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Decision and Objective Space
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Optimization and Decision Making

Y2 __——Pareto optimality:
L defines set of optimal trade-offs
Q 2 1"2_' s . . .
" (all objectives equally important)
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Oy o 2 29~ - Decision making:
o o0 Q% o 2 :
o @ choose best compromise
Q@ 9. o oL . :
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© Decision making before search (define single objective)
® Decision making after search (find/approximate Pareto set first)
©® Decision making during search (guide search interactively)

O Combinations of the above
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Stochastic Search Algorithms
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~ma . OQutline of a Simple Evolutionary Algorithm %
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Issues in EMO

Diversity

Convergence

!

» How to maintain a diverse
Pareto set approximation?

® density estimation

» How to prevent nondominated
solutions from being lost?

© environmental selection

» How to guide the population
towards the Pareto set?

© mating selection
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Fitness Assignment Strategies

aggregation-based criterion-based dominance-based
weighted sum VEGA SPEA2
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Dominance-Based Ranking

Types of information:

e dominance rank

e dominance count

* dominance depth

Examples:

* MOGA, NPGA
* NSGA/NSGA-II
* SPEA/SPEA2

by how many individuals is an
individual dominated?

how many individuals does an
individual dominate?

at which front is an individual
located?

dominance rank
dominance depth

dominance count + rank

MOMH 2002
Tutorial on EMO
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Diversity Preservation
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Density estimation techniques: [Silverman: 1986]

Kernel
MOGA

density estimate

sum of f values
where fis a
function of the
distance
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Nearest neighbor
SPEA2

density estimate

volume of the
sphere defined by
the nearest
neighbor

Q
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Histogram
PAES

density estimate

number of
solutions in the
same box
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Environmental Selection

Variant 1: without archive Variant 2: with archive
old population offspring old population offspring archive
Q g 0:00 Q g ?joo Q g % o
new (7o o°°o new
population 2 population

Selection criteria:
* Dominance: only nondominated solutions are kept

* Density: less crowded regions are preferred to crowded regions
* Time: old archive members are preferred to new solutions
* Chance: each solution has the same probability to enter the archive
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SPEA2 Algorithm
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Step 1: Generate initial population Po and empty archive
(external set) Ao. Sett = 0.

Step 2: Calculate fitness values of individuals in Pt and A..

Step 3: At+1 = nondominated individuals in P: and A..
If size of At+1 > N then reduce At1, else if
size of At+1 < N then fill Aw1 with dominated
individuals in Prand A..

Step 4: If t > T then output the nondominated set of At:1.
Stop.

Step 5: Fill mating pool by binary tournament selection
with replacement on At+1.

Step 6: Apply recombination and mutation operators to
the mating pool and set P+ to the resulting
population. Sett=t+ 1 and go to Step 2.

[Zitzler, Laumanns, Thiele: 2001]
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Pareto Fitness Assignment
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Density Estimation

k-th nearest neighbor method:

* Fithess=R+1/(2+ Dx)

N J
Y

<1

e Dk =distance to the k-th
nearest individual

 k :1/popsize + archivesize

Diversity Preservation

MOMH 2002
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Truncation

Incremental approach:

* Remove individual A for which
A <4 B for all individuals B

* B <dqA iff:

» Dxidentical for A and B for
all k

» D« of A greater than D« of B
for a particular k and
identical for smaller k
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Performance Assessment: Approaches %

O Theoretically (by analysis): difficult

e Limit behavior

“Is the Pareto set found, if there are unlimited run-time
resources?”

* Run-time analysis

“How long does it take to generate the Pareto set with high
probability?”

® Empirically (by simulation): standard
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Basic assumptions:

* Every solution can be generated from every other solution by
mutation

* The number of iterations t goes to infinity (t — )

Studies:

* Convergence: [Hanne: 1999][Rudolph, Agapie: 2000]

* Diversity: e.q., [Knowles, Corne: 2000][Deb et al.: 2001]

* Convergence + diversity:
» Unlimited memory resources [Rudolph and Agapie: 2000]
» Limited memory resources [Laumanns et al.: 2002]
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Epsilon Dominance

A

e-dominated

Definition 1: e-Dominance \ .
A e-dominates B iff £f(A) > f(B) sdominated
(known since 1987) O/./
- Q O
Q Q .'..
Q ,

Definition 2: e-Pareto set e Pare;opfror:t ot
: -Pareto fron
subset of the Pareto set
which e-dominates all Pareto- Q "-.,../
optimal solutions IR \1
Q Q
Q Q .
Q
P
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Achieving Convergence and Diversity s

Goal: Maintain g-Pareto set

Idea: ¢&-grid, i.e. maintain a
set of nondominated
boxes (one solution

per box)
21
oy
82
Qe
3
2
1 : > Y1
2 3

Algorithm: (e-update)
Accept a child if

O the corresponding box is not
dominated by any box that
contains an individual

AND

@® any other individual in the same
box is dominated by the new
solution
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~ma - Run-Time Analysis of a Multiobjective EA =%

Basic question: [Laumanns et al.: 2002]

What is the worst case run-time of a multiobjective EA to find
the Pareto set with high probability?

Scenario: trailing Os

* Problem: leading ones, y2

trailing zeros (LOTZ)
_> <_
11171011[{0{0]|0

* Variation: single
point mutation

111]0f1]/0|0]0

1[{1f1]1]|0(0]|0

,
leading 1s
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Two Simple Multiobjective EAs

insert
into archive

if not dominated

Q >
flip remove
randomly dominated
chosen bit from archive
Q ¢
individual ~ °-, -
from archive e,
| 4 <

Variant 1: SEMO

Each individual in the
archive is selected with
the same probability

(uniform selection)

Variant 2: FEMO

Select individual with
minimum number of
children

(fair selection)
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Results of Analysis
* Simple multiobjective EA with uniform selection (SEMO): on3)

» To get to the Pareto front requires n? steps

» To cover the entire front needs n> steps

* Simple multiobjective EA with fair selection (FEMO): G)(nzlog n)
» Fair selection helps to spread over the Pareto front

* Multistart single-objective optimizer: Q(n?)
*» In average, one out of n mutations successful
» To get to the Pareto front, n successful mutations needed
» Overall n Pareto-optimal solutions have to be found

multiobjective EA faster than multistart strategy
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Empirical Performance Assessment

Issues: quality measures, statistical testing, benchmark problemes,
visualization, ...

Popular approach: unary quality measures

2. Hypervolume ... Generational Distance
[Zitzler, Thiele: PPSN1998] % [Van Veldhuizen: 1999]
.............. Q ...."o...°0... Q) ...‘O.ooooo....
............ O O
TR O ...................... o
> >

* Assign each outcome a real number
* QOutcomes are compared by comparing the corresponding values
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Quality Measures: Theoretical Results | %%

Basic question: Can we say on the basis of the quality measures
whether or that an algorithm outperforms another?

A application of S T
quality measures hypervolume 432.34 420.13
O& distance 0.3308 0.4532
%°%es ™ diversity 03637  0.3463
T Q O4 spread 0.3622 0.3601
9 5 cardinality 6 5

There is no combination of unary quality measures such that
S is better than T in all criteria is equivalent to S dominates T

Unary quality measures usually do not tell that
S dominates T; at maximum that S does not dominate T

[Zitzler et al.: 2002]
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Quality Measures: Theoretical Results Il =255

Many popular quality measures are not compliant
with the dominance relation

[Hansen, Jaszkiewicz: 1998][Knowles, Corne: 2002][Zitzler et al.: 2002]

Example: diversity measures

4. . . 4. . .
.. S better diversity .. T better diversity
: valuethan T : value than S
O...o.. OO......
Q OQ ..... o @ o
Q o3 o oS
TO To Q
© . o 0
% o . Q
> >

Needed: appropriate binary quality measures that indicate
whether an outcome dominates another, e.g., E-measure
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Definition 3: single solutions

lE(A,B) = minimum € such that | o
A e-dominates B B . A

Definition 4: sets of solutions

1€(S,T) = minimum € such that
each solutionin T is
g-dominated by at least
one solutionin S

[Zitzler et al.: 2002]
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Implementation: Current Situation

Application engineer Algorithm designer
« knowledge in the algorithm * comparison to competing
domain necessary algorithms mandatory
* state-of-the-art algorithms get * tests on various benchmark
more and more complex problems necessary
* many algorithms * algorithms and applications

become increasingly complex

high implementation effort / risk of implementation errors

Programming libraries:

G valuable tools to tailor a particular technique to a specific application

Q exchange of optimization algorithm or application still difficult



The Concept of PISA

Algorithms 1' Applications
SPEA? - i knapsack
PAES - i network
| design

text-based
Platform and programming language independent Interface
for Search Algorithms [Bleuler et al.: 2002]
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PISA: Implementation

’ shared
<+“—> o “—r
2 file system
selector  text | variator
process - files | process
application independent: handshake protocol:  application dependent:
* mating / environmental * state/action * variation operators
selection * individual IDs * stores and manages
* individuals are described * objective vectors individuals

by IDs and objective

* parameters
vectors
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Why using an evolutionary algorithm?

* Flexibility: problem formulation can be easily modified /
extended (minimum requirements)

* Multiple objectives: the solution space can be explored in a
single optimization run

* Feasibility: EAs are applicable to complex and huge search
spaces

Why multiobjective optimization?

* Robustness: aggregation of several objectives into a single one
requires setting of parameters

e Confidence: it is easier to select a solution if alternatives are
known

Main application of EMO: design space exploration




More on EMO

Links:

* EMO mailing list:
http.//w3.ualg.pt/lists/emo-list/

 EMO bibliography:
http.//www.lania.mx/~ccoello/EMOQO/

* PISA website:
http://www.tik.ee.ethz.ch/pisa/

Events:

* Conference on Evolutionary Multi-Criterion Optimization (EMO 2003),
April 8-11, 2003, Algarve, Portugal:
http://conferences.ptrede.com/emo03/
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