
Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We are given a hidden Boolean function 𝑓 , which takes as input a string of bits, and returns

either 0 or 1 , that is:

➢ The property of the given Boolean function is that it is guaranteed to either be balanced (returns

1 for half of the input domain and 0 for the other half) or constant (0 on all inputs or 1 on all

inputs).

➢ Our task is to determine whether the given function is balanced or constant.

30

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ For classical solution, we need to ask the oracle at least twice, but if we get twice the same

output, we need to ask again. At most to query is (N/2)+1, where N is number of state.

➢ For quantum solution, need only one query. If the output is the zero bit string, we know that

the oracle is constant. If it is any other bit string, we know that it is balanced.

➢ We have the function 𝑓 implemented as a quantum oracle, which maps the state |𝑥ۧ|𝑦ۧ to

|𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ , where ⊕ is addition modulo 2.

31

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ The initial state of which can be expressed:

➢ which is then put into superposition, which can conveniently be expressed:

32

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ Apply the quantum oracle |𝑥ۧ|𝑦ۧ to |𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ:

➢ We now address the interference 𝐻 on the first n wires, for which we use the expression:

➢ which allows us to express:

➢ where 𝑥. 𝑧 = 𝑥0𝑧0𝑥1𝑧1…𝑥𝑛−1𝑧𝑛−1 is the sum of the bitwise product. 33

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can now determine whether the function is constant or balanced by measuring the first n qubits of
the final state.

➢ Specifically, we consider the probability of measuring zero on every qubit, which corresponds to the
term in the superposition where |𝑥ۧ is

➢ So it follows that measuring the first n qubits allows us to determine with certainty whether the
function is constant (measure all zeros) or balanced (measure at least one 1). 34

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can encode any mathematical function as a unitary matrix.

➢ Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage:

specifically, a reduction in query complexity compared to the classical case.

➢ The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of

exponential speed-ups using quantum computers.

35

Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ The QFT is the quantum implementation of the discrete Fourier transform over the amplitudes

of a wavefunction.

➢ The QFT simply transforms a qubit from its computational basis of ȁ ۧ0 and ȁ ۧ1 to the state in

Fourier basis ȁ ۧ+ and ȁ ۧ− .

35

Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ Computational basis:

➢ Fourier basis:

35

Try it out at AssignmentII and upload files
“quantum_fourier_transform.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Quantum Phase Estimation (QPE)

➢ QPE aims to estimate the phase θ associated with an eigenvalue 𝑒2𝜋𝑖𝜃 of a unitary operator U.

➢ The quantum phase estimation algorithm uses phase kickback to write the phase of U, in the

Fourier basis, to the t qubits in the counting register.

35

Quantum algorithms
• Quantum Phase Estimation (QPE): Single qubit

35

a
n

a
lyze

d

Quantum algorithms
• Quantum Phase Estimation (QPE)

35

Quantum algorithms
• Quantum Phase Estimation (QPE): Two qubits

35

Try it out at AssignmentII and upload
files “phase_estimation.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Shor’s algorithm

➢ Let N be the integer we want to factor. Let's assume the example is number 35.

➢ Pick a random integer from 2 to N-1. Let's call this number a. Let's assume a is 4.

➢ Find the greatest common divisor (GCD) between a and N. If you get a value that is not 1, it means

that the GCD obtained is the answer. It's finished. You don't have to do anything further. But if it is

equal to 1, see the next step.

➢ Find the value of the function 𝑓 𝑥 = 𝑎𝑥 𝑚𝑜𝑑 𝑛.

➢ From the example N=35, a=4, the table between the values of x and f(x) will be obtained as follows.

➢ We have to check that 𝑎𝑟/2 = −1 𝑚𝑜𝑑 𝑛 . If so, we have to random new “a”.

➢ Then we find the GCD between (𝑎𝑟/2 + 1, 𝑁) and (𝑎𝑟/2 − 1, 𝑁). If we get 1 and N,

go back to random new “a” again.

35

X 0 1 2 3 4 5 6 7 8 9

f(x) 1 4 16 29 11 9 1 4 16 29

Quantum algorithms
• Shor’s algorithm

➢ A reduction of the factoring problem to the problem of order-finding, which can be done on a

classical computer.

➢ A quantum algorithm to solve the order-finding problem.

35

Quantum algorithms
• Shor’s algorithm

➢ Classical part

1. Pick a pseudo-random number a < N

2. Compute gcd(a, N). This may be done using the Euclidean algorithm.

3. If gcd(a, N) ≠ 1, then there is a nontrivial factor of N, so we are done.

4. Otherwise, use the period-finding subroutine (below) to find r, the period of the following function:

 𝑓 𝑥 = 𝑎𝑥 𝑚𝑜𝑑 𝑁, i.e. the smallest integer r for which 𝑓 𝑥 + 𝑟 = 𝑓(𝑥).

5. If r is odd, go back to step 1.

6. If 𝑎𝑟/2 = −1 (𝑚𝑜𝑑 𝑛) go back to step 1.

7. The factors of N are gcd(𝑎𝑟/2 ± 1, 𝑁). We are done.

35

Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

1. Start with a pair of input and output qubit registers with 𝑙𝑜𝑔2𝑛 qubits each, and initialize them to

 𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ0 , where x runs from 0 to N-1

2. Construct f(x) as a quantum function and apply it to the above state, to obtain

 𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ𝑓(𝑥)

3. Apply the quantum Fourier transform on the input register. The quantum Fourier transform on N points is defined by:

 𝑈𝑄𝐹𝑇ȁ ۧ𝑥 = 𝑁−1/2 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦

 This leave us in the following state:

 𝑁−1 σ𝑥 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦 ȁ ۧ𝑓(𝑥)

4. Perform a measurement. We obtain some outcome y in the input register and 𝑓(𝑥0) in the output register. Since 𝑓 is

periodic, the probability to measure some y is given by:

 𝑁−1 σ𝑥: 𝑓 𝑥 = 𝑓 𝑥0 𝑒2𝜋𝑖𝑥𝑦/𝑁 2
= 𝑁−1 σ𝑏 𝑒2𝜋𝑖(𝑥0+𝑟𝑏)𝑦/𝑁 2

 Analysis now shows that this probability is higher, the closer y/N is to an integer.
35

Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

5. Turn y/N into an irreducible fraction, and extract the denominator r′, which is a candidate for r.

6. Check if 𝑓 𝑥 = 𝑓 𝑥 + 𝑟′ . If so, we are done.

7. Otherwise, obtain more candidates for r by using values near y, or multiples of r′. If any candidate works, we are done.

8. Otherwise, go back to step 1 of the subroutine.

35

Try it out at AssignmentII and upload files “Shor’s algorithm.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Grover’s algorithm

➢ It can be used to solve unstructured search problems in roughly 𝑁 steps, where N is the

amount of data.

➢ This algorithm can speed up an unstructured search problem quadratically using the amplitude

amplification trick.

36

4 6 8 W N=𝟐𝒏

Quantum algorithms
• Operation of searching data by Grover’s algorithm for 2 qubits:

Oracle

Invert iteration 𝑚 =

1
2

+
1
2

−
1
2

+
1
2

4
=

1

4

𝑙𝑖ȁ00, ȁ01, ȁ11 =
1

4
 −

1

2
 −

1

4
= 0

𝑙𝑖ȁ10 =
1

4
 − −

1

2
 −

1

4
= 1

40

Quantum algorithms
• Operation of searching data by Grover’s algorithm for 4 qubits:

Grover iterations =

4

 𝑥
𝑁

𝑡
 times,

N is the number of data (states) and
t is the number of target solutions.

Try it out at AssignmentII and upload
files “Grover's algorithm.ipynb” into
IBM Quantum Lab.

41

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Grover’s algorithm

➢ The example of Grover's algorithm for 3 qubits with two marked states |101ۧ and |110ۧ.

Grover iterations ~
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
37

Quantum algorithms
• The implemented stages of the Grover’s search algorithm:

➢ Initialization: In the first stage of the algorithm all qubits are set to be in superposition by

applying the Hadamard gate to each qubit. After this operation the amplitude of each state is

1/sqrt(n).

➢ Oracle: The oracle function performs a phase flip on the marked state. If the marked state is

|0110〉, the phase flip inverts the amplitude ⍺0110 of the state.

➢ Amplification: The amplification stage performs an inversion of the average of the amplitudes.

➢ Measurement: The qubits are measured in finally. Grover iterations ~
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html

38

Quantum algorithms
• Grover’s algorithm

Grover iteration
maximum at

Initialize the system to
the superposition

state
Apply oracle

Invert amplitude of
the optimum and
re-compute the

average of
amplitude

Perform the
measurement

No

Yes

Optimum
success

prob max?

New amplitude:
𝑙𝑖_𝑛𝑒𝑤 = 𝑚 − 𝑙𝑖 − 𝑚
 = 2𝑚 − 𝑙𝑖

𝑚 is new average of amplitude.

𝟒

𝑵

𝒕

0 1 2 3 4 … N-1

The optimum is at index “a”,
Define Tagging Function :
f(x) = 0, x a
f(x) = 1, x = a

39

Assignment II: quantum algorithms

• Required:

➢ Go to https://quantum-computing.ibm.com/

➢ Download source codes at Assignment and upload files “Lab-4.ipynb” into IBM

Quantum Lab.

• Assignment:

➢ Lab-4: Oracles and the Deutsch-Jozsa algorithm by IBM Quantum.

42

https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

	Slide 33: Quantum algorithms
	Slide 34: Quantum algorithms
	Slide 35: Quantum algorithms
	Slide 36: Quantum algorithms
	Slide 37: Quantum algorithms
	Slide 38: Quantum algorithms
	Slide 39: Quantum algorithms
	Slide 40: Quantum algorithms
	Slide 41: Quantum algorithms
	Slide 42: Quantum algorithms
	Slide 43: Quantum algorithms
	Slide 44: Quantum algorithms
	Slide 45: Quantum algorithms
	Slide 46: Quantum algorithms
	Slide 47: Quantum algorithms
	Slide 48: Quantum algorithms
	Slide 49: Quantum algorithms
	Slide 50: Quantum algorithms
	Slide 51: Quantum algorithms
	Slide 52: Quantum algorithms
	Slide 53: Quantum algorithms
	Slide 54: Quantum algorithms
	Slide 55: Quantum algorithms
	Slide 56: Assignment II: quantum algorithms

