
6070372621_3878765190

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

KNOWLEDGE SHARING IN COOPERATIVE COMPACT

GENETIC ALGORITHM

Miss Orakanya Gateratanakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2018

Copyright of Chulalongkorn University

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

การแบ่งปันความรู้ในขั้นตอนวิธีเชิงพนัธุกรรมอยา่งยอ่แบบมีส่วนร่วม

น.ส.อรกญัญา เกตุรัตนกุล

วิทยานิพนธน้ี์เป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบณัฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลยั
ปีการศึกษา 2561

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวิทยาลยั

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

Thesis Title KNOWLEDGE SHARING IN

COOPERATIVE COMPACT GENETIC

ALGORITHM

By Miss Orakanya Gateratanakul
Field of Study Computer Engineering

Thesis Advisor Professor PRABHAS

CHONGSTITVATANA, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn

University in Partial Fulfillment of the Requirement for the
Master of Engineering

 Dean of the Faculty of

Engineering

 (Professor SUPOT

TEACHAVORASINSKUN, Ph.D.)

THESIS COMMITTEE

 Chairman

 (Associate Professor SETHA PAN-

NGUM, Ph.D.)

 Thesis Advisor

 (Professor PRABHAS

CHONGSTITVATANA, Ph.D.)

 External Examiner

 (Associate Professor Worasait Suwannik,

Ph.D.)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 iii

ABSTRACT (THAI) อรกญัญา เกตุรัตนกุล : การแบ่งปันความรู้ในขั้นตอนวิธีเชิงพนัธุกรรมอยา่งยอ่แบบมีส่วนร่วม. (

KNOWLEDGE SHARING IN COOPERATIVE COMPACT

GENETIC ALGORITHM) อ.ที่ปรึกษาหลกั : ศ. ดร.ประภาส จงสถิตยว์ฒันา

อลักอริทึมขั้นตอนวิธีเชิงพนัธุกรรมอย่างย่อแบบมีส่วนร่วมนั้ นมาจากอัลกอริทึมขั้นตอนวิธีเชิง
พนัธุกรรมที่ประชากรแทนด้วยเวกเตอร์ความน่าจะเป็น เพื่อพฒันาความสามารถในการคน้หาค าตอบและ
หลีกเลี่ยงค าตอบเฉพาะท่ีดงันั้นการท างานแบบขนานจึงถูกใช้เม่ือโพรเซสหลายโพรเซสท างานพร้อมกัน

เน่ืองจากการท างานไปพร้อมกนัของโพรเซสหลายโพรเซสการแบ่งปันขอ้มูลจึงเป็นส่ิงจ าเป็น โดยโพรเซสจะ
มีการแบ่งปันขอ้มูลกนัเป็นระยะ ทั้งน้ีเพื่อจะหลีกหนีจากค าตอบเฉพาะท่ีการรีสตาร์ทจึงถูกน าเสนอ ซ่ึงการ
ทดลองเปรียบเทียบอัลกอริทึมที่น าเสนอกบัอีกสองอลักอริทึมโดยใช้ ปัญหาการเดินทางของพนักงานขาย
ปัญหาการบรรจุผลิตภณัฑ ์ปัญหาผลรวมของสับเซต และปัญหาถุงกระสอบ ผลการทดลองพบว่าอลักอริทึมน่ี
น าเสนอมีประสิทธิภาพในการคน้หาค าตอบไดดี้กว่าอีกสองอลักอริทึมที่เปรียบเทียบ การวิเคราะห์ของการเกิด
รีสตาร์ทแสดงใหเ้ห็นถึงพฤติกรรมของอลักอริทึมที่ถูกน าเสนอ

สาขาวิชา วิศวกรรมคอมพิวเตอร์ ลายมือช่ือนิสิต
..

ปีการศึกษา 2561 ลายมือช่ือ อ.ที่ปรึกษาหลกั
..............................

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 iv

ABSTRACT (ENGL ISH) # # 6070372621 : MAJOR COMPUTER ENGINEERING

KEYWO

RD:

compact genetic algorithm, local optima

 Orakanya Gateratanakul : KNOWLEDGE SHARING IN

COOPERATIVE COMPACT GENETIC ALGORITHM .

Advisor: Prof. PRABHAS CHONGSTITVATANA, Ph.D.

The compact genetic algorithm is derived from the genetic

algorithm in which the population is represented by the probabilistic

vector. To improve the search capability and avoiding local minima,

parallelization has been employed where many search processes are

deployed concurrently. In order to coordinate the work of multiple

processes, knowledge sharing is necessary. Multiple processes share

their probabilistic vectors partially. To escape from local minima the

restart step is introduced. The experiment compares the proposed

algorithm with two other competitive algorithms using Traveling

Salesman problem, Bin Packing problem, Subset Sum problem, and

Knapsack problem. The results show that the proposed algorithm is

more efficient in finding solutions than the competing algorithms. The

detailed analysis of the restart step provides insight into the behaviour

of the proposed algorithm.

Field of

Study:

Computer Engineering Student's Signature

...............................

Academic

Year:

2018 Advisor's Signature

..............................

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 v

ACKNOWLEDGEM ENT S

ACKNOWLEDGEMENTS

Foremost, I would like to express the deepest appreciation to my

thesis advisor (Professor Prabhas Chongstitvatana, Ph.D.). This research

can be achieved because of supports and advises from Professor Prabhas

Chongstitvatana, Ph.D. All encouragement, inspiration, and guidelines I

have received during the period of studying have supported me to pass

through many obstacles.

Secondly, I would like to thank the thesis committees for their

insightful comments and encouragement, but also for the hard question

which incented me to widen my research from various perspectives.

Thirdly, I would like to thank all members of Intelligent Systems

Laboratory (ISL) including friends from the department of computer

engineering for all supports and I received many good friendships

throughout my studies.

Last but not least, I would like to express my gratitude to my family

that always stay beside me and give me a lot of love and encouragement

Orakanya Gateratanakul

3

8
7

8
7

6
5

1
9

0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

TABLE OF CONTENTS

 Page

 ... iii

ABSTRACT (THAI) .. iii

 ... iv

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES ... xii

Chapter 1 Introduction ... 1

1.1. Background ... 1

1.1.1. Motivation ... 1

1.1.2. Problem statement ... 2

1.1.3. Scope .. 2

1.2. Objectives ... 3

Chapter 2 Literature Reviews... 4

2.1. Concept and Theory... 6

2.1.1. Genetic algorithm (GA) [2] ... 6

2.1.2. Parallel Genetic algorithm ... 7

2.1.3. Compact genetic algorithm (cGA) ... 8

2.1.4. Simulated Annealing (SA) ... 9

2.1.5. Traveling Salesman Problem ... 10

2.1.6. Bin Packing Problem ... 11

2.1.7. Knapsack Problem ... 12

2.1.8. Subset Sum Problem .. 13

2.2. Related works .. 13

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 vii

2.2.1. Simple mechanisms for escaping from local optima 13

2.2.1.1. Restart ... 13

2.2.1.2. Non-improving steps ... 13

2.2.2. Problems with Genetic algorithm and some heuristic algorithms 14

2.2.2.1. Traveling Salesman Problem 14

2.2.2.2. Bin Packing Problem ... 15

2.2.2.3. Knapsack Problem ... 16

2.2.2.4. Subset Sum Problem .. 17

2.2.3. Parallel Compact genetic algorithm ... 17

2.2.3.1. The Cooperative Compact Genetic Algorithm (CoCGA)

 17

2.2.3.2. Massive parallelization of the compact genetic algorithm

 18

2.3. Contribution .. 20

Chapter 3 Material and Methodology ... 21

3.1. The definition of attributes and Setting/Test Data .. 23

3.1.1. The definition of attributes... 23

3.1.2. Setting Data (Test) ... 24

3.1.2.1. Traveling Salesman Problem 24

3.1.2.2. Bin Packing Problem ... 24

3.1.2.3. Knapsack Problem ... 24

3.1.2.4. Subset Sum Problem .. 24

3.2. Phase I: Design cGa for Test data .. 25

3.2.1. Traveling Salesman Problem ... 25

3.2.2. Bin Packing Problem ... 25

3.2.3. Knapsack Problem ... 26

3.2.4. Subset Sum Problem .. 26

3.3. Phase II: Implement and test Massive parallelization of the compact genetic

algorithm and Cooperative Compact Genetic Algorithm (CoCGA) with the test

data 27

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 viii

3.3.1. Massive parallelization of the compact genetic algorithm 27

3.3.1.1. Normal cGA node.. 27

3.3.1.2. Master node ... 28

3.3.2. A Cooperative Approach to Compact Genetic Algorithm

(CoCGA) .. 29

3.3.2.1. Normal cGA node (Normal CoCGA) 29

3.3.2.2. Leader node ... 30

3.4. Phase III: Implement the cooperative compact genetic algorithm 31

3.4.1. Restart half way ... 31

3.4.2. Restart to the origin ... 32

3.5. Evaluation ... 33

Chapter 4 Results and discussion ... 34

4.1. The description of the result tables and the summary chart............................. 35

4.2. Phase II ... 36

4.2.1. Traveling Salesman Problem (TSP) ... 36

4.2.2. Bin Packing Problem ... 41

4.2.3. Knapsack Problem ... 43

4.2.4. Subset Sum Problem .. 44

4.3. Phase III .. 46

4.3.1. Traveling Salesman Problem (TSP) ... 46

4.3.2. Bin Packing Problem ... 51

4.3.3. Knapsack Problem ... 52

4.3.4. Subset Sum Problem .. 53

4.4. Results Summary ... 55

4.5. Analysis .. 55

Chapter 5 Conclusion .. 64

5.1. Conclusion .. 65

5.2. Future works.. 66

REFERENCES .. 67

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 ix

APPENDIX ... 69

VITA ... 71

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

LIST OF TABLES

 Page

Table 2.1: The example of the initialized probabilistic vector.................................... 8

Table 2.2: The adjacency matrix showing the example of the input distances of the

traveling salesman problem ... 11

Table 3.1: The definition of attributes ... 23

Table 4.1: The performance on the traveling salesman problem (11 cities) by using

the Massive parallelization of the compact genetic algorithm 37

Table 4.2: The performance on the traveling salesman problem (11 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA) ... 38

Table 4.3 The performance on the traveling salesman problem (15 cities) by using the

Massive parallelization of the compact genetic algorithm .. 39

Table 4.4: : The performance on the traveling salesman problem (15 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA) ... 39

Table 4.5: The performance on the traveling salesman problem (17 cities) by using

the Massive parallelization of the compact genetic algorithm 40

Table 4.6: : The performance on the traveling salesman problem (17 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA) ... 41

Table 4.7: The performance on the bin-packing problem by using the Massive

parallelization of the compact genetic algorithm .. 42

Table 4.8: : The performance on the bin-packing problem by using the Cooperative

Compact Genetic Algorithm (CoCGA) .. 42

Table 4.9: The performance on the knapsack problem by using the Massive

parallelization of the compact genetic algorithm .. 43

Table 4.10: The performance on the knapsack problem by using the Cooperative

Compact Genetic Algorithm (CoCGA) .. 44

Table 4.11: The performance on the subset sum problem by using the Massive

parallelization of the compact genetic algorithm .. 45

Table 4.12: The performance on the subset sum problem by using the Cooperative

Compact Genetic Algorithm (CoCGA) .. 45

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 xi

Table 4.13: The performance on the traveling salesman problem (11 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm) 46

Table 4.14: The performance on the traveling salesman problem (11 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm) 48

Table 4.15: The performance on the traveling salesman problem (17 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm) 49

Table 4.16: The performance on the bin-packing problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm) 51

Table 4.17: The performance on the knapsack problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm) 52

Table 4.18: The performance on the subset sum problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm) 54

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

LIST OF FIGURES

 Page

Figure 2.1: An overview of literature reviews ... 5

Figure 2.2: Pseudocode of Genetic Algorithm ... 7

Figure 2.3: Pseudocode of Compact Genetic Algorithm [5] 9

Figure 2.4: Pseudocode of Simulated Annealing [17] .. 10

Figure 2.5: Pseudocode of Compact Genetic Algorithm for Traveling Salesman

Problem [29].. 15

Figure 2.6: The structure of A Cooperative Approach to Compact Genetic Algorithm

(CoCGA) ... 18

Figure 2.7: The structure of the Massive parallelization of the compact genetic

algorithm [33] .. 19

Figure 3.1: Flow chart of Material and Methodology .. 22

Figure 3.2: Pseudocode of Massive parallelization of the compact genetic algorithm

(Normal cGA node) ... 28

Figure 3.3: Pseudocode of Massive parallelization of the compact genetic algorithm

(Master node) .. 29

Figure 3.4: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm

for Evolvable Hardware (Normal CoCGA node) [32] .. 30

Figure 3.5: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm

for Evolvable Hardware (Leader node) [32] ... 30

Figure 3.6: Pseudocode of A Cooperative Compact Genetic Algorithm (SA-step I) 31

Figure 3.7: Pseudocode of the Sharing Knowledge Compact Genetic Algorithm

(Master node) .. 32

Figure 4.1: The description of the result tables .. 35

Figure 4.2: The description of the summary chart ... 36

Figure 4.3: A bar chart shows the comparison of the results from the three algorithms

on the traveling salesman problem (11 cities)... 47

Figure 4.4: A bar chart shows the comparison of the results from the three algorithms

on the traveling salesman problem (15 cities)... 49

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 xiii

Figure 4.5: A bar chart shows the comparison of the results from the three algorithms

on the traveling salesman problem (17 cities)... 50

Figure 4.6: A bar chart shows the comparison of the results from the three algorithms

on the bin-packing problem ... 52

Figure 4.7: A bar chart shows the comparison of the results from the three algorithms

on the knapsack problem ... 53

Figure 4.8: A bar chart shows the comparison of the results from the three algorithms

on the subset sum problem ... 54

Figure 4.9: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(11 cities) for ten rounds 58

Figure 4.10: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(15 cities) for ten rounds 59

Figure 4.11: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(17 cities) for ten rounds 60

Figure 4.12: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the bin-packing problem for ten rounds .. 61

Figure 4.13: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the knapsack problem for ten rounds .. 62

Figure 4.14: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the subset sum problem for ten rounds .. 63

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 1

Chapter 1 Introduction

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

1.1. Background

1.1.1. Motivation

In the present days, there are many groups of problems that are difficult to solve

because complexity is high and time required to solve these problems increases very

quickly as the sizes of the problems grow[1]. As a result, the evolutionary algorithms

have been developed and designed to fix these problems and one of the most popular

evolutionary algorithms is the genetic algorithm [2, 3] due to its efficient ability to

precisely search the best answers.

However, the genetic algorithm still cannot avoid premature convergence leading

to it being stuck in local optima [4]. These issues are the general problems in

evolutionary algorithms. In addition, although the genetic algorithm is an effective

algorithm, there is a major problem with the size of memories used to keep the whole

possible solution or solution space [5].

Consequently, the compact genetic algorithm is an interesting algorithm that can

reduce the size of memories by using probabilistic vector instead of collecting all

possible solutions. Moreover, the compact genetic algorithm is also equivalent to the

simple genetic algorithm with uniform crossover [5].

As the premature convergence still cannot be prevented in the compact genetic

algorithm, parallelization is widely used to support the problems. In addition to the

parallelization, the probabilistic vector of the compact genetic algorithm has an

important advantage that affects the process of exploring solution space in the

paralleled method [6].

This research focuses on designing a new algorithm supporting paralleled works in

the compact genetic algorithm emphasizing on migration processes of some specific

variables. We are also interested in studying the process of searching the high-quality

solutions in search space. In detailed, we will use traveling salesman problem [7], bin

packing problem [8], knapsack problem [9] and subset sum problem [10] in the

experiment because they are in the group of the challenging problems. Their

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 2

complexity are quite high due to the variety of the high-quality solutions and long time

required to find the best solution.

1.1.2. Problem statement

The compact genetic algorithm is one of the effective heuristic search

algorithms to solve many challenging problems. However, there are some hard

problems that the compact genetic algorithm cannot solve them effectively. Because

of the highly deceptive local optima, it is inevitable to getting stuck in the local

optima. Moreover, it is very complicated to escape from local optima. Although the

parallelization is used to improve the performance of many algorithms, it cannot

completely prevent getting trapped in local optima. Thus, the purposes of this research

are to design and improve the mechanism for the parallelization of the compact

genetic algorithm to escape from the local optima and focus on the migration process

of some specific data to increase the performance of the compact genetic algorithm

and avoid premature convergence problem.

1.1.3. Scope

- Interested in migration methods and migrated parameters.

- Use Traveling salesman problem (11, 15, 17 cities), bin packing problem (50

items), knapsack problem (maximum of 200 items) and subset sum problem

(maximum of 21 numbers) in the experiment

- Network issues are not concerned because all algorithms are tested on one

computer.

- The number of iterations executed by a cGA node must not exceed 200,000

iterations.

- The numbers of iterations executed and the percentage errors are used to

measure the performance.

- The runtime of iterations is not concerned.

- The experiment has one master node and four slave nodes

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 3

1.2. Objectives

The objective of the research is to improve the existing parallel compact genetic

algorithm to escape from local optima and increase the performance by focusing on

the shared parameters and the sharing mechanism.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 4

Chapter 2 Literature

Reviews

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 5

Figure 2.1: An overview of literature reviews

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 6

2.1. Concept and Theory

2.1.1. Genetic algorithm (GA) [2]

Genetic algorithm is a search algorithm inspired by natural evolution. The

main idea is to improve a set of solutions called population instead of only one

solution. To initialize a population in GA, it starts from a set of random possible

solutions to keep diversity. Moreover, the diversity of the population must be

concerned, and the size of the population must be large enough to find the best result

efficiently but not too large to slow down the GA. Then, in each iteration, some

solutions in the set will be replaced by their children which are produced by some

rules. Moreover, the algorithm produces offspring in the next generation by three

main operations; selection, mutation, and crossover.

 For selection, it is the first step to produce offspring by selecting a set of

expected high-quality solutions from the current population. There are many ways of

parent selections. For example, Fitness Proportionate Selection -- exploit fitness

scores of each solution in population to indicate the chances to be selected,

Tournament Selection -- randomly select some solutions from population and choose

the best one, Rank Selection -- choose solutions from the population by the rank of

their fitness scores, and Random Selection.

 For Mutation, its idea is based on simple random change a solution. Mutation

maintains the diversity in the solution pool and prevent premature convergence. It

makes change or flip values of some fragments of a solution.

 Crossover exchanging parts between two solutions by swapping of some bits

with randomly choosing crossover points.

 To update the population, all possible solutions in the current generation will

be evaluated by the fitness function to calculate how good they are and give scores to

them. Furthermore, the diversity of the population should be maintained. There are

also many ways to update the population such as replacing all population by solutions

from the next generation, replacing the solutions that have the worst scores by the

solutions from the next generation, etc.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 7

Algorithm: Genetic Algorithm

 1: Inputs: L is chromosome Length, N is population size

 2: Initialize: population = Generate_population(N, L), fitness =

Fitness_function(individual)

 3: Repeat

 4: Parents = Parent_Selection(population)

 5: Offspring = CrossOver(Parents)

 6: Offspring = Mutaion(Offspring)

 7: Fitness_Offspring = Fitness_function(Offspring)

 8: Update Population

 9: Find current best solution

11: Until termination criteria are reached

12: Outputs: best solution

Figure 2.2: Pseudocode of Genetic Algorithm

2.1.2. Parallel Genetic algorithm

A parallel genetic algorithm is a group of the genetic algorithm that cooperates

with each other to discover the high-quality solutions. There are many types of the

parallel genetic algorithm such as master-slave, fine-grained and coarse-grained

[11],[12]. In the master-slave model, Master has duties to control and share data to all

slaves, while slaves have the same duties. For example, Master controls parent

selection and fitness assignment, and Slaves receive a set of solution and do the

remaining steps of GA. In Coarse-grained or island model, the population is divided

into subpopulations as the initial population of each island. Each island runs a genetic

algorithm and sometimes share some data to other islands. In Fine-grained model,

there is only one population, however, it has special structure for each node to only

share data to its neighbors. Considering cooperation among nodes, we can clearly

divide these groups into two types, non-migration, and migration. Moreover, in the

migration process, there are many significant factors that should be carefully

considered such as migration size, migration topology, migration frequency and

migration strategies [13]

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 8

2.1.3. Compact genetic algorithm (cGA)

The compact genetic algorithm is proposed by Harik, Lobo, and Goldberg [5].

The main idea of the compact genetic algorithm is similar to the concept of the

genetic algorithm and also proved that it is equivalent to the simple genetic algorithm

with single point crossover. In detailed, the compact genetic algorithm attempts to

search for high-quality solutions in the group of all possible solution or called solution

space by imitating natural evolution. Firstly, a probabilistic vector is defined to

represent the solution space. The size of the probabilistic vector indicates the number

of bits required to represent a solution.

For example [14]:

Square roots problem:

Input: Given a real number

Output: Square roots of the input

Probabilistic vector: size of 30

Table 2.1: The example of the initialized probabilistic vector

From the example above, the easiest way is to define a real number by binary

digits 1 and 0. A method suggested that 30 bits (the size of the vector is 30) are

divided into two parts equally, so the best number we can represent is a 215 integer

(32768) with a decimal precision o f 2 15. To illustrate, 000000000000011

110000000000000, 000000000000011 is the sum of 20 and 21 which is equal to 3 and

110 000 00 000 00 00 is the sum o f 2 -1 and 2 -2 w hich is equ al to 0 .7 5 , so

000000000000011 110000000000000 represents 3.75. In addition, Each element of

the probabilistic vector can possibly be a real number in the range to 0 to 1 because

each element of the probabilistic vector means the probability that the i-th bit will be

1. After designing the probabilistic vector, the process begins with initializing values

to the vector using a various method such as uniform distribution that all elements in

the vector are set to 0.5. Then, a group of numbers or called individuals are sampling

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 9

from the probabilistic vector. After that, two individuals will be evaluated its quality

or called score by a function called fitness function which is designed depending on

problems. In the case of square roots, the fitness function can be the difference

between the power of two of an individual and the input number, so the less the

difference is, the higher quality the individual has. Two individuals will compete with

each other to find winners and losers which will be used for updating the probabilistic

vector. To update the probabilistic vector, each position of the losers and the winners

will be considered. If they are not equal, the probability of the vector in that position

will be increased or decreased following the winner. All of these steps will be

repeated until finding individuals that their scores are satisfactory.

Algorithm: Compact Genetic Algorithm

 1: Inputs: L is chromosome Length, N is population size

 2: Initialize: Prob_vector = Generate_vector(),

 3: a = Generate_candidate(Prob_vector),

 4: b = Generate_candidate(Prob_vector)

 5: Repeat

 6: winner, loser = evaluate(Fitness_function(a), Fitness_function(b))

 7: For i = 1 to L Do // Update probabilistic vector

 8: If winner[i] != 1 Then Prob_vector[i] = Prob_vector[i] + 1/N

 9: Else Prob_vector[i] = Prob_vector[i] - 1/N

10: Find current best solution

11: Until termination criteria are reached

12: Outputs: best solution

Figure 2.3: Pseudocode of Compact Genetic Algorithm [5]

2.1.4. Simulated Annealing (SA)

Simulated annealing is an optimizing algorithm proposed by Kickpatrick,

Gelett, and Vecchi (1983) [15] and Cerny (1985) [16]. The idea of the algorithm is

inspired by the cooling process of forging metals that atoms in metals move

unpredictably in high temperature. In the simulated annealing algorithm, in each

temperature that is decreasing, it searched neighboring solution of the current

solution. In the case that the neighboring solutions are better, they will always be

accepted. However, if the neighboring solutions are worse, it may be accepted

according to the current temperature-dependent probability given by

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 10

𝑃𝑇 = {
1 𝑖𝑓 𝐶𝑜𝑠𝑡(𝑥𝑖) ≤ 𝐶𝑜𝑠𝑡(𝑥𝑗)

𝑒
−(𝐶𝑜𝑠𝑡(𝑥𝑖)−𝐶𝑜𝑠𝑡(𝑥𝑗))

𝑇 𝑖𝑓 𝐶𝑜𝑠𝑡(𝑥𝑖) > 𝐶𝑜𝑠𝑡(𝑥𝑗)

 Where T is the current temperature, 𝑥𝑖 is the current solution,

𝑥𝑗 is neighboring solutions

Algorithm: Simulated Annealing

1: Inputs: Problem_size, iterationsmax, tempmax

2: Initialize: Scurrent = CreateInitialSolution(Problem_size), Sbest = Scurrent

3: Repeat i = 0 to iterationsmax

4: Si = createNeighborSolution(Scurrent)

5: tempcurr = CalculateTempurature(i, tempmax)

6: If(Cost(Si) <= Cost(Scurrent))

7: Scurrent = Si

8: If(Cost(Si) <= Cost(Sbest))

9: Sbest = Si

10: End

11: Elseif(Exp((Cost(Scurrent- Cost(Si)))/tempcurr) > Rand())

12: Scurrent = Si

13: End

12: Outputs: Sbest

Figure 2.4: Pseudocode of Simulated Annealing [17]

2.1.5. Traveling Salesman Problem

Traveling Salesman Problem (TSP) is a difficult problem. It consists of cities

and a salesman. The problem is to find the shortest path that the salesman can visit all

cities just once and come back to the first city [7].

For example [18]:

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 11

Input :

cities = {A, B, C, D, E}

distances =

Table 2.2: The adjacency matrix showing the example of the input distances of the

traveling salesman problem

Cities A B C D E

A 0 2 0 12 5

B 2 0 4 8 0

C 0 4 0 3 3

D 12 8 3 0 10

E 5 0 3 10 0

To find a path of the problem is equivalent to find a Hamiltonian cycle which is NP-

complete. For example, path {A, B, C, D, E, A} is a total length of 24

2.1.6. Bin Packing Problem

Bin packing problem is an NP-hard problem which is to find the minimum

number of bins of fixed capacity that can contain all items having various weights.

Formally, given n item types with weights W = {𝑤1,..., 𝑤𝑛}. There is the unlimited

number of bins of fixed capacity c. The problem is [19], [20]

Minimize k where k is the number of bins used to contain all items

Subject to

 ∑ 𝑐𝑘
𝑖=1 ≤ ∑ ∑ 𝑥𝑖𝑗𝑤𝑗

𝑛
𝑗=1

𝑘
𝑖=1 where 𝑥𝑖𝑗 = 1 if bin i contains item j,

otherwise 𝑥𝑖𝑗 = 0

 ∑ 𝑥𝑖𝑗
𝑘
𝑗=1 = 0 𝑜𝑟 1 and ∀𝑤𝑗 ≤ 𝑐 where 𝑤𝑗 ∈ 𝑊

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 12

For example [18] :

 Input:

Weight W = {4, 8, 1, 4, 2, 1}

 Bin Capacity c = 10

Output: 2

First bin = {4, 4, 2} and second bin = {8, 1, 1}

2.1.7. Knapsack Problem

Knapsack problem is a NP-hard problem that fills the knapsack with items

chosen from n items with various weights and values in order to get the highest sum

of values or profits without exceeding the weight capacity of the knapsack. Formally,

it is given n items with weights W = {𝑤1,..., 𝑤𝑛} and values V = {𝑣1,..., 𝑣𝑛} and

assumed that all of them are positive integers. X = {𝑥1,..., 𝑥𝑛} shows which items are

chosen and maximize the sum of profit without crossing the capacity c. 𝑥𝑖 = 1 if item i

is chosen, otherwise 𝑥𝑖 = 0. The problem is [21]

Maximize ∑ 𝑥𝑖
𝑛
𝑖=1 𝑣1

Subject to

 ∑ 𝑥𝑖
𝑛
𝑖=1 𝑤𝑖 ≤ 𝑐

For example [22]:

 Input:

 Value V = {60, 100, 120}

 Weight W = {10, 20, 30}

 Knapsack capacity c = 50

 Output: 220

Solution = {10} , sum of value = 60 ; Solution = {20} , sum of value = 100

Solution = {30} , sum of value = 120 ; Solution = {20, 10} , sum of value = 160

Solution = {30, 10} , sum of value = 180 ; Solution = {30, 20} , sum of value = 220

Solution = {30, 20, 10} > 50

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 13

2.1.8. Subset Sum Problem

In subset sum problem, a set of numbers S = {𝑠1, … , 𝑠𝑛} and a fixed number c

are given. The problem is to find a subset of the given set and its sum is closest to the

fixed number without exceeding it. Formally [23],

Maximize ∑ 𝑥𝑖
𝑛
𝑖=1 𝑠𝑖

Subject to

 ∑ 𝑥𝑖
𝑛
𝑖=1 𝑠𝑖 ≤ 𝑐 , 𝑥𝑖 ∈ {0,1} where 𝑥𝑖 = 1 if the ith

number is chosen, otherwise 𝑥𝑖 = 0

For example [24]:

 Input:

 S = {3, 34, 4, 12, 5, 2}

 c = 9

 Output: {4, 5}

2.2. Related works

2.2.1. Simple mechanisms for escaping from local optima

2.2.1.1. Restart

Restart is a simple and straightforward way to escape from local optima by

reinitializing search process when it gets stuck in a local optimum. While it works

effectively in the case that the number of local optima is not high and the cost of

restarting is low, in other cases, it may not be suitable [25], [26], [27].

2.2.1.2. Non-improving steps

Non-improving step is another simple way to escape from local optima. The

idea is to allow choosing neighboring solutions when a local optimum is encountered.

There are many ways to choose neighboring solutions such as a random selection

from all neighbors (uninformed Random Walk step) or from all neighbors that have

the lowest increase (mildest ascent step). The example of the algorithms that use this

mechanism is the stimulated annealing [25],[28].

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 14

2.2.2. Problems with Genetic algorithm and some heuristic algorithms

2.2.2.1. Traveling Salesman Problem

A Hybrid Heuristic for the Traveling Salesman Problem is proposed by R.

Baraglia, J.I. Hidalgo, and R. Perego. [29] It is the combination of compact genetic

algorithm and the Lin-Kernighan local search. For the compact genetic algorithm, the

initialized probabilistic matrix of i*i, where i is the number of the input cities, is

assigned by EL model. The concept is to assign high probability to short edges by the

following equation:

𝑝𝑖,𝑗 = {

 0 𝑖𝑓 𝑖 = 𝑗

𝐿𝑖̅ − 𝑑(𝑐𝑖, 𝑐𝑗)

𝐿𝑖̅ − 𝑙𝑖̅

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝐿𝑖̅ = 𝑚𝑎𝑥 {𝑑(𝑐𝑖 , 𝑐𝑗): 𝑗 ∈ {1,2,… , 𝑖 − 1}},

 𝑙𝑖̅ = 𝑚𝑖𝑛 {𝑑(𝑐𝑖 , 𝑐𝑗): 𝑗 ∈ {1,2,… , 𝑖 − 1}}

And 𝑑(𝑐𝑖, 𝑐𝑗) = distance from i-th city to j-th city

To generate a solution, the first visited city is randomly chosen, while the

other is selected by the ranks of their probabilities as the first priority and distances

from the currently selected city.

To update the probabilistic matrix, two solutions are considered which one has

a higher score (winner). The idea is to update the probabilistic matrix by following the

winner and escaping from the loser according to the equation:

𝑝𝑖,𝑗
𝑘+1

=

{

 𝑝𝑖,𝑗

𝑘 +
1

𝑛
 𝑖𝑓 ((𝑐𝑖 , 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖) ∈ 𝑤𝑖𝑛𝑛𝑒𝑟) 𝑎𝑛𝑑 ((𝑐𝑖, 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖) ∉ 𝑙𝑜𝑠𝑒𝑟)

𝑝𝑖,𝑗
𝑘 −

1

𝑛
 𝑖𝑓 ((𝑐𝑖, 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖) ∉ 𝑤𝑖𝑛𝑛𝑒𝑟) 𝑎𝑛𝑑 ((𝑐𝑖 , 𝑐𝑗) 𝑜𝑟 (𝑐𝑗 , 𝑐𝑖) ∈ 𝑙𝑜𝑠𝑒𝑟)

𝑝𝑖,𝑗
𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑝𝑖,𝑗
𝑘 = the probability of i-th city to j-th city in the k-th iteration

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 15

Algorithm: Compact Genetic Algorithm for Traveling Salesman Problem

 1: Inputs: L is chromosome Length, N is population size

 2: Initialize: Prob_vector = Generate_vector(), F_best = INT_MAX

 4: Repeat

 5: S[1] = Generate_candidate(Prob_vector)

 6: F[1] = Tour_Length(S[1])

 7: idx_best = 1

 8: For k = 2 to s do

 9: S[k] = Generate_candidate(Prob_vector)

10: F[k] = Tour_Length(S[k])

11: If (F[k] < F[idx_best]): idx_best = k

12: For k = 1 to s do

13: If (F[idx_best] < F[k]) then Update(Prob_vec,S[idx_best],S[i])

14: If (F[idx_best] < F_best) :

15: count = 0;

16: F_best = F[idx_best];

17: S_best = S[idx_best];

18: Else

19: Update(Prob_vec, S_best, S[idx_best]);

20: count = count + 1;

21: end if

22:

23: Until Convergence(Prob_vec) OR count > CONV_LIMIT

24: Outputs: S_best, F_best

Figure 2.5: Pseudocode of Compact Genetic Algorithm for Traveling Salesman

Problem [29]

2.2.2.2. Bin Packing Problem

Junkerneier proposed how to apply a genetic algorithm to the Bin Packing

problem [19]. The concept is to randomly generate solutions and use the First-fit

algorithm as the fitness function to calculate their scores. Given a set of numbers (the

weights of items) and the fixed capacity of bins. First, it starts by randomly generate

permutations of the same size as the set of numbers. Each permutation represents the

index of the items that will be considered by the First-fit algorithm. Then, the First-Fit

algorithm is applied to all permutations in the population. The First-Fit algorithm

considers each item according to the order of indexes in the permutation. Because

bins are also ordered by the time they are initialized, Items are assigned to the first bin

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 16

that fits. If there are no current bins can fit the item, the new bin is initialized. The

scores are the number of initialized bins, the less the better. Here is an example:

A solution in population = {4,5,6,3,9,2}, Bin_capacity = 13

Bin1 = {4}

Bin1 = {4,5}

Bin1 = {4,5}, Bin2 = {6}

Bin1 = {4,5,3}, Bin2 = {6}

Bin1 = {4,5,3}, Bin2 = {6}, Bin3 = {9}

Bin1 = {4,5,3}, Bin2 = {6,2}, Bin3 = {9}

For the parent selection, it uses the tournament selection. In the crossover step,

it uses two parents to create an offspring by copying elements in the parents ordered

from the first to the last one and from either of the parents alternatively. Next, the

genetic algorithm randomly swaps two elements in a solution for the mutation step.

To update the population, all solutions in the population will be replaced by all

current offspring.

2.2.2.3. Knapsack Problem

For knapsack problem, Ken-Li li, Guang-Ming Dau and Qing-Hua Li

proposed a genetic algorithm for the unbounded knapsack [22]. P.C. chu and J.E.

Beasley proposed a genetic algorithm for the multidimensional knapsack [30]. Both of

them use the total profits as scores for each solution. They use n-bit string, where n is

the number of input items, to represent each solution (1 means selected item).

To generate and repair infeasible solutions from the mutation and crossover

steps, they use Repair-operator to fix the infeasible solutions by deleting some

selected items from the solutions and adding some items that should increase the total

profits to the solutions according to the proportion of each item's profits and weights

under the rule of not exceeding the bin capacity. For parent selection, mutation and

crossover steps, they both use the same algorithms which are the tournament selection

for parent selection, random bits converting from 0 to 1 and 1 to 0 for mutation and

random copying elements from two parents for crossover.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 17

2.2.2.4. Subset Sum Problem

For the subset sum problem, Rong Long Wang proposed a genetic algorithm

to solve the subset sum problem [31]. The 0-1 vector was used to represent the

solutions with the condition that the total sum of the selected numbers must not

exceed the fixed value. Moreover, the following equation was used as the fitness

function.

Fitness function f(x) = 𝑘 × (𝐶 − 𝐴(𝑥)) + (1 − 𝑘) × 𝐴(𝑥)

 Where 𝐴(𝑥) = ∑ 𝑥𝑖𝑠𝑖
𝑛
𝑖=1 , x is a candidate, C is the fixed value, and k = 1 if

and only if (𝐶 − 𝐴(𝑥)) ≥ 0, otherwise k = 0.

For other operations like parent selection, crossover, and mutation, the

processes were not different much, but the proposed algorithm used the proportion of

the length of solutions and the number of the different genes of each pair of parent

chromosome to control these operations.

2.2.3. Parallel Compact genetic algorithm

In theory, the compact genetic algorithm is equivalent to the genetic algorithm

with crossover. Moreover, the compact genetic algorithm which uses the probabilistic

vector instead of the collection of the whole populations will offer the alternative way

to share the probabilistic vector which can affect to performance. There are two

examples that use this alternative method to solve problems.

2.2.3.1. The Cooperative Compact Genetic Algorithm (CoCGA)

The first example is the Cooperative Approach to Compact Genetic

Algorithm [32], this algorithm uses the cellular model. In detail, there are two types of

nodes, the leader as a center, and the normal CoCGA are neighbours (4 cells). A

variable called confidence counter (cc) is used to consider which probabilistic vector

of each normal node will be updated to the probabilistic vector of the leader node.

When all confidence counters of CoCGA around a leader are updated, the leader will

choose the probabilistic vector from a CoCGA that has the highest confidence count

at that time and then broadcast to the other CoCGA around it to update their

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 18

probabilistic vectors. The result shows that the CoCGA with two normal nodes and

one leader is at least three times better than a single compact genetic algorithm in

term of execution time.

Figure 2.6: The structure of A Cooperative Approach to Compact Genetic Algorithm

(CoCGA)

2.2.3.2. Massive parallelization of the compact genetic algorithm

The second example is that Lobo, Lima, and Martires [33]. They propose a

parallel compact genetic algorithm using the master-slave model. Firstly, a

probabilistic vector of each slave will be sent to master when the number of time that

fitness function executed reaches the time interval of migration. Then, the master will

calculate probabilistic vector obtained and resend a new probabilistic vector back to

the slave. The point is that the master node may be updated many times, while a slave

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 19

is working, so it is the way for all slaves to share information with each other.

Moreover, this research measured the performance of the algorithm by counting the

number of time that the fitness function are executed and shows the comparison of the

performance with the various number of slaves and migration rates.

Figure 2.7: The structure of the Massive parallelization of the compact genetic

algorithm [33]

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 20

2.3. Contribution

This research focuses on the parallel compact genetic algorithm as to the

Massive parallelization of the compact genetic algorithm and the Cooperative

Compact Genetic Algorithm. The cooperative compact genetic algorithm is based on

master-slave but this research uses simulated annealing and restart mechanism to

escape from local optima. The simulated annealing is used to consider whether the

probabilistic vector should be restarted or not and the number of iterations executed

after the newest best solution is found is used as the temperature in the simulated

annealing algorithm. Moreover, the restart mechanism is applied to two levels. The

first level is the average the current probabilistic vector and the restart point because

to reinitialize the probabilistic vector have a high cost from restarting to search for

solutions from the beginning again. The simulated annealing is used for this level.

However, if applying restart at the first level cannot escape from local optima and find

the expected solution after k number of iterations executed by the slave, the restart is

applied to the second level. The probabilistic vector must be reinitialized to the restart

point. The experiment is different from the Massive parallelization of the compact

genetic algorithm and the Cooperative Compact Genetic Algorithm. This research

uses traveling Salesman Problem, Bin Packing Problem, Knapsack Problem, Subset

Sum Problem in the tests, while the Massive parallelization of the compact genetic

algorithm presents the experiment on a bounded deceptive function consisting of the

concatenation of 10 copies of a 3-bit trap function with the deceptive-to-optimal ratio

of 0.7 and the Cooperative Compact Genetic Algorithm uses One-Max and the De

jong test functions (F1,F2,F3) [34].

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 21

Chapter 3 Material and

Methodology

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 22

Figure 3.1: Flow chart of Material and Methodology

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 23

This chapter is about material and methodology. The process started by

choosing the setting/test data that were suitable for the experiment. From the scope of

the research, the experiment used the traveling salesman problem, bin packing

problem, knapsack problem, and subset sum problem as the setting/test data. The

compact genetic algorithm was designed for each problem to use in phase II

(Implement and test Massive parallelization of the compact genetic algorithm and the

Cooperative Compact Genetic Algorithm with the test data). In phase II, the test data

started from small input and, from the observation, the sizes of input data were

chosen. After that, the two algorithms were tested again and collected results. From

observation, the proposed algorithm was designed in phase III.

3.1. The definition of attributes and Setting/Test Data

3.1.1. The definition of attributes

Table 3.1: The definition of attributes

Attributes Definition

cGA Compact genetic algorithm node

master node/leader node The node that control all cGA nodes

around it

iteration/cc The node that control all cGA nodes

around it

count The number of iterations since the latest

finding of good solution

bin_cap Bin capacity

pop_size The number of individuals or feasible

solutions in the population generated

from the probabilistic vector/matrix

state The shared variables in the master node

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 24

3.1.2. Setting Data (Test)

3.1.2.1. Traveling Salesman Problem

The problems in the experiment has 3 sizes of cites (11, 15, and 17 cities and 5

problems per each). A problem of the 17-cities problems was from TSPLIB, a

collection of traveling salesman problem datasets maintained by Gerhard Reinelt [35].

A problem of the 15-cities problems was created by John Burkardt [36], Florida

State University and One problem of the 11-cities problems was from StackOverflow

[37]. Other problems in each group were created by transforming from the problem

in each group that was from other sources.

3.1.2.2. Bin Packing Problem

The experiment uses 4 problems of the bin packing problem from Prof. Dr.

Armin Scholl and Dr. Robert Klein [38]. All problems have 50 items with average

weight is “bin capacity/3”. The first problem has the maximum deviation of all weight

is 20 percent from the average weight, while the others has 50 percent.

3.1.2.3. Knapsack Problem

The 4 knapsack problems from Johny A. Ortega R. (Jao Ruiz) [39] are used as

the test data. The second problem is in low-dimensional group with 20 items and 878

for bin capacity. The first, the third the fourth bin capacity around 1000 but the third

one has 200 items, while the others have 100 items.

3.1.2.4. Subset Sum Problem

In the experiment, the 4 subset sum problems are used from John Burkardt,

Florida State University [40]. The first and the fourth problems are a set of 10

numbers for a target of 50. The second problem consists of 21 numbers for an

expected solution of 2463098. Then, the third one also has 10 numbers but for a target

of 5842.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 25

3.2. Phase I: Design cGa for Test data

All problems have similar structure of cGA: initialize probabilistic vector,

generate individuals, evaluate populations and update the probabilistic vector.

Solutions or individuals of each problem are different because of the different

purposes of representation. Thus, the initialization of probabilistic vector may be

different. However, the way to update the probabilistic vector is the same for all

problems. The concept is the same as the update process of normal cGA which

attempts to move searching areas torward to the winners and away from the losers by

increasing and decreasing the probability in the vector. In the case of unsuccess to

discover the expected solutions, the maximum iterations of each cGA node is 250,000

iterations

3.2.1. Traveling Salesman Problem

Initialize probabilistic vector

The algorithm uses a probabilistic matrix of size n × n instead of a

probabilistic vector of size n by defining an element in row i-th column j-th to be a

probability that city i-th will go to city j-th.

Generate individuals

A population will be generated by assigning the first city as the first visit and

then randomizing the next city that has the chance to be visited over a constant. If the

other cities have lower chances than the constant, the next city to be visited will be

randomly selected. Moreover, each city must be visited only once.

Evaluate populations

Each population is assessed by its tour length. The goal is to discover the

minimize tour length.

3.2.2. Bin Packing Problem

Initialize probabilistic vector

The probabilistic matrix initialization assigned 0.5 to each element of a matrix

of size n which n is the number of givens items. The definition of the probability is

that there are 50 percents of items i being in position j which i is a row and j is a

column of the matrix.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 26

Generate individuals

To generate a population from the probabilistic matrix, we start from

randomizing an item that must have its probability to be in the first position over a

constant. Then, for the other positions, the randomization is similar but, in the case

that there is no other item having the probability to be in the specific position more

than the constant, any of them will be randomly chosen.

Evaluate populations

To evaluate the value of a population, the fitness function for this problem is

using a heuristic algorithm called the first-fit [19] and the less its score is, the better

solution it is. In detailed, the first-fit algorithm is to attempt to sequentially put items

into a group of bins that they first fit.

3.2.3. Knapsack Problem

Initialize probabilistic vector

For the knapsack problem, 0.5 is assigned to all elements in a probabilistic

vector of size n which n is the number of items. It means that each item has 50

percents chance to be put into a knapsack with a fixed capacity.

Generate individuals

The algorithm generates populations from the probabilistic vector by

randomizing each item to put into a knapsack. Each chosen item must have higher

probabilistic than a constant. However, if the other items that can put into the

knapsack without exceeding the capacity have lower probabilities, items will be

randomly chosen to fill the knapsack as many as possible [22].

Evaluate populations

For the evaluation, the sum of profits in a knapsack is used as a score of a

population. The higher the score is, the better the population is.

3.2.4. Subset Sum Problem

Initialize probabilistic vector

 All elements of a probabilistic vector in this problem is assigned to 0.5 which

means that all number have 50 percent chances to be selected for a population.

Generate individuals

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 27

 Each population is generated by randomizing a number. A number S in the

given set will be chosen, if the randomized number is smaller than a probability of S

in the probabilistic vector.

Evaluate populations

 To evaluate a population X = {𝑥1,..., 𝑥𝑛}, a set of numbers S = {𝑠1, … , 𝑠𝑛} and

an expected value C are given. We use an equation below to calculate the population's

score [31]:

 Fitness function f(x) = 𝑘 × (𝐶 − 𝐴(𝑥)) + (1 − 𝑘) × 𝐴(𝑥)

 Where 𝐴(𝑥) = ∑ 𝑥𝑖𝑠𝑖
𝑛
𝑖=1 and k = 1 if and only if (𝐶 − 𝐴(𝑥)) ≥ 0, otherwise k

= 0

3.3. Phase II: Implement and test Massive parallelization of the compact

genetic algorithm and Cooperative Compact Genetic Algorithm

(CoCGA) with the test data

3.3.1. Massive parallelization of the compact genetic algorithm

The algorithm had master-slave topology. In this research, there were 4

normal cGA nodes with 1 master node. The performance of the algorithm was

measured by the number of iterations executed until finding the expected solution or

the number of iterations reached the maximum.

3.3.1.1. Normal cGA node

Firstly, Normal cGA nodes received the initialized probabilistic vector from

the master node. Then, the 4 cGA nodes run cGA algorithm in parallel. There were 4

main steps as to normal cGA: generate 8 individuals from the probabilistic vector,

evaluate all generated individuals and find the best individual of the current

generation, compete the best individual with the others, update the probabilistic vector

toward the best individual. For sharing data, when the number of iterations executed

after finding the latest best solution reached the time interval of migration, the

difference of the current probabilistic vector and the previous probabilistic vector was

sent to the master node. Next, the master node calculated the received data and sent

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 28

the calculated data back to the cGA node. After that, the received data from the

master node replaces the current probabilistic vector of the normal cGA.

Algorithm: Massive parallelization of the compact genetic algorithm (Normal cGA

node)

 1: Inputs: L is chromosome Length, N is population size

 2: Initialize: Prob_vector = vectormaster from Master node, iteration = 0, k = 0

 3: best_candidate = []

 4: Repeat

 5: If there is an update from Master node:

 6: Prob_vector = vectormaster from Master node

 7: Prev_vector = Prob_vector

 8: Candidates = Generate_candidate(Prob_vector, N)

 9: Scores = Fitness_function(Candidates)

10: Update Prob_vector

11: iteration++ , k++

12: diff_vector = Prob_vector - Prev_vector

13: If the best individual from Candidates is better than best_candidate :

14: best_candidate = the best individual from Candidates

15: counter = 0

16: Send iteration, diff_vector to the Master node

17: Until a cGA node discovers the expected solution or reach the limit

18: Outputs: best_candidate, iteration

Figure 3.2: Pseudocode of Massive parallelization of the compact genetic algorithm

(Normal cGA node)

3.3.1.2. Master node

Master node initialized the probabilistic vector and broadcasted to all normal

cGA nodes. The master node had its own probabilistic vector which also was

initialized with the same values as other normal cGA. When a normal cGA sent its

data to the master node, it would add the data to its probabilistic vector and then sent

the calculated variables back to the normal cGA. This was the way to share data

among normal cGA nodes because the number of iterations executed by each normal

cGA nodes reach the interval time of migration at the different points of time. Thus,

during the time a normal cGA run the normal cGA steps, the master node's

probabilistic vector might be updated by other normal cGA nodes.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 29

Algorithm: Massive parallelization of the compact genetic algorithm (Master node)

1: Inputs: diff_vectori
cGA , ki ; i = {1,2,3,4} // interrupted and sent by cGAi node

2: Initialize: vectormaster = Generate_vector()

3: Repeat

4: If ki = 8 :

5: vectormaster = vectormaster + diff_vectori
cGA

6: Send vectormaster to cGAi node

11: Until a cGA node discovers the expected solution or reach the limit

Figure 3.3: Pseudocode of Massive parallelization of the compact genetic algorithm

(Master node)

3.3.2. A Cooperative Approach to Compact Genetic Algorithm (CoCGA)

A Cooperative Approach to Compact Genetic Algorithm has cellular model

topology which master nodes must have not more than 4 normal cGA nodes in control

and normal cGA nodes must be connected with less than 5 master nodes. The main

idea was the higher number of the iterations is executed, the better the cGA node was.

Moreover, the number of iterations executed by each normal cGA node must not be

more than 250,000 iterations.

3.3.2.1. Normal cGA node (Normal CoCGA)

All cGA nodes had their own variables called confident counter (cc) which

was the number of iterations executed. However, other steps were still similar to

normal cGA. For the first step, all cGA nodes generated 8 individuals from the

initialized probabilistic vector from the master node. Then, all individuals were

evaluated by the fitness function and given scores. Next, the best individual with the

highest fitness score was competed with the others and updated the probabilistic

vector toward the best one and to escape the others. To share data, in each iteration,

each node sent its probabilistic vector and confident counter (cc) to its leader node.

Finally, it went back to the first step and so on until it discovered the expected

solutions, or the number of iterations reached the limit

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 30

Algorithm: A Cooperative Approach to Compact Genetic Algorithm for Evolvable

Hardware (Normal CoCGA node)

 1: Inputs: L is chromosome Length, N is population size

 2: Initialize: Prob_vector = vectormaster from Leader node, cc = 0,

 3: best_candidate = []

 4: Repeat

 5: If there is an update from Master node:

 6: Prob_vector = vectormaster from Master node

 7: Candidates = Generate_candidate(Prob_vector, N)

 8: Scores = Fitness_function(Candidates)

 9: Update Prob_vector

10: cc++

11: If the best individual from Candidates is better than best_candidate :

12: best_candidate = the best individual from Candidates

13: Send cc, Prob_vector to the Leader node

14: Until a cGA node discovers the expected solution or reach the limit

15: Outputs: best_candidate, cc

Figure 3.4: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm

for Evolvable Hardware (Normal CoCGA node) [32]

3.3.2.2. Leader node

The leader node received cc and probabilistic vectors from all under controlling

cGA nodes. Then, the leader node checked that all confident counters (cc) were

updated from the previous time that updating data by the leader had happened. If all

confident counters (cc) were changed, the master node chose the probabilistic vector

from the cGA node that had the highest value of the confident counters (cc) and

broadcast it to all under controlling cGA nodes. Moreover, this updated would replace

the current probabilistic vectors of the cGA nodes.

Algorithm: the Cooperative Compact Genetic Algorithm for Evolvable Hardware

(Leader node)

1: Inputs: vectori
cGA , cci ; i = {1,2,3,4} // interrupted and sent by cGAi node

2: Initialize: prev_cci = [0, 0, 0, 0], vectormaster = Generate_vector()

3: Repeat

4: vectormaster = vectormax_cc
cGA

5: boardcast to all cGA nodes

6: Until a cGA node discovers the expected solution or reach the limit

Figure 3.5: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm

for Evolvable Hardware (Leader node) [32]

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 31

3.4. Phase III: Implement the cooperative compact genetic algorithm

The algorithm was improved upon the Massive parallelization of the compact

genetic algorithm. Where the concept of sharing data is the same, the idea of

simulated annealing accepting low-qualified solutions was used to consider an

efficient sharing method. Then, if the sharing method cannot lead the current

searching area away from local optima, the restart mechanism was exploited because

it was more suitable to the probabilistic vector than a random selection from all

neighbors of the Non-improving mechanism.

3.4.1. Restart half way

The concept of restart was exploited to escape local optima. To prevent high

cost of reinitializing the probabilistic vector to restart the searching, there are two

steps to escape from local optima. Restart halfway is the first step that exploited the

idea of simulated annealing to control the sharing method. The number of iterations

executed after finding the latest best local solutions called "counter" was used as the

temperature in the equation of simulated annealing. In the simulated annealing, the

high temperature had more probability to accept the worse solutions, but for this

experiment, the lower value of the counter tended to accept the worse solutions.

Furthermore, after reinitializing the probabilistic vector, these new values

were assigned to the master node's probabilistic vector. Thus, the next sharing data,

other cGA nodes could acquire some effects from the previous restart halfway.

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (SA-step I)

 1: Inputs: counter, solutioncGA, solutionmaster

 2: Initialize: result = False

 3: Calculate: diff_val = solutioncGA - solutionmaster

 4: If diff_val < 0 or Exp(-diff_val/counter) < random():

 5: result = True // SA accept the solutioncGA

 6: End

12: Outputs: result

Figure 3.6: Pseudocode of A Cooperative Compact Genetic Algorithm (SA-step I)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 32

3.4.2. Restart to the origin

However, the restart halfway may not completely escape from local optima.

The observation of the number of iterations after finding the latest best solution was

used to consider when the fully restart should be used. The observation is from the

collected results of testing the restart halfway. The results show that the number of

iterations of the restart halfway is around 80 iterations, but it still could not discover

the better solutions. The "80 iterations" is from the maximum of the average iterations

executed since the latest best solution was discovered which was calculated from the

problems of 15-cities TSP, 17-cities TSP, Bin packing and Subset sum problems that

had the highest results of each problem. The calculation considered only the rounds

that had the closest total number of iterations to the average. Moreover, the values that

were assigned to the probabilistic vector to restart were from the average of all

probabilistic vectors from all cGA nodes in the first iteration. The consensus of their

probabilistic vector was used to decide the start point for "Fully restart" .

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (Master node)

 1: Inputs: solutioni
cGA, vectori

cGA, diff_vectori
cGA , counteri

 2: Initialize: vectormaster = Generate_vector(), solutionmaster = Max_float, vectorrestart =

avg(vectori
cGA; i = 1,..,4 , iteration = 1)

 3: Repeat:

 4: If result from SA-step1 is False :

 5: vectori
cGA = avg(vectorrestart, vectori

cGA)

 6: Elif counteri > 80:

 7: vectori
cGA = vectorrestart

 8: Else :

 9: vectori
cGA = diff_vectori

cGA + vectormaster

10: Until: a cGA node discovers the expected solution or reach the limit

Figure 3.7: Pseudocode of the Sharing Knowledge Compact Genetic Algorithm

(Master node)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 33

3.5. Evaluation

To evaluate the proposed method, the average number of the total iterations from

all cGA nodes executed in the test for 10 rounds was used to measure the performance

of the algorithm in the case that the algorithm could discover the expected solutions

for all rounds (the first group). On the other hand, if it could not find the expected

solutions (the second group), the best solution that they can find and the number of

rounds that they cannot find the expected solutions were taken into account to

measure the performance

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 34

Chapter 4 Results and

discussion

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 35

This chapter is about results and discussion. The first figure illustrates the

description of all result tables below. Then, the result of the experiment in phase II

(Massive parallelization of the compact genetic algorithm and the Cooperative

Compact Genetic Algorithm) are shown and compared to each other. Next, the results

of the experiment in phase III (the proposed algorithm) for each problem were

compared to two algorithms from phase II. Finally, the results summary and the

overall comparison of each problem for the three algorithms are explained.

4.1. The description of the result tables and the summary chart

Figure 4.1: The description of the result tables

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 36

Figure 4.2: The description of the summary chart

4.2. Phase II

4.2.1. Traveling Salesman Problem (TSP)

Overall, from the results of the experiment, the Massive parallelization of the

compact genetic algorithm was more efficient than the Cooperative Compact Genetic

Algorithm. Not only the average numbers of iterations executed were lower, but, in

some rounds of some problems, the Cooperative Compact Genetic Algorithm could

not find the expected solutions. Moreover, from all results, all the lowest numbers of

iterations of each problem were from the Massive parallelization of the compact

genetic algorithm, but the worst ones were from the Cooperative Compact Genetic

Algorithm.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 37

In 11 cities of TSP problem, Massive parallelization of the compact genetic

algorithm had better results than Cooperative Compact Genetic Algorithm. The table

below shows the total number of iterations in each round of 10 experiments. The

results illustrate that, for all problems for 11 cities, the iterations executed by the

Massive parallelization of the compact genetic algorithm are more than 100 times less

than the iterations executed by the Cooperative Compact Genetic Algorithm.

Moreover, for the second and the fifth problems, Cooperative Compact Genetic

Algorithm could not find the expected solution in some rounds. The best solutions

that it found had an average percentage error at 1.46 and 1.05, respectively.

Table 4.1: The performance on the traveling salesman problem (11 cities) by using

the Massive parallelization of the compact genetic algorithm

3

8
7

8
7

6
5

1
9

0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 38

Table 4.2: The performance on the traveling salesman problem (11 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA)

In 15 cities, the Massive parallelization of the compact genetic algorithm still had

better performance, while the Cooperative Compact Genetic Algorithm discovered

the expected solution only for the fifth problem. Furthermore, for the other problems,

the number of rounds that the Cooperative Compact Genetic Algorithm could not find

the expected outcomes were at least 2 rounds with the average percentage error at

0.89, 0.55,2.86 and 0.83, sequentially. Overall, the fourth and the third problems had

the highest difficulty for the Massive parallelization of the compact genetic algorithm

and the Cooperative Compact Genetic Algorithm, respectively, while the fifth

problem was very easy for both algorithms to find the expected solutions.
3

8
7

8
7

6
5

1
9

0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 39

Table 4.3 The performance on the traveling salesman problem (15 cities) by using

the Massive parallelization of the compact genetic algorithm

Table 4.4: : The performance on the traveling salesman problem (15 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 40

In the 17 cities of the TSP, the overall number of iterations executed by the

Massive parallelization of the compact genetic algorithm still was much less than the

results of the Cooperative Compact Genetic Algorithm which could not find the

expected solutions more than two rounds of each problem. While the second problem

seemed to be the most difficult for the Massive parallelization of the compact genetic

algorithm, the Cooperative Compact Genetic Algorithm has the highest number of

rounds in the experiment that could not reach the expected results. It was from the

first problem (17_1) which also has the highest percentage error of 3.76.

Table 4.5: The performance on the traveling salesman problem (17 cities) by using

the Massive parallelization of the compact genetic algorithm

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 41

Table 4.6: : The performance on the traveling salesman problem (17 cities) by using

the Cooperative Compact Genetic Algorithm (CoCGA)

4.2.2. Bin Packing Problem

From four bin-packing problems, according to the table below, both the

massive parallelization of the compact genetic algorithm and The Cooperative

Compact Genetic Algorithm had no different performance and both methods could

discover the expected solutions of all four problems in every round. In details, the

result of the massive parallelization of the compact genetic algorithm in the first

problem was better than the result of The Cooperative Compact Genetic Algorithm,

while the others were slightly worse. Furthermore, the difficulty of each problem for

both algorithms was similar. According to the results from the table, the simplest

problem was the second problem, while the hardest one was the fourth problem.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 42

Table 4.7: The performance on the bin-packing problem by using the Massive

parallelization of the compact genetic algorithm

Table 4.8: : The performance on the bin-packing problem by using the Cooperative

Compact Genetic Algorithm (CoCGA)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 43

4.2.3. Knapsack Problem

For Knapsack problem, the Cooperative Compact Genetic Algorithm and the

Massive parallelization of the compact genetic algorithm had similar performance.

They could discover the expected solutions for the first and second problems.

Moreover, for the third problem, both algorithms could not find the expected solution

for all ten rounds and some rounds from the fourth problem. The Cooperative

Compact Genetic Algorithm had slightly better results for the first and the second

problems, and, although both algorithms could not find the solution, the percentage

error of the Cooperative Compact Genetic Algorithm was smaller. Interestingly,

while, for the fouth problems, the number of rounds that the Massive parallelization

of the compact genetic algorithm could not find the expected solution (2) were less

than that of the Cooperative Compact Genetic Algorithm (4). The percentages error

of both algorithms was equal.

Table 4.9: The performance on the knapsack problem by using the Massive

parallelization of the compact genetic algorithm

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 44

Table 4.10: The performance on the knapsack problem by using the Cooperative

Compact Genetic Algorithm (CoCGA)

4.2.4. Subset Sum Problem

For subset sum problem, from the table below, the Massive parallelization of

the compact genetic algorithm had a better performance than the Cooperative

Compact Genetic Algorithm. It is significant in the first and in the fifth problems.

However, for the second and third problems, the Cooperative Compact Genetic

Algorithm were better. Overall, both algorithms could solve the problems.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 45

Table 4.11: The performance on the subset sum problem by using the Massive

parallelization of the compact genetic algorithm

Table 4.12: The performance on the subset sum problem by using the Cooperative

Compact Genetic Algorithm (CoCGA)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 46

4.3. Phase III

The results of the experiment in phase III are shown below. In phase III, the

results of the proposed algorithm were compared with the results from other

algorithms in phase II.

4.3.1. Traveling Salesman Problem (TSP)

In the 11-cities problems, from the table below, the proposed algorithm could

find the expected solutions for all rounds in the experiment. Moreover, the average

numbers of iterations executed in each problem were not very different. The highest

average number of iterations was from the second problem, while the lowest one was

from the first problem.

Table 4.13: The performance on the traveling salesman problem (11 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm)

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 47

Moreover, Figure 4.3 shows the comparison of three algorithms for all five problems.

All average number of iterations in the results (the grey bars) were lower than the

results from the Massive parallelization of the compact genetic algorithm (the blue

bars) and the Cooperative Compact Genetic Algorithm (the orange bars). However,

although the results from the proposed algorithm may be better than the results from

the Massive parallelization of the compact genetic algorithm, they were not very

different except the results from the fourth problem that the average number of

iterations was 1931.1 (refer to the table 4.1) in the Massive parallelization of the

compact genetic algorithm, while it was only 204.3, refer to the table 4.13,in the

proposed algorithm.

Figure 4.3: A bar chart shows the comparison of the results from the three

algorithms on the traveling salesman problem (11 cities)

In the 15-cities problems, the proposed algorithm could find the expected

solutions in every round. The fourth problem was the hardest and the fifth one was the

simplest.

1.94792362

2.765817515

2.49762065 2.506910726
2.310268367

2.122870923

2.825036441

2.655138435

3.285804764

3.544254131

4.543894292

4.985605584

5.232819563
5.131240657

4.905408812

0

1

2

3

4

5

6

11_1 11_2 11_3 11_4 11_5

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0)

PROBLEMS

TRAVELING SALESMAN PROBLEM (11 CITIES)

The proposed Algo. Master-slave CC
3

8
7

8
7

6
5

1
9

0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 48

Table 4.14: The performance on the traveling salesman problem (11 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm)

Furthermore, the bar chart below illustrates the comparison of the results from

the three algorithms on the traveling salesman problem (15 cities). While the results

of the Massive parallelization of the compact genetic algorithm (the blue bars) were

better than the results of Cooperative Compact Genetic Algorithm (the orange bars)

because the average number of iterations were lower, the average numbers of

iterations in the results of the proposed algorithm (the grey bars) were lower than the

results of the Massive parallelization of the compact genetic algorithm especially in

the first and fourth problems which the differences of the results were more than 50

percent better, 1835.1 from table 4.3 and 693.1 from the table 4.14, and 5607.3 from

the table 4.3 and 1233.6 from the table 4.14.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 49

Figure 4.4: A bar chart shows the comparison of the results from the three

algorithms on the traveling salesman problem (15 cities)

In the 17-cities problems, the proposed algorithm still could find the expected

solutions for all problems as to the Massive parallelization of the compact genetic

algorithm.

Table 4.15: The performance on the traveling salesman problem (17 cities) by using

the proposed algorithm (the sharing knowledge compact genetic algorithm)

2.840795899

2.374198258

2.633468456

3.091174361

0.698970004

3.263659735

2.649432223
2.766784515

3.748753792

0.681241237

5.464878547

4.0738924

5.5577778 5.523640871

1.130333768

0

1

2

3

4

5

6

15_1 15_2 15_3 15_4 15_5

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0

)

PROBLEMS

TRAVELING SALESMAN PROBLEM (15 CITIES)

The proposed Algo. Master-slave CC

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 50

From the bar chart below that the comparison of the results from the three

algorithms on the traveling salesman problem (17 cities), all results (the grey bars)

were the best among the three algorithms. Although the result of the second problem

(problem 17_2 in the Fig. 4.5) is not clearly better than the result from the Massive

parallelization of the compact genetic algorithm, the average numbers of iterations

were lower than 50 percent for the other problems.

Figure 4.5: A bar chart shows the comparison of the results from the three

algorithms on the traveling salesman problem (17 cities)

2.756255649

3.380120754
3.177623062

2.577031986

2.9885143663.109274738

3.412326122

3.381024781
3.051422666

3.277563376

5.856634048

5.41671122 5.459019429
5.659191455

5.063418433

0

1

2

3

4

5

6

7

17_1 17_2 17_3 17_4 17_5

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0

)

PROBLEMS

TRAVELING SALESMAN PROBLEM (17 CITIES)

The proposed Algo. Master-slave CC

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 51

4.3.2. Bin Packing Problem

For the Bin Packing Problem, according to the table below, the proposed

algorithm could discover the expected solutions within 200,000 iterations for all

experiments.

Table 4.16: The performance on the bin-packing problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm)

Furthermore, The Fig. 4.6 the comparison of the results from the three

algorithms on the bin-packing problem. The results from the proposed algorithm (the

grey bars) were quite similar to the results from the other algorithms. The numbers of

iterations executed were the lowest among the results from all algorithms except the

result from the second problem (the problem number 2 in the Fig. 4.5) that the

number of iterations was slightly higher than the result from the Cooperative Compact

Genetic Algorithm. Moreover, the trend of the difficulty to solve the problem of the

proposed algorithm was the same as the others' trends. The second problem was the

easiest and the fourth one was the most difficult.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 52

Figure 4.6: A bar chart shows the comparison of the results from the three

algorithms on the bin-packing problem

4.3.3. Knapsack Problem

For the Knapsack problem, the proposed algorithm could find the expected

solution for four problems. Like the other algorithms, the second problem was the

easiest for the proposed algorithm. While the fourth problem was the hardest.

Table 4.17: The performance on the knapsack problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm)

2.486572151

1.519827994

2.750431249

3.754417145

2.617734035

1.530199698

2.883888458

3.999321972

2.767823498

1.439332694

2.835880732

3.917164031

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0

)

PROBLEMS

BIN PACKING PROBLEM

The proposed Algo. Master-slave CC

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 53

For the first problem (see Fig. 4.7, the problem number 1), the result from the

proposed algorithm (the blue bar) was better than the results from the Massive

parallelization of the compact genetic algorithm (the orange bar) and the Cooperative

Compact Genetic Algorithm (the gray bar). While the difference may not be clear

between the results from the proposed algorithm and the Cooperative Compact

Genetic Algorithm, it is noticeable. For the second problem (the problem number 2 in

the Fig. 4.7), the performances from the three algorithms were similar. Unlike the

others, the differences were large for the third fourth problems that the proposed

algorithm could find the solutions, and its results were less than 5,000 iterations.

Figure 4.7: A bar chart shows the comparison of the results from the three

algorithms on the knapsack problem

4.3.4. Subset Sum Problem

For the Subset Sum Problem, as the Fig. 4.8 that shows the comparison of the

results from the three algorithms on the subset sum problem. The proposed algorithm

(the grey bars) had the best results among the three algorithms. The average numbers

of iterations for each problem were lower than 50 percent of the results from the

Massive parallelization of the compact genetic algorithm (the blue bars) and the

Cooperative Compact Genetic Algorithm (the orange bars) except the result of the

fourth problem and the second problem that compared to the result from the

Cooperative Compact Genetic Algorithm, 57.9 from the table 4.18 and 67.6 iterations,

refer to the table 4.12.

3.075254901

0.602059991

2.759592309

3.484598759
3.558960436

0.602059991

0

5.010584551

3.237970785

0.568201724

0

5.292115789

0

1

2

3

4

5

6

1 2 3 4

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0

)

PROBLEMS

KNAPSACK PROBLEM

The proposed Algo. Master-slave CC

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 54

Table 4.18: The performance on the subset sum problem by using the proposed

algorithm (the sharing knowledge compact genetic algorithm)

Figure 4.8: A bar chart shows the comparison of the results from the three

algorithms on the subset sum problem

1.563481085
1.762678564

1.591064607

0.73239376

2.448242413
2.166430114

2.719911064

0.72427587

3.677177921

1.829946696

2.617419747

0.785329835

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

TH
E

A
V

ER
A

G
E

N
U

M
B

ER
S

O
F

IT
ER

A
TI

O
N

S
(L

O
G

1
0

)

PROBLEMS

SUBSET SUM PROBLEM

The proposed Algo. Master-slave CC

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 55

4.4. Results Summary

For Traveling Salesman Problem, the Cooperative Compact Genetic

Algorithm could not find some expected solutions for some problems and had the

worst result. While the Massive parallelization of the compact genetic algorithm and

the proposed algorithm had similar results, the proposed algorithm was better in some

problems. For example, the third and fourth problems of the 17-cities group, the result

from the proposed algorithm were less than 50 percent of the results from the Massive

parallelization of the compact genetic algorithm. For the Bin Packing Problem, all

three algorithms had very similar results. Although the proposed algorithm had the

best performance and the Cooperative Compact Genetic Algorithm was the second

best, the difference in the results of all three algorithms were not distinct. For the

Subset Sum Problem, the proposed algorithm had the best performance. The

Cooperative Compact Genetic Algorithm had better results compared to the Massive

parallelization of the compact genetic algorithm for the second and the third

problems. For the fourth problem, the performance of the three algorithms were very

close. To conclude, for small data set of Traveling Salesman Problem, Bin Packing

Problem, Knapsack Problem, and Subset Sum Problem, the proposed algorithm was

slightly better than the other two problems. Although the difference in the results from

some problems were small, the proposed algorithm could find the expected solution

of all test data and had good results. Thus, the proposed algorithm that employed the

simulated annealing and the restart mechanism improves the overall performances in

some cases such as the third and fourth problems of the Knapsack problem.

4.5. Analysis

The proposed algorithm employed the "Restart" mechanism to support escaping from

local optima. Because the proposed algorithm developed from the Massive

parallelization of the compact genetic algorithm by adding the restart mechanism and

the simulated annealing, to show that the restart mechanism can decrease the average

number of iterations executed, the number of half-restart and full-restart were

analyzed. Table 1-6 in Appendix show the number of half-restart and full-restart on

each instance of the problems for ten rounds. To illustrate the benefits of having the

restart mechanism in the process, all instances of the problems could be divided into

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 56

two groups by the average number of iterations from the Massive parallelization of

the compact genetic algorithm from tables in phase II (the fourth and fifth problems of

the traveling salesman problems (11 cities), the first and the fourth problems of the

traveling salesman problems (15 cities), the fourth of the bin-packing problem, the

first, third and fourth problems of the knapsack problems as hard group and the other

problems as easy group). Overall, the restart mechanism worked effectively in the

case that the average number of iterations executed of the Massive parallelization of

the compact genetic algorithm were high such as the fourth problem of the traveling

salesman problem(15 cities) and the third problem of the knapsack problem (hard

group) according to Fig. 4.4 and 4.7 because the costs of the restart mechanism may

have negative results in the case that traps in the problems were not difficult for the

Massive parallelization of the compact genetic algorithm to escape such as the first to

the third problems of the traveling salesman problem (11 cities) from Fig. 4.3.

According to Fig. 4.4, 4.7 and 4.8, for the fifth problem of the traveling salesman

problem(15 cities), the second of the knapsack problem and the fourth problem of the

subset sum problem, there was no half-restart and full-restart occurred during the

process so the average number of the iterations executed so the results of the Massive

parallelization of the compact genetic algorithm and the proposed algorithm were

very similar.

Although hard problems may not always have a high number of half-restart

and full-restart, the number of half-restart and full-restart themselves can be employed

to analyze the difficulty of the problems. The problems that had low numbers of half-

restart and full-restart such as the first problem of traveling salesman problems (11

cities) from the table 1 in Appendix, the second problem of the bin-packing problem

from the table 4 in Appendix and the second and third problems of the subset sum

problem from the table 6 in Appendix also were easy to the Massive parallelization

of the compact genetic algorithm (easy group) according to the results from the table

4.1, 4.7 and 4.11. However, the difficult problems may have to use the behaviors of

the half-restart and full-restart to analyze.

The behaviors of the half restarts and full restarts on each problem were

shown below in figure 4.9 to 4.14 but some problems did not appear below because

there was no restart occurring during their execution. Overall, from Fig. 4.9 to 4.14,

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 57

the half- restart usually occurred at the beginning of the execution. Then, the full-

restart would start to occur in a later period when the half restart mechanism

difficultly discovered better solutions. Thus, the number of full restarts might be

higher than the number of half-restarts in the case that the traps in problems were very

complicated and the half restart could not handle them. For example, from Fig. 4.13,

for the fourth problem of the knapsack problem which the Massive parallelization of

the compact genetic algorithm could not find the expected solution in some rounds,

the half restarts occurred frequently at the early iterations, while the full restarts

started to occur after that and continuously and intensively occurred until the expected

solutions were discovered.

Moreover, the characteristic of traps of each problem also affects the

behaviors of the restart. For the traveling salesman problem that the differences of its

solutions (tour length) are high, the frequency of the half restart at the early iterations

was not much because its traps were too complicated to find the very high-quality

solutions in the early iterations. Thus, the half restart did not occur frequently in the

early stages to escape from local optima. However, for the bin-packing problem, the

feasible solutions are serial numbers so the half restart occurred more frequently due

to the simulated annealing strategy and the chances to find the expected solutions by

the half restart were higher. However, In the case that the very high-quality solution

(the solutions next to the expected solution) was discovered and the number of

iterations after finding the very high-quality solution was high, the half restart would

stop and the full restart would take action and continuously occur until the expected

solution was discovered according to Fig 4.12.
3

8
7

8
7

6
5

1
9

0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 58

Figure 4.9: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(11 cities) for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 59

Figure 4.10: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(15 cities) for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 60

Figure 4.11: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(17 cities) for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 61

Figure 4.12: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the bin-packing problem for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 62

Figure 4.13: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the knapsack problem for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 63

Figure 4.14: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the subset sum problem for ten rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 64

Chapter 5 Conclusion

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 65

5.1. Conclusion

The compact genetic algorithm was an effective heuristic algorithm to solve

hard problems. It still cannot prevent or avoid local optima. There are much research

in search optimization attempting to escape from the local optima. Thus, the

parallelization was used to improve the performance of the algorithm.

In this thesis, the research attempted to improve the performance of the

existing parallel compact genetic algorithm by focusing on the shared parameters and

sharing methods. The proposed algorithm exploited the property of the simulated

annealing to consider the shared parameters whether they would be accepted or not.

Moreover, the proposed algorithm used the "Restart" to help escape from local

optima. In the case that the condition applying from the simulated annealing did not

work, the restart was used. However, to prevent the high cost from rediscovering

solution space, the probabilistic vector should be reinitialized by the average value.

The observation of the results from the existing algorithm was employed to consider

when it should restart the search.

In the experiment, the Massive parallelization of the compact genetic

algorithm and the Cooperative Compact Genetic Algorithm were implemented and

tested with Traveling salesman problem (11, 15, 17 cities), bin packing problem (50

items), knapsack problem (maximum of 200 items) and subset sum problem

(maximum of 21 numbers). The proposed algorithm was designed, implemented and

tested. The results of the experiment show that the proposed algorithm that employs

the simulated annealing, the observation, and the restart can improve the performance.

Although some results were not convincing due to the cost of the restart that may

decrease the performance, there were no results from the proposed algorithm that was

worse than the results from the other two algorithms.

However, there was some limitation of the proposed algorithm. Although the

test data were varied, the input data of each test were not large. Thus, the observation

was from the small group of the dataset. This parameter may not be suitable for large

dataset. This challenge can be studied in the future.

Another point was, while the performance was effective, the number of shared

variables of the proposed algorithm were higher than the other algorithms.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 66

5.2. Future works

This research can be developed further by expanding the structure to more

than four cGAs nodes to be able to exploit the benefits of topology and the

observation number may be improved to be adaptive to each problem instead of using

static value because each problem has different traps. The advantage of topology and

the adaptive value for full restart may decrease the number of iterations executed to

find the expected solutions. Moreover, the network issue should be concerned to

support the scalable aspect of the practical works and the larger sizes of problems in

the future.

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

REFER ENCES

REFERENCES

1. T. H. Cormen, C.E.L., R. L. Rivest, and C. Stein, Introduction to Algorithms,

Third Edition.

2. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine

Learning. 1989: Addison-Wesley Longman Publishing Co., Inc. 372.

3. Holland, J.H., Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. 1992:

MIT Press. 228.

4. Michalewicz, Z., Genetic algorithms + data structures = evolution programs

(3rd ed.). 1996: Springer-Verlag. 387.

5. Harik, G.R., F.G. Lobo, and D.E. Goldberg, The compact genetic algorithm.

Trans. Evol. Comp, 1999. 3(4): p. 287-297.

6. Balakrishnan, K. Parallel Genetic Algorithms, Premature

Convergence and the nCUBE. 1993.

7. Matai, R., M.L. Mittal, and S. Singh, Traveling Salesman Problem: an Overview

of Applications, Formulations, and Solution Approaches. 2010: INTECH Open

Access Publisher.

8. Korf, R.E., A new algorithm for optimal bin packing, in Eighteenth national

conference on Artificial intelligence. 2002, American Association for Artificial

Intelligence: Edmonton, Alberta, Canada. p. 731-736.

9. Martello, S. and P. Toth, Knapsack problems: algorithms and computer

implementations. 1990: John Wiley \\& Sons, Inc. 296.

10. Caprara, A., H. Kellerer, and U. Pferschy, The Multiple Subset Sum Problem.

SIAM J. on Optimization, 2000. 11(2): p. 308-319.

11. R. K. Nayak, B.S.P.M., Jnyanaranjan Mohanty, An overview of GA and PGA.

International Journal of Computer Applications, 2017. 176.

12. Goldberg, E.C.-P.a.D.E., Efficient Parallel Genetic Algorithms: Theory and

Practice. Computer Methods in Applied Mechanics and Engineering. 2000:

press.

13. Cantu-Paz, E., Efficient and Accurate Parallel Genetic Algorithms. 2000:

Kluwer Academic Publishers. 162.

14. Gold, M. AI: Using the Compact Genetic Algorithm to Compute Square Roots in

C#. 2005.

15. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by simulated

annealing. science, 1983. 220(4598): p. 671-680.

16. Černý, V., Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of optimization theory and applications,

1985. 45(1): p. 41-51.

17. Brownlee, J., Clever algorithms: nature-inspired programming recipes. 2011:

Jason Brownlee.

18. The Traveling Salesman Problem Available from:

https://www.csd.uoc.gr/~hy583/papers/ch11.pdf.

19. Junkermeier, J., A Genetic Algorithm for the Bin Packing Problem.

20. Maxence Delorme, M.I., Silvano Martello, BPPLIB: a library for bin packing

and cutting stock problems. 2017.

21. GeeksforGeeks, 0-1 Knapsack Problem | DP-10.

3
8

7
8

7
6

5
1

9
0

https://www.csd.uoc.gr/~hy583/papers/ch11.pdf

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 68

22. Ken-Li Li, G.-M.D., Qing-Hua Li, A genetic algorithm for the unbounded

knapsack problem. Proceedings of the 2003 International Conference on

Machine Learning and Cybernetics (IEEE Cat. No.03EX693). Vol. 3. 2003.

23. Kellerer, H., U. Pferschy, and M.G. Speranza. An efficient approximation

scheme for the subset-sum problem. 1997. Berlin, Heidelberg: Springer Berlin

Heidelberg.

24. GeeksforGeeks. Dynamic Programming - Subset Sum Problem. Available from:

https://www.geeksforgeeks.org/subset-sum-problem-dp-25/.

25. Hoos, H.H. and T. Stützle, Stochastic local search: Foundations and

applications. 2004: Elsevier.

26. Fukunaga, A.S. Restart scheduling for genetic algorithms. in International

Conference on Parallel Problem Solving from Nature. 1998. Springer.

27. Palmigiani, D. and G. Sebastiani, A new restart procedure for combinatorial

optimization and its convergence. arXiv preprint arXiv:1709.06449, 2017.

28. Michalewicz, Z. and D.B. Fogel, How to solve it: modern heuristics. 2013:

Springer Science & Business Media.

29. Baraglia, R., J.I. Hidalgo, and R. Perego, A hybrid heuristic for the traveling

salesman problem. IEEE Transactions on evolutionary computation, 2001. 5(6):

p. 613-622.

30. Chu, P.C. and J.E. Beasley, A genetic algorithm for the multidimensional

knapsack problem. Journal of heuristics, 1998. 4(1): p. 63-86.

31. Wang, R.L., A genetic algorithm for subset sum problem. Neurocomputing,

2004. 57: p. 463-468.

32. Jewajinda, Y. and P. Chongstitvatana. A cooperative approach to compact

genetic algorithm for evolvable hardware. in 2006 IEEE International

Conference on Evolutionary Computation. 2006. IEEE.

33. Lobo, F.G., C.F. Lima, and H. Mártires. Massive parallelization of the compact

genetic algorithm. 2005. Vienna: Springer Vienna.

34. Jong, K.A.D., An analysis of the behavior of a class of genetic adaptive systems.

1975, University of Michigan. p. 266.

35. Reinelt, G., TSPLIB—A traveling salesman problem library. ORSA journal on

computing, 1991. 3(4): p. 376-384.

36. Burkardt, J., TSP Data for the Traveling Salesperson Problem.

37. Data for simple TSP. Available from:

https://stackoverflow.com/questions/11007355/data-for-simple-tsp.

38. Armin Scholl, R.K. Data set 2 for BPP-1. Available from:

https://www2.wiwi.uni-jena.de/Entscheidung/binpp/bin2dat.htm.

39. Ruiz), J.A.O.R.J. Instances of 0/1 Knapsack Problem. Available from:

http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/.

40. Burkardt, J. SUBSET_SUM Data for the Subset Sum Problem. Available from:

http://people.sc.fsu.edu/~jburkardt%20/datasets/subset_sum/subset_sum.html.

3
8

7
8

7
6

5
1

9
0

https://www.geeksforgeeks.org/subset-sum-problem-dp-25/
https://stackoverflow.com/questions/11007355/data-for-simple-tsp
https://www2.wiwi.uni-jena.de/Entscheidung/binpp/bin2dat.htm
http://artemisa.unicauca.edu.co/~johnyortega/instances_01_KP/
http://people.sc.fsu.edu/~jburkardt%20/datasets/subset_sum/subset_sum.html

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

APPENDIX

Table 1: The total number of half and full restart on the traveling salesman

problem(11 cities) for 10 rounds

Table 2: The total number of half and full restart on the traveling salesman

problem(15 cities) for 10 rounds

Table 3: The total number of half and full restart on the traveling salesman

problem(17 cities) for 10 rounds

Table 4: The total number of half and full restart on the bin-packing problem for 10

rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

 70

Table 5: The total number of half and full restart on the knapsack problem for 10

rounds

Table 6: The total number of half and full restart on the subset sum problem for 10

rounds

3
8

7
8

7
6

5
1

9
0

C
U

i
T
h
e
s
i
s

6
0
7
0
3
7
2
6
2
1

t
h
e
s
i
s

/

r
e
c
v
:

0
9
0
7
2
5
6
2

1
8
:
3
3
:
1
2

/

s
e
q
:

1
6

VITA

VITA

NAME Orakanya Gateratanakul

DATE OF BIRTH 25 August 1994

PLACE OF BIRTH Bangkok

HOME ADDRESS 150/28-29 Boonyadis, Lanluang, Klongmahanak,

Pomprab, Bangkok, 10100

PUBLICATION Gateratanakul, O., & Chongstitvatana, P. (2018,

April). Knowledge Sharing in Cooperative

Compact Genetic Algorithm. In 2018 3rd

International Conference on Computer and

Communication Systems (ICCCS) (pp. 25-28).

IEEE.

3
8

7
8

7
6

5
1

9
0

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1. Background
	1.1.1. Motivation
	1.1.2. Problem statement
	1.1.3. Scope

	1.2. Objectives

	Chapter 2 Literature Reviews
	2.1. Concept and Theory
	2.1.1. Genetic algorithm (GA) [2]
	2.1.2. Parallel Genetic algorithm
	2.1.3. Compact genetic algorithm (cGA)
	2.1.4. Simulated Annealing (SA)
	2.1.5. Traveling Salesman Problem
	2.1.6. Bin Packing Problem
	2.1.7. Knapsack Problem
	2.1.8. Subset Sum Problem

	2.2. Related works
	2.2.1. Simple mechanisms for escaping from local optima
	2.2.1.1. Restart
	2.2.1.2. Non-improving steps

	2.2.2. Problems with Genetic algorithm and some heuristic algorithms
	2.2.2.1. Traveling Salesman Problem
	2.2.2.2. Bin Packing Problem
	2.2.2.3. Knapsack Problem
	2.2.2.4. Subset Sum Problem

	2.2.3. Parallel Compact genetic algorithm
	2.2.3.1. The Cooperative Compact Genetic Algorithm (CoCGA)
	2.2.3.2. Massive parallelization of the compact genetic algorithm

	2.3. Contribution

	Chapter 3 Material and Methodology
	3.1. The definition of attributes and Setting/Test Data
	3.1.1. The definition of attributes
	3.1.2. Setting Data (Test)
	3.1.2.1. Traveling Salesman Problem
	3.1.2.2. Bin Packing Problem
	3.1.2.3. Knapsack Problem
	3.1.2.4. Subset Sum Problem

	3.2. Phase I: Design cGa for Test data
	3.2.1. Traveling Salesman Problem
	3.2.2. Bin Packing Problem
	3.2.3. Knapsack Problem
	3.2.4. Subset Sum Problem

	3.3. Phase II: Implement and test Massive parallelization of the compact genetic algorithm and Cooperative Compact Genetic Algorithm (CoCGA) with the test data
	3.3.1. Massive parallelization of the compact genetic algorithm
	3.3.1.1. Normal cGA node
	3.3.1.2. Master node

	3.3.2. A Cooperative Approach to Compact Genetic Algorithm (CoCGA)
	3.3.2.1. Normal cGA node (Normal CoCGA)
	3.3.2.2. Leader node

	3.4. Phase III: Implement the cooperative compact genetic algorithm
	3.4.1. Restart half way
	3.4.2. Restart to the origin

	3.5. Evaluation

	Chapter 4 Results and discussion
	4.1. The description of the result tables and the summary chart
	4.2. Phase II
	4.2.1. Traveling Salesman Problem (TSP)
	4.2.2. Bin Packing Problem
	4.2.3. Knapsack Problem
	4.2.4. Subset Sum Problem

	4.3. Phase III
	4.3.1. Traveling Salesman Problem (TSP)
	4.3.2. Bin Packing Problem
	4.3.3. Knapsack Problem
	4.3.4. Subset Sum Problem

	4.4. Results Summary
	4.5. Analysis

	Chapter 5 Conclusion
	5.1. Conclusion
	5.2. Future works

	REFERENCES
	APPENDIX
	VITA

