Bool, a famous mathematician

•AND, OR, NOT, XOR, NAND, NOR

NOT Gate

- operates on one bit
- logical reverse (usually denoted by "!" or "~")
- !0 = ~0 = 1
- !1 = ~1 = O

AND Gate

- operates on two bits
- logical and (usually denoted by "&" or "."): both have to be true

OR Gate

- operates on two bits
- logical or (usually denoted by "|" or "+"): at least one has to be true

XOR Gate

- operates on two bits
- logical exclusive or (usually denoted by "⊕"): only one is true

NAND and NOR

- NAND = NOT AND
- NOR = NOT OR
- A NAND B = !(A.B)
- A NOR B = !(A+B)

NAND and NOR are very convenient

- You can build any other gate out of NANDs and NORs
- So, any circuit can be built out of just NANDs or NORs

NOT out of NAND !(A) = A NAND A AND out of NAND A AND B = (A NAND B) NAND (A NAND B) OR out of NAND A OR B = (A NAND A) NAND (B NAND B)

DE MORGAN'S LAWS

$$\overline{(A \cdot B)} = \overline{A} + \overline{B}$$

$$\overline{(A+B)} = \overline{A} \cdot \overline{B}$$

DIGITAL CIRCUITS

With basic gates and logical operations, you can build any logical functions or arithmetic functions.

For example, if you want to choose something based on a condition

i.e. if S = 0, choose A, if S = 1, choose B.

If S = 0, choose A, if S = 1, choose B.

А	В	S	Output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

If S = 0, choose A, if S = 1, choose B.

Output	S	В	А
0	0	0	0
0	1	0	0
0	0	1	0
1	1	1	0
1	0	0	1
0	1	0	1
1	0	1	1
1	1	1	1

If S = 0, choose A, if S = 1, choose B.

А	В	S	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	
<u> </u>	<u> </u>	±	-	

If S = 0, choose A, if S = 1, choose B.

А	В	S	Output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

 $Output = \overline{A} \cdot B \cdot S + A \cdot \overline{B} \cdot \overline{S} + A \cdot B \cdot \overline{S} + A \cdot B \cdot S$

Can you simplify this?

SIMPLE DIGITAL CIRCUIT

 $Output = \overline{A} \cdot B \cdot S + A \cdot \overline{B} \cdot \overline{S} + A \cdot B \cdot \overline{S} + A \cdot B \cdot S$

If S = 0, choose A, if S = 1, choose B.

• Identity law: A+0=A and $A\cdot 1=A$

- **\blacksquare** Zero and One laws: *A*+1=1 and *A*·0=0
- Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$
- Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A+(B+C)=(A+B)+C and $A\cdot(B\cdot C)=(A\cdot B)\cdot C$
- Distributive laws: $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A+B) \cdot (A+C)$

Can you simplify this?SIMPLE
DIGITAL
CIRCUIT $Output = \overline{A} \cdot B \cdot S + A \cdot \overline{B} \cdot \overline{S} + A \cdot B \cdot \overline{S} + A \cdot B \cdot S$ Output = $\overline{A} \cdot B \cdot S + A \cdot \overline{B} \cdot \overline{S} + A \cdot B \cdot S + A \cdot B \cdot S$ Output = $S(\overline{AB} + AB) + \overline{S}(A\overline{B} + AB)$ If S = 0, choose A,
if S = 1, choose B. $Output = SB(\overline{A} + A) + \overline{S}A(\overline{B} + B)$

 $Output = SB + \overline{S}A$

- Identity law: A+0=A and $A\cdot 1=A$
- **\blacksquare** Zero and One laws: *A*+1=1 and *A*·0=0
- Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$
- Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A+(B+C)=(A+B)+C and $A\cdot(B\cdot C)=(A\cdot B)\cdot C$
- Distributive laws: $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A+B) \cdot (A+C)$

Can you simplify this?

- Identity law: A+0=A and $A\cdot 1=A$
- Zero and One laws: *A*+1=1 and *A*·0=0
- Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$
- Commutative laws: A+B=B+A and $A\cdot B=B\cdot A$
- Associative laws: A+(B+C)=(A+B)+C and $A\cdot(B\cdot C)=(A\cdot B)\cdot C$
- Distributive laws: $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A+B) \cdot (A+C)$

MULTIPLEXOR 2:1

very common circuit where the name is MUX (# of inputs) : (# of output)

and its implementation with gates on the right.

- Let's do an arithmetic circuit
- An adder which adds two 1-bit together

А	В	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

А	В	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

А	В	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Output functions

- $R = A \oplus B$
- Carry-out = A.B

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

А	В	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Output functions

- $R = A \oplus B$
- Carry-out = A.B

 This circuit is called, "Half Adder"

В	R	Carry-out
0	0	0
1	1	0
0	1	0
1	0	1
	B 0 1 0 1	B R 0 0 1 1 0 1 1 0

Output functions

- $R = A \oplus B$
- Carry-out = A.B

• To add more than two 1-bits together, the adder must add the carry from the other adder

• Full Adder has 3 inputs and 2 outputs.

Carry-in	А	В	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Full Adder has 3 inputs and 2 outputs.
- Can use 2 half-adders

Carry-in	А	В	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
			•	

• Full Adder has 3 inputs and 2 outputs.

Carry-in	А	В	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Block diagram representation of the Full Adder