
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 287

Brief Papers

The Compact Genetic Algorithm
Georges R. Harik, Fernando G. Lobo, and David E. Goldberg

Abstract—This paper introduces the compact genetic algorithm
(cGA) which represents the population as a probability distribu-
tion over the set of solutions and is operationally equivalent to the
order-one behavior of the simple GA with uniform crossover. It
processes each gene independently and requires less memory than
the simple GA. The development of the compact GA is guided
by a proper understanding of the role of the GA’s parameters
and operators. The paper clearly illustrates the mapping of the
simple GA’s parameters into those of an equivalent compact
GA. Computer simulations compare both algorithms in terms
of solution quality and speed.

Finally, this work raises important questions about the use of
information in a genetic algorithm, and its ramifications show us
a direction that can lead to the design of more efficient GA’s.

Index Terms—Bit wise simulated crossover, genetic algorithms,
population based incremental learning, probabilistic modeling,
univariate marginal distribution algorithm.

I. INTRODUCTION

T HERE is a tendency in the community of evolutionary
computation to treat the population with almost mystical

reverence, and certainly the population deserves our respect
as it is the source of all that goes right (or wrong) in a
genetic algorithm (GA) with respect to function evaluation,
schema evaluation, and partition identification [14]. But if one
lesson is clear from the history of GA analysis and design,
it is that genetic algorithms are complex objects and multiple
perspectives are useful in understanding what they can and
cannot do.

In this paper, we take a minimalist view of the population
and create a GA that mimics the order-one behavior of a
simple GA using a finite memory bit by bit. Although the
resulting compact genetic algorithm (cGA) is not intended to
replace population-oriented GA’s, it does teach us important
lessons regarding GA memory and efficiency. As a matter of
design, the cGA shows us an interesting way of getting more
information out of a finite set of evaluations.

Manuscript received September 15, 1998; revised March 1, 1999. This work
was sponsored by the U.S. Air Force Office of Scientific Research Grant
F49620-97-1-0050 and the U.S. Army Research Laboratory Grant DAAL01-
96-2-0003.

G. Harik was with the Illinois Genetic Algorithms Laboratory, Department
of General Engineering, University of Illinois, Urbana-Champaign, Urbana,
IL 61801 USA. He is with Google, Inc., Mountain View, CA 94041 USA.

F. Lobo was with the Illinois Genetic Algorithms Laboratory, Department
of General Engineering, University of Illinois, Urbana-Champaign, Urbana, IL
61801 USA. He is now with the Department of Environmental Engineering,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon,
Portugal.

D. Goldberg is with Department of General Engineering, University of
Illinois, Urbana-Champaign, Urbana, IL 61801 USA.

Publisher Item Identifier S 1089-778X(99)08070-4.

We start by discussing the inspiration of this work from
a random walk model that has been proposed recently. We
then present the cGA and describe the mapping of the sGA’s
parameters into those of an equivalent cGA. Along the way,
computer simulations compare the two algorithms, both in
terms of solution quality and speed. At the end of the paper,
important ramifications are outlined concerning the design of
more efficient GA’s.

II. M OTIVATION AND RELATED WORK

This work is primarily inspired by the random walk model
introduced by Hariket al. [10]. In that work, the authors gave
accurate estimates of the GA’s convergence on a special class
of problems: problems consisting of tightly coded, nonover-
lapping building blocks. A building block is a set of genes
that as a whole give a high contribution to the fitness of an
individual. Because there are no interactions among building
blocks, the authors made the assumption that they could be
solved independently. Therefore, their model focused on one
building block at a time. The next paragraph describes the
basic idea of the model.

In the initial population, there will be some instances of
the building block. Then, during the action of a GA run, the
number of instances of the building block can increase or
decrease. Eventually, the building block will spread throughout
all the population members or it will become extinct.

This type of process is easily modeled using a random walk
as a mathematical tool. Using such a model, Hariket al. were
able to accurately predict the GA’s convergence. There, the
random walk variable represents the number of building blocks
in the population at a given time. Two absorbing barriers (one
at zero and one at the population size) represent the success
or failure in the overall decision of the GA. The transition
probability of the random walk is given by the probability that
the GA commits a decision error on two competing schemata.
This error in decision making occurs because a schema is
always evaluated within the context of a larger individual. The
GA can make an incorrect decision in a partition because of
the noise coming from the remaining partitions. In the model,
the population plays the role of a memory to account for a
finite number of such decision-errors.

The dynamics of the random walk model suggests that
it is possible to directly simulate its behavior for order-one
problems.1 The idea is to simulate independent random

1By an order-one problem, we mean a problem that can be solved to
optimality by combining only order-one schemata.

1089–778X/99$10.00 1999 IEEE

288 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999

walks bit by bit. The next section, which introduces the cGA,
shows how this is possible. The cGA represents the popu-
lation as a probability distribution over the set of solutions.
By discretizing its probability representation, the proposed
algorithm reduces the GA’s memory requirements. In addition,
the manner in which the cGA manipulates this distribution
allows it to mimic the order-one behavior of the simple genetic
algorithm (sGA). But before introducing the cGA, let us
review other related works.

Ackley [1] introduced a learning algorithm that manipulates
a gene vector via positive and negative feedback coming from
the population members. He used a political metaphor to de-
scribe the algorithm where the voters (population) express their
satisfaction or dissatisfaction toward an-member government
(a point in the search space).

Syswerda [18] introduced an operator called bit-based sim-
ulated crossover (BSC) that uses the statistics in the GA’s
population to generate offspring. BSC does a weighted average
of the alleles of the individuals along each bit position (a bit
column). By using the fitness of the individuals in this com-
putation, BSC integrates the selection and crossover operators
into a single step. A variation of BSC was also discussed by
Eshelman and Schaffer [8] in the context of investigating how
GA’s differ from population-based hillclimbers.

Population-based incremental learning (PBIL) was intro-
duced by Baluja [2], [3]. As opposed to storing the whole
population as in BSC, PBIL uses a probability vector over
the chromosome to represent its population. Specifically, it
records the proportion of ones (and consequently zeroes) at
each gene position. These probabilities are initially set to 0.5
and move toward zero or one as the search progresses. The
probability vector is used to generate new solutions and thus
represents the combined experiences of the PBIL algorithm at
any one time. Using the probability vector, PBIL generates
a certain number of solutions and updates the vector based
on the fitnesses of these solutions. The aim of this update
is to move the probability vector toward the fittest of the
generated solutions. The update rule is similar to that used in
learning vector quantization [12]. Fig. 1 shows the pseudocode
of PBIL.

The number of individuals generated, the number of indi-
viduals to update from, the stopping criterion, and the rate
of the probability vector’s change are all parameters of the
algorithm. Attempts were made to relate PBIL’s parameters
to the simple GA. For instance, the number of individuals
generated was equated with the GA’s population size. These
attempts were not successful because the GA manipulates its
distributions in a different way. In Section III we show how
this is possible in a related algorithm.

Another related algorithm is the univariate marginal dis-
tribution algorithm (UMDA), proposed by M̈uhlenbein and
Paaß [15]. UMDA is similar to PBIL as it also treats each
gene independently from each other. UMDA maintains a
population of individuals. Then it applies a selection method
to create a new population. Based on the new population,
the frequencies of each gene are computed and are used to
generate a new population of individuals. This generation
step is a kind of population-wise crossover operator and

Fig. 1. Pseudocode of PBIL.

replaces the traditional pairwise crossover operator of the
traditional genetic algorithm.

The following section introduces the compact GA, an al-
gorithm similar to PBIL and UMDA. The main difference is
the connection that is made between the compact GA and
the simple GA. Specifically, it is shown that for order-one
problems, the two algorithms are approximately equivalent.

III. T HE COMPACT GENETIC ALGORITHM

Harik et al. [10] analyzed the growth and decay of a
particular gene in the population as a one-dimensional random
walk. As the GA progresses, genes fight with their competitors
and their number in the population can go up or down
depending on whether the GA makes good or bad decisions.
These decisions are made implicitly by the GA when selection
takes place. The next section explores the effects of this
decision making.

A. Selection

Selection gives more copies to better individuals. But it does
not always do so for better genes. This is because genes are
always evaluated within the context of a larger individual. For
example, consider the onemax problem (that of counting ones).
Suppose individual competes with individual

individual chromosome fitness

When these two individuals compete, individualwill win.
At the level of the gene, however, a decision error is made on
the second position. That is, selection incorrectly prefers the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 289

Fig. 2. Pseudocode of the compact GA.

schema *0** to *1**. The role of the population is to buffer
against a finite number of such decision errors.

Imagine the following selection scheme: pick two individu-
als randomly from the population, and keep two copies of the
better one. This scheme is equivalent to a steady-state binary
tournament selection. In a population of size, the proportion
of the winning alleles will increase by . For instance, in
the previous example the proportion of 1’s will increase by

at gene positions 1 and 3, and the proportion of 0’s will
also increase by at gene position 2. At gene position 4,
the proportion will remain the same. This thought experiment
suggests that an update rule increasing a gene’s proportion
by simulates a small step in the action of a GA with a
population of size

The next section explores how the generation of individuals
from a probability distribution mimics the effects of crossover.

B. Crossover

The role of crossover in the GA is to combine bits and
pieces from fit solutions. A repeated application of most
commonly used crossover operators eventually leads to a
decorrelation of the population’s genes. In this decorrelated
state, the population is more compactly represented as a
probability vector. Thus the generation of individuals from
this vector can be seen as a shortcut to the eventual aim of
crossover. Fig. 2 gives pseudocode of the compact GA.

C. Two Main Differences from PBIL

The proposed algorithm differs from PBIL in two ways: 1)
it can simulate a GA with a given population size, and 2) it
reduces the memory requirements of the GA.

Fig. 3. Comparison of the solution quality (number of correct bits at the end
of the run) achieved by the compact GA and the simple GA on a 100-bit
onemax problem. The algorithms were ran from population size 4–100 with
increments of 2 (4, 6, 8,. . ., 100). The solid line is for the simple GA. The
dashed line is for the compact GA.

The update step of the compact GA has a constant size
of . While the simple GA needs to store bits for
each gene position, the compact GA only needs to keep the
proportion of ones (and zeros), a finite set of numbers

that can be stored with
bits. With PBIL’s update rule (see 1), an element in the
probability vector can have any arbitrary precision, and the
number of values that can be stored in an element of the vector
is not finite. Therefore, PBIL cannot achieve the same level
of memory compression as the cGA. While in many problems
computer memory is not a concern, we can easily imagine
large problems that need huge population sizes. In such cases,
cutting down the memory requirement fromto results
in significant savings.

PBIL typically generates a large number of individuals from
the probability vector. According to Baluja and Caruana [3],
that number was something analogous to the population size.
In the compact GA, the size of the update step is the “thing”
that is analogous to the population size.

IV. EXPERIMENTAL RESULTS

This section presents simulation results and compares the
compact GA with the simple GA, both in terms of solution
quality and in the number of function evaluations taken. All
experiments are averaged over 50 runs. The simple GA uses
binary tournament selection without replacement and uniform
crossover with exchange probability 0.5. Mutation is not used
and crossover is applied with probability one. All runs end
when the population fully converges, that is, when for each
gene position all the population members have the same allele
value (zero or one). Figs. 3 and 4 show the results of the
experiments on a 100-bit onemax problem (the counting ones
problem). Fig. 3 plots the solution quality (number of correct
bits at the end of the run) for different population sizes.
Fig. 4 plots the number of function evaluations taken until
convergence for the various population sizes. On both graphs,
the solid line is for the simple GA and the dashed line is for the
compact GA. Additional simulations were performed with the
binary integer function and with De Jong’s test functions [5].

290 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999

Fig. 4. Comparison of the compact GA and the simple GA in the number
of function evaluations needed to achieve convergence on a 100-bit onemax
problem. The algorithms were ran from population size 4–100 with increments
of 2 (4, 6, 8,. . ., 100). The solid line is for the simple GA. The dashed line
is for the compact GA.

The results obtained were similar to these, and are collected
in Appendix A. The match between the two algorithms seems
accurate, and gives evidence that the two are doing roughly
the same thing and that they are somehow equivalent. Note
however that while the sGA has a memory requirement of

bits, the cGA requires only bits.
The generation of individuals in the compact GA is equiva-

lent to performing an infinite number of crossover rounds per
generation in a simple GA. Thus the compact GA completely
decorrelates the genes, while the simple GA still carries a
little bit of correlation among the population’s genes. Another
difference is that the compact GA is incremental based while
the simple GA is generational based. One could get a better
approximation of the two algorithms by doing a batch-update
of the probability vector once every competitions are
performed. This would more closely mimic the generational
behavior of the simple GA. We did not do that here because
the difference is not significant. We are simply interested in
showing that the two algorithms are approximately equivalent.

V. SIMULATING HIGHER SELECTION PRESSURES

This section introduces a modification to the compact GA
that allows it to simulate higher selection pressures. We
would like to simulate a tournament of size. The following
mechanism produces such an effect. 1) Generateindividuals
from the probability vector and find out the best one. 2) Let
the best individual compete with the other individuals,
updating the probability vector along the way. Clearly, the best
individual wins all the competitions, thus the above procedure
simulates something like a tournament of sizeSteps 2–4 of
the cGA’s pseudocode (Fig. 2) would have to be replaced by
the ones shown in Fig. 5.

Experiments on the onemax problem with and
are shown in Fig. 6 confirming our expectations. Once more,
the graphs show the solution quality and also the number of
function evaluations needed to reach convergence. The runs
were done for different population sizes. The top graphs are
for the middle ones for and the bottom ones are

Fig. 5. Modification of the compact GA that implements tournament selec-
tion of sizes. This would replace steps 2–4 of the cGA code.

for In all of them, the solid line is for the simple GA
and the dashed line is for the compact GA.

Being able to simulate higher selection rates should allow
the compact GA to solve problems with higher order building
blocks in approximately the same way that a simple GA
with uniform crossover does. It is known that to solve such
problems, high selection rates are needed to compensate for
the highly disruptive effects of crossover. Moreover, the
population size required to solve such problems grows ex-
ponentially with the problem size [19]. To test the compact
GA on problems with higher-order building blocks, ten copies
of a 3-bit deceptive subfunction are concatenated to form
a 30-bit problem. Each subfunction is a 3-bit trap function
with deceptive-to-optimal ratio of 0.7 [1], [6]. The results are
presented in Fig. 7.

In this case there is a discrepancy between the two algo-
rithms. This can be explained on schema theorem grounds.
Using uniform crossover, an order-building block has a
survival probability of According to the schema the-
orem, the simple GA should be able to propagate these
building blocks as long as the selection rate is high enough
to compensate for the crossover disruption. For an order-3
schema, the survival probability is 1/4, so the sGA should
start to work well when the selection rate is greater than 4. In
the case of the cGA, we can think of a global schema theorem.
The survival probability of a schema under the cGA would
then be given by

survival of

In the cGA, all the start with 1/2. This means that initially
the survival probability of an order-3 building block is 1/8.
Therefore, the building block should grow when the selection
rate is greater than eight. This argumentation explains the
results obtained in Fig. 7 (see the cases and .
Observe that a selection rate of is not enough to combat
the disruptive effects of crossover. No matter what population
size is used, the compact GA (and also the simple GA) with

will fail to solve this problem. This is an indication
that the problem has higher order building blocks, and that it
can only be solved with these kind of algorithms by raising
the selection pressure.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 291

Fig. 6. The plots illustrate the mapping of the selection rate of the compact GA into that of the simple GA using the onemax function. Selection rates
are two, four, and eight. The algorithms were ran from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). For selection rate eight, the
initial population size is eight. On the left side, the graphs plot the number of correct bits at the end of the run for the various population sizes. On the
right side, the graphs plot the number of function evaluations taken to converge. Selection rates ares = 2 (top), s = 4 (middle), ands = 8 (bottom).
The solid lines are for the simple GA, and the dashed lines are for the compact GA.

As mentioned previously, the compact GA completely
decorrelates the population’s genes, while the simple GA still
carries a little bit of allele correlation. This effect may also
help to explain the difference that is observed in the case of
the deceptive problem.

VI. GETTING MORE WITH LESS

This section introduces a concept that is unusual in terms of
standard GA practice. To motivate the discussion, let us start
with an analogy between the selection operator of a GA and
a tennis (or soccer) competition.

In tennis there are two kinds of tournaments: elimination
and round-robin. In both cases, the players are matched in
pairs. In the elimination case, the losers are eliminated from
the tournament and the winners proceed to next round. In

the round-robin variation, everybody plays with everybody.
It is also possible to have competitions that are something
in between these two. An example is the soccer World Cup.
There, the teams are divided in groups and within each group
the teams play round-robin. Then, the top-within each group
proceed to the next phase.

After this brief detour, let us shift back to our discussion on
genetic algorithms. Typically, a GA using binary tournament
selection is very much like an elimination tennis competi-
tion. The only difference is that in the GA, each individual
participates in two tournaments. This is because we do not
want the population to be chopped by a half after each
generation. Round-robin competitions are not usually done in
GA’s, because this would make the population size grow after
each generation.

292 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999

Fig. 7. These plots compare the compact GA and the simple GA on the ten copies of a 3-bit trap function, using selection rates of two, four, and eight. The
algorithms were ran for population sizes 8, 500, 1000, 1500, 2000, 2500, and 3000. On the left side, the graphs plot the number of correct building blocks
(sub-functions) at the end of the run for the various population sizes. On the right side, the graphs plot the number function evaluations taken to converge.
Selection rates ares = 2 (top), s = 4 (middle), ands = 8 (bottom). The solid lines are for the simple GA, and the dashed lines are for the compact GA.

The remainder of this section shows how it is possible to
have round-robin-like competitions within the compact GA
while maintaining a fixed population size. To implement it,
we do the following: instead of generating two individuals,
generate individuals and make a round-robin tournament
among them, updating the probability vector along the way.
Steps 2–4 of the cGA’s pseudocode (Fig. 2) would have to be
replaced by the ones shown in Fig. 8.

This results in a faster search because binary tourna-
ments are made using only function evaluations. On the
other hand, this scheme takes bigger steps in the probability
vector and therefore more decision-making mistakes are made.
When the tournaments are played using elimination.
When the tournament is played in a round-robin fash-
ion among all the population members. Whenis between
2 and , we get something that is neither a pure elimination
scheme nor a pure round-robin scheme.

Fig. 8. Modification of the compact GA that implements a round-robin
tournament. This would replace steps 2–4 of the cGA code.

Experiments of the cGA with a selection rate of
are performed again, but this time using different values of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 293

Fig. 9. This graph shows the solution quality on a 100-bit onemax problem
for various population sizes (4, 6, 8,. . . ; 100), using different values ofm:

Observe that the solution quality decreases asm increases.

Fig. 10. This graph shows the number of function evaluations needed to
reach convergence on a 100-bit onemax problem, using various population
sizes (4, 6, 8,. . . ; 100), and different values ofm: Observe that the speed
increases asm increases.

Plots for the onemax problem are shown in Figs. 9–11.
Fig. 9 shows the solution quality (number of correct bits at
the end of the run) of the compact GA with
for different population sizes. Fig. 10 shows the number of
function evaluations taken to converge by the compact GA
with for the different population sizes. Fig. 11
is a combination of Figs. 9 and 10. It shows that a given
solution quality can be obtained faster by using or

instead of . In other words, although using higher
values of reduces the solution quality, the corresponding
increase in speed makes it worth its while. Observe that after
a certain point, it is risky to increase due to solution
degradation. In this example, using is worse than
using or This shows that there must be
an optimal and raises important questions concerning GA
efficiency.

VII. EXTENSIONS

Two extensions are proposed for this work: 1) investigate
extensions of the cGA for order-problems and 2) investigate
how to maximize the information contained in a finite set of
evaluations in order to design more efficient GA’s.

Fig. 11. This is a combination of the previous two graphs. It shows that to
achieve a given solution quality, it is better to usem = 4 or m = 8 instead
of m = 2 or m = 40: In other words, the best strategy is neither to use a
pure elimination tournament, nor a pure round-robin tournament.

The compact GA is basically a 1-bit optimizer and ignores
the interactions among the genes. The set of problems that
can be solved efficiently with such schemes are problems that
are somehow easy. The representation of the population in
the compact GA explicitly stores all the order-one schemata
contained in the population. It is possible to have a similar
scheme that is also capable of storing higher order schemata
in a compact way. Recently, a number of algorithms have
been suggested that are capable of dealing with pairwise gene
interactions [4], [7], [16] and even with order-interactions
[11], [17].

Another direction is to investigate more deeply the results
discussed in Section VI and discover their implications for
the design of more efficient GA’s. Our preliminary work has
shown that it is possible to extract more information from a set
of function evaluations, than the usual information extracted
by the simple GA. But how to use this additional information
in the context of a simple GA is still an open question and
deserves further research.

VIII. C ONCLUSIONS

This paper presented the compact GA, an algorithm that
mimics the order-one behavior of a simple GA with a given
population size and selection rate, but that reduces its memory
requirements. The design of the compact GA was explained,
and computational experiments illustrated the approximate
equivalence of the compact GA with a simple GA using
uniform crossover.

Although the compact GA approximately mimics the order-
one behavior of the simple GA with uniform crossover, it is not
a replacement for the simple GA. Simple GA’s can perform
quite well when the user has some knowledge about the
nonlinearities in the problem. In that case, the building blocks
can be tightly coded and they can be propagated throughout
the population through the repeated action of selection and
recombination. Note that in general, this linkage information
is not known. In most applications, however, the GA user has
some knowledge about the problem’s domain and tends to
code together in the chromosome features that are somehow
spatially related in the original problem. In a way, the GA

294 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999

(a)

(b)

Fig. 12. Comparison of the simple GA and the compact GA on a 30-bit
binary integer function. (a) shows the solution quality obtained at the end of
the runs. (b) shows the number of function evaluations taken to converge.
The algorithms were ran from population size 4–140 with increments of two
(4, 6, 8, . . . ; 140). The solid line is for the simple GA and the dashed line
is for the compact GA.

user has partial knowledge about the linkage. This is probably
one of the main reasons why simple GA’s have had so much
success in real-world applications. Of course, sometimes the
user think he has a good coding, when in fact he does not. In
such cases, simple GA’s are likely to perform poorly.

Finally, and most important, this study has introduced new
ideas that have important ramifications for GA design. By
looking at the simple GA from a different perspective, we
learned more about its complex dynamics and opened new
doors toward the goal of having more efficient GA’s.

APPENDIX A

This appendix presents simulation results comparing the
compact GA and the simple GA on the binary integer function,
and on De Jong’s test functions [5]. All experiments are
averaged over 50 runs. The simple GA uses binary tournament
selection without replacement and uniform crossover with
exchange probability 0.5. Mutation is not used, and crossover
is applied all the time. All runs end when the population fully
converges—that is—when all the individuals have the same
alleles at each gene position.

The binary integer function is defined as
The GA solves this problem in a sequential way (domino-like).

(a)

(b)

Fig. 13. Comparison of the simple GA and the compact GA on function F1.
(a) shows the solution quality obtained at the end of the runs. (b) shows the
number of function evaluations taken to converge. The algorithms were ran
from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). The
solid line is for the simple GA and the dashed line is for the compact GA.

First it pays attention to the most significant bits and then, once
those bits have converged, it moves on to next most significant
bits. For this function, the solution quality is measured by the
number of consecutive bits solved correctly.

For De Jong’s test functions, the solution quality is mea-
sured by the objective function value obtained at the end of
the run. Each parameter is coded with the same precision as
described in his dissertation [5]. The functionsF1–F5 are
shown below.

De Jong’sF1:

De Jong’sF2:

De Jong’sF3:

integer

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 295

(a)

(b)

Fig. 14. Comparison of the simple GA and the compact GA on function F2.
(a) shows the solution quality obtained at the end of the runs. (b) shows the
number of function evaluations taken to converge. The algorithms were ran
from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). The
solid line is for the simple GA and the dashed line is for the compact GA.

De Jong’sF4:

Gauss

De Jong’sF5:

Figs. 12–17 illustrate the comparison between the compact
GA and the simple GA on the binary integer function and on
De Jong’s test functions.

In functionsF3 andF4, the number of function evaluations
needed to reach convergence by the two algorithms do not
match very closely.F3 has many optima, andF4 is a
noisy fitness function. Due to the effects of genetic drift,
it takes a long time for both algorithms to fully converge.
Genetic drift occurs when there is no selection pressure to
distinguish between two or more individuals, and conse-

(a)

(b)

Fig. 15. Comparison of the simple GA and the compact GA on function F3.
(a) shows the solution quality obtained at the end of the runs. (b) shows the
number of function evaluations taken to converge. The algorithms were ran
from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). The
solid line is for the simple GA and the dashed line is for the compact GA.

quently, the convergence process starts to look like a random-
walk. The drift time is slightly longer in the case of the
simple GA, however, possibly because the simple GA uses
tournament selection without replacement, while the compact
GA does something more similar to tournament with replace-
ment. The important thing to retain is that the behavior of
compact GA is approximately equivalent to that of the simple
GA.

APPENDIX B
PHYSICAL INTERPRETATION

An analogy with a potential field can be made to explain
the search process of the compact GA and is easily visu-
alized for 2-bit problems. Similar results were obtained in
[13] in the context of studying the convergence behavior of
the PBIL algorithm. For completeness, they are presented
again.

Consider Fig. 18. The corner points are the four points of
the search space (00, 01, 10, 11). Each corner point applies
a force to attract the particle (population) represented by the
black dot. The position of the particle is given by , which
represents the proportion of 1’s in the first and second gene
positions respectively. The particle (population) is submitted

296 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999

(a)

(b)

Fig. 16. Comparison of the simple GA and the compact GA on function F4.
(a) shows the solution quality obtained at the end of the runs. (b) shows the
number of function evaluations taken to converge. The algorithms were ran
from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). The
solid line is for the simple GA and the dashed line is for the compact GA.

to a potential field on the search space, seeking its minimum.
As the search progresses, the particle (population) moves up
or down, left or right (the proportions of 1’s in each gene
increase or decrease by) and eventually, one of the corners
will capture the particle (the population converges). Let us
illustrate this with a 2-bit onemax problem and with the
minimal deceptive problem (MDP) [9].

Onemax

Let and be the proportion of 1’s at the first and second
genes respectively. The search space, the potential field, and
a graphical interpretation is shown as

point fitness

The potential at position is:

(a)

(b)

Fig. 17. Comparison of the simple GA and the compact GA on function F5.
(a) shows the solution quality obtained at the end of the runs. (b) shows the
number of function evaluations taken to converge. The algorithms were ran
from population size 4–100 with increments of two (4, 6, 8,. . . ; 100). The
solid line is for the simple GA and the dashed line is for the compact GA.

Fig. 18. The black circle represents the population. Its coordinates arep

andq, the proportion of 1’s in the first and second gene positions. The four
corners are the points in the search space.

MDP

Likewise, for the minimal deceptive problem, the search
space is

point fitness

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 4, NOVEMBER 1999 297

Fig. 19. Potential field for the 2-bit onemax problem.

Fig. 20. Potential field for the MDP.

and the potential at position is

Fig. 19 shows that the onemax is an easy function. Fig. 20
gives a visual representation of Goldberg’s observation [9] that
on the MDP, the GA could converge to the deceptive attractor
given certain initial conditions (high proportion of 00 in the
initial population).

REFERENCES

[1] D. H. Ackley, A Connectionist Machine for Genetic Hill Climbing.
Boston, MA: Kluwer, 1987.

[2] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-
CS-94-163, 1994.

[3] S. Baluja and R. Caruana, “Removing the genetics from the standard
genetic algorithm,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep.
CMU-CS-95-141, 1995.

[4] S. Baluja and S. Davies, “Using optimal dependency-trees for combina-
torial optimization: Learning the structure of the search space,” inProc.
14th Int. Conf. Machine Learning. San Mateo, CA: Morgan Kaufmann,
1997, pp. 30–38.

[5] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975.

[6] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in
Foundations of Genetic Algorithms 2, L. D. Whitley, Ed. San Mateo,
CA: Morgan Kaufmann, 1993, pp. 93–108.

[7] J. S. De Bonet, C. Isbell, and P. Viola, “MIMIC: Finding optima by
estimating probability densities,” inAdvances in Neural Information
Processing Systems, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds.
Cambridge, MA: MIT Press, vol. 9, p. 424, 1997.

[8] L. J. Eshelman and J. D. Schaffer, “Crossover’s niche,” inProc. 5th Int.
Conf. Genetic Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan
Kaufmann, 1993, pp. 9–14.

[9] D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive
problem,” in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. San Mateo, CA: Morgan Kaufmann, 1987, pp. 74–88.

[10] G. Harik, E. Cant´u-Paz, D. E. Goldberg, and B. Miller, “The gambler’s
ruin problem, genetic algorithms, and the sizing of populations,” inProc.
4th Int. Conf. Evolutionary Computation, T. Bäck, Ed. Piscataway, NJ:
IEEE Press, 1997, pp. 7–12.

[11] G. Harik, “Linkage learning via probabilistic modeling in the ECGA,”
Univ. Illinois, Urbana-Champaign, IlliGAL Rep. 99010, 1999.

[12] J. Hertz, A. Krogh, and G. Palmer,Introduction to the Theory of Neural
Computation. Reading, MA: Addison-Wesley, 1993.

[13] M. Höhfeld and G. Rudolph, “Toward a theory of population-based
incremental learning,” inProc. 4th Int. Conf. Evolutionary Computation,
T. Bäck, Ed. Piscataway, NJ: IEEE Press, 1997, pp. 1–5.

[14] H. Kargupta and D. E. Goldberg, “SEARCH, blackbox optimization,
and sample complexity,” inFoundations of Genetic Algorithms 4, R. K.
Belew and M. D. Vose, Eds. San Francisco, CA: Morgan Kaufmann,
1996, pp. 291–324.

[15] H. Mühlenbein and G. Paaß, “From recombination of genes to the
estimation of distributions I. binary parameters,” inParallel Problem
Solving from Nature, PPSN IV, H.-M. Voigt, W. Ebeling, I. Rechenberg,
and H.-P. Schwefel, Eds. Berlin, Germany: Springer-Verlag, 1996, pp.
178–187.

[16] M. Pelikan and H. M̈uhlenbein, “The bivariate marginal distribution
algorithm,” in Advances in Soft Computing—Engineering Design and
Manufacturing, R. Roy, T. Furuhashi, and P. K. Chawdhry, Eds.
Berlin, Germany: Springer-Verlag, 1999, pp. 521–535.

[17] M. Pelikan, D. E. Goldberg, and E. Cant´u-Paz, “BOA: The Bayesian
optimization algorithm,” Univ. Illinois, Urbana-Champaign, IlliGAL
Rep. 99003, 1999.

[18] G. Syswerda, “Simulated crossover in genetic algorithms,” inFounda-
tions of Genetic Algorithms 2, L. D. Whitley, Ed. San Mateo, CA:
Morgan Kaufmann, 1993, pp. 239–255.

[19] D. Thierens, and D. E. Goldberg, “Mixing in genetic algorithms,” in
Proc. 5th Int. Conf. Genetic Algorithms, S. Forrest, Ed. San Mateo,
CA: Morgan Kaufmann, 1993, pp. 38–45.

