

LOGICAL OPERATIONS

- Logical operations (Boolean algebra)
-named after George Bool, a famous mathematician
-AND, OR, NOT, XOR, NAND, NOR

LOGICAL OPERATIONS

NOT Gate

- operates on one bit
- logical reverse (usually denoted by "!" or "~")
- $!0=\sim 0=1$
-! $1={ }^{\sim} 1=0$

LOGICAL OPERATIONS

AND Gate

- operates on two bits
- logical and (usually denoted by "\&" or "."): both have to be true

LOGICAL OPERATIONS

OR Gate

- operates on two bits
- logical or (usually denoted by "|" or " + "): at least one has to be true

OR		
INPUT		OUTPUT
A	B	
0	0	0
1	0	1
0	1	1
1	1	1

LOGICAL OPERATIONS

XOR Gate

- operates on two bits
- logical exclusive or (usually denoted by " \oplus "): only one is true

INPUT		OUTPUT
\mathbf{A}	B	
0	0	0
1	0	1
0	1	1
1	1	0

LOGICAL OPERATIONS

NAND and NOR

- NAND = NOT AND
- NOR = NOT OR
- A NAND $B=!(A . B)$
- A NOR $B=!(A+B)$

INPUT		OUTPUT
A	B	
0	0	1
1	0	0
0	1	0
1	1	0

LOGICAL OPERATIONS

NAND and NOR are very convenient

- You can build any other gate out of NANDs and NORs
- So, any circuit can be built out of just NANDs or NORs

LOGICAL OPERATIONS

NOT out of NAND
$!(A)=A$ NAND A
AND out of NAND
A AND B $=($ A NAND B) NAND (A NAND B)
OR out of NAND
A OR $B=(A$ NAND $A)$ NAND $(B$ NAND $B)$

DE MORGAN'S LAWS

$$
\overline{(A \cdot B)}=\bar{A}+\bar{B}
$$

$$
\overline{(A+B)}=\bar{A} \cdot \bar{B}
$$

DIGITAL CIRCUITS

With basic gates and logical operations, you can build any logical functions or arithmetic functions.

For example, if you want to choose something based on a condition
i.e. if $S=0$, choose A,
if $S=1$, choose B.

SIMPLE
DIGITAL CIRCUIT

If $S=0$, choose A, if $S=1$, choose B.

A	B	S	Output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

SIMPLE
DIGITAL CIRCUIT

If $S=0$, choose A, if $S=1$, choose B.

A	B	S	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

SIMPLE
DIGITAL CIRCUIT

If $S=0$, choose A, if $S=1$, choose B.

A	B	S	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

SIMPLE
DIGITAL CIRCUIT

If $S=0$, choose A, if $S=1$, choose B.

A	B	S	Output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Output $=\bar{A} \cdot B \cdot S+A \cdot \bar{B} \cdot \bar{S}+A \cdot B \cdot \bar{S}+A \cdot B \cdot S$

Can you simplify this?

SIMPLE DIGITAL

Output $=\overline{\mathbf{A}} \cdot \mathbf{B} \cdot \mathbf{S}+\mathbf{A} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{S}}+\mathbf{A} \cdot \mathbf{B} \cdot \overline{\mathbf{S}}+\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{S}$

If $S=0$, choose A, if $S=1$, choose B.

- Identity law: $A+0=A$ and $A \cdot 1=A$
- Zero and One laws: $A+1=1$ and $A \cdot 0=0$
- Inverse laws: $A+\bar{A}=1$ and $A \cdot \bar{A}=0$
- Commutative laws: $A+B=B+A$ and $A \cdot B=B \cdot A$
- Associative laws: $A+(B+C)=(A+B)+C$ and $A \cdot(B \cdot C)=(A \cdot B) \cdot C$
- Distributive laws: $A \cdot(B+C)=(A \cdot B)+(A \cdot C)$ and $A+(B \cdot C)=(A+B) \cdot(A+C)$

Can you simplify this?

SIMPLE
DIGITAL CIRCUIT

$$
\begin{aligned}
& \text { Output }=\overline{\mathbf{A}} \cdot \mathbf{B} \cdot \mathbf{S}+\mathbf{A} \cdot \overline{\mathbf{B}} \cdot \overline{\mathbf{S}}+\mathbf{A} \cdot \mathbf{B} \cdot \overline{\mathbf{S}}+\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{S} \\
& \text { Output }=\mathbf{S}(\overline{\mathbf{A}} \mathbf{B}+\mathbf{A B})+\overline{\mathbf{S}}(\mathbf{A} \overline{\mathbf{B}}+\mathbf{A B})
\end{aligned}
$$

$$
\text { Output }=\mathbf{S B}(\overline{\mathbf{A}}+\mathbf{A})+\overline{\mathbf{S}} \mathbf{A}(\overline{\mathbf{B}}+\mathbf{B})
$$

Output $=\mathbf{S B}+\overline{\mathbf{S}} \mathbf{A}$

- Identity law: $A+0=A$ and $A \cdot 1=A$
- Zero and One laws: $A+1=1$ and $A \cdot 0=0$
- Inverse laws: $A+\bar{A}=1$ and $A \cdot \bar{A}=0$
- Commutative laws: $A+B=B+A$ and $A \cdot B=B \cdot A$
- Associative laws: $A+(B+C)=(A+B)+C$ and $A \cdot(B \cdot C)=(A \cdot B) \cdot C$
- Distributive laws: $A \cdot(B+C)=(A \cdot B)+(A \cdot C)$ and $A+(B \cdot C)=(A+B) \cdot(A+C)$

Can you simplify this?

SIMPLE DIGITAL CIRCUIT

Using K-MAP

If $S=0$, choose A, if $S=1$, choose B.

BS				
0	00	01	11	10
1	1	0	1	0
	0	1	1	

- Identity law: $A+0=A$ and $A \cdot 1=A$
- Zero and One laws: $A+1=1$ and $A \cdot 0=0$
- Inverse laws: $A+\bar{A}=1$ and $A \cdot \bar{A}=0$
- Commutative laws: $A+B=B+A$ and $A \cdot B=B \cdot A$
- Associative laws: $A+(B+C)=(A+B)+C$ and $A \cdot(B \cdot C)=(A \cdot B) \cdot C$
- Distributive laws: $A \cdot(B+C)=(A \cdot B)+(A \cdot C)$ and $A+(B \cdot C)=(A+B) \cdot(A+C)$

MULTIPLEXOR

2:1
very common circuit where the name is
MUX (\# of inputs) : (\# of output)

FIGURE A.3.2 A two-input multiplexor on the left and its implementation with gates on the right.

BUILDING AN ADDER

- Let's do an arithmetic circuit
- An adder which adds two 1-bit together

A	B	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

BUILDING AN ADDER

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

A	B	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

BUILDING AN ADDER

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

A	B	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Output functions

- $R=A \oplus B$
- Carry-out = A.B

BUILDING AN ADDER

- 1-bit adder actually needs two outputs
- One for the output
- One for the carry-out

A	B	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Output functions

- $R=A \oplus B$
- Carry-out = A.B

BUILDING AN ADDER

- This circuit is called, "Half Adder"

A	B	R	Carry-out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Output functions

- $R=A \oplus B$
- Carry-out = A.B

BUILDING AN
ADDER

- To add more than two 1-bits together, the adder must add the carry from the other adder

BUILDING AN ADDER

- Full Adder has 3 inputs and 2 outputs.

Carry-in	A	B	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

BUILDING AN ADDER

- Full Adder has 3 inputs and 2 outputs.
- Can use 2 half-adders

Carry-in	A	B	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

BUILDING AN ADDER

- Full Adder has 3 inputs and 2 outputs.
 of the Full Adder

Block diagram representation

Carry-in	A	B	R	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

