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1.1. Background 

1.1.1. Motivation 

In the present days, there are many groups of problems that are difficult to solve 

because complexity is high and time required to solve these problems increases very 

quickly as the sizes of the problems grow[1]. As a result, the evolutionary algorithms 

have been developed and designed to fix these problems and one of the most popular 

evolutionary algorithms is the genetic algorithm [2, 3] due to its efficient ability to 

precisely search the best answers. 

However, the genetic algorithm still cannot avoid premature convergence leading 

to it being stuck in local optima [4]. These issues are the general problems in 

evolutionary algorithms. In addition, although the genetic algorithm is an effective 

algorithm, there is a major problem with the size of memories used to keep the whole 

possible solution or solution space [5].  

Consequently, the compact genetic algorithm is an interesting algorithm that can 

reduce the size of memories by using probabilistic vector instead of collecting all 

possible solutions. Moreover, the compact genetic algorithm is also equivalent to the 

simple genetic algorithm with uniform crossover [5]. 

As the premature convergence still cannot be prevented in the compact genetic 

algorithm, parallelization is widely used to support the problems. In addition to the 

parallelization, the probabilistic vector of the compact genetic algorithm has an 

important advantage that affects the process of exploring solution space in the 

paralleled method [6].  

This research focuses on designing a new algorithm supporting paralleled works in 

the compact genetic algorithm emphasizing on migration processes of some specific 

variables. We are also interested in studying the process of searching the  high-quality 

solutions in search space. In detailed, we will use traveling salesman problem [7], bin 

packing problem [8], knapsack problem [9] and subset sum problem [10] in the 

experiment because they are in the group of the challenging problems. Their  
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complexity are quite high due to the variety of the high-quality solutions and long time 

required to find the best solution. 

 

1.1.2. Problem statement 

The compact genetic algorithm is one of the effective heuristic search 

algorithms to solve many challenging problems. However, there are some hard 

problems that the compact genetic algorithm cannot solve them effectively. Because 

of the highly deceptive local optima, it is inevitable to getting stuck in the local 

optima. Moreover, it is very complicated to escape from local optima. Although the 

parallelization is used to improve the performance of many algorithms, it cannot 

completely prevent getting trapped in local optima. Thus, the purposes of this research 

are to design and improve the mechanism for the parallelization of the compact 

genetic algorithm to escape from the local optima and focus on the migration process 

of some specific data to increase the performance of the compact genetic algorithm 

and avoid premature convergence problem. 

 

1.1.3. Scope 

-    Interested in migration methods and migrated parameters. 

-    Use Traveling salesman problem (11, 15, 17 cities), bin packing problem (50 

items), knapsack problem (maximum of 200 items) and subset sum problem 

(maximum of 21 numbers) in the experiment 

-    Network issues are not concerned because all algorithms are tested on one 

computer. 

-  The number of iterations executed by a cGA node must not exceed 200,000 

iterations. 

-   The numbers of iterations executed and the percentage errors are used to 

measure the performance. 

-  The runtime of iterations is not concerned. 

-  The experiment has one master node and four slave nodes 
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1.2. Objectives 

The objective of the research is to improve the existing parallel compact genetic 

algorithm to escape from local optima and increase the performance by focusing on 

the shared parameters and the sharing mechanism. 
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Figure  2.1: An overview of literature reviews 
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2.1. Concept and Theory 

2.1.1. Genetic algorithm (GA) [2] 

Genetic algorithm is a search algorithm inspired by natural evolution. The 

main idea is to improve a set of solutions called population instead of only one 

solution. To initialize a population in GA, it starts from a set of random possible 

solutions to keep diversity. Moreover, the diversity of the population must be 

concerned, and the size of the population must be large enough to find the best result 

efficiently but not too large to slow down the GA. Then, in each iteration, some 

solutions in the set will be replaced by their children which are produced by some 

rules. Moreover, the algorithm produces offspring in the next generation by three 

main operations; selection, mutation, and crossover.  

 For selection, it is the first step to produce offspring by selecting a set of 

expected high-quality solutions from the current population. There are many ways of 

parent selections. For example, Fitness Proportionate Selection -- exploit fitness 

scores of each solution in population to indicate the chances to be selected, 

Tournament Selection -- randomly select some solutions from population and choose 

the best one, Rank Selection -- choose solutions from the population by the rank of 

their fitness scores, and Random Selection.  

 For Mutation, its idea is based on simple random change a solution.  Mutation 

maintains the diversity in the solution pool and prevent premature convergence. It 

makes change or flip values of some fragments of a solution.  

 Crossover exchanging parts between two solutions by swapping of some bits 

with randomly choosing crossover points.  

 To update the population, all possible solutions in the current generation will 

be evaluated by the fitness function to calculate how good they are and give scores to 

them. Furthermore, the diversity of the population should be maintained. There are 

also many ways to update the population such as replacing all population by solutions 

from the next generation, replacing the solutions that have the worst scores by the 

solutions from the next generation, etc. 
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Algorithm: Genetic Algorithm 

  1: Inputs: L is chromosome Length, N is population size 

  2: Initialize: population = Generate_population(N, L), fitness = 

Fitness_function(individual) 

  3: Repeat 

  4:              Parents = Parent_Selection(population) 

  5:              Offspring = CrossOver(Parents) 

  6:              Offspring = Mutaion(Offspring) 

  7:              Fitness_Offspring = Fitness_function(Offspring) 

  8:              Update Population 

  9:              Find current best solution 

11: Until termination criteria are reached 

12: Outputs: best solution 

Figure  2.2: Pseudocode of Genetic Algorithm 

 
2.1.2. Parallel Genetic algorithm 

A parallel genetic algorithm is a group of the genetic algorithm that cooperates 

with each other to discover the high-quality solutions. There are many types of the 

parallel genetic algorithm such as master-slave, fine-grained and coarse-grained 

[11],[12]. In the master-slave model, Master has duties to control and share data to all 

slaves, while slaves have the same duties. For example, Master controls parent 

selection and fitness assignment, and Slaves receive a set of solution and do the 

remaining steps of GA. In Coarse-grained or island model, the population is divided 

into subpopulations as the initial population of each island. Each island runs a genetic 

algorithm and sometimes share some data to other islands. In Fine-grained model, 

there is only one population, however, it has special structure for each node to only 

share data to its neighbors. Considering cooperation among nodes, we can clearly 

divide these groups into two types, non-migration, and migration. Moreover, in the 

migration process, there are many significant factors that should be carefully 

considered such as migration size, migration topology, migration frequency and 

migration strategies [13] 
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2.1.3. Compact genetic algorithm (cGA) 

The compact genetic algorithm is proposed by Harik, Lobo, and Goldberg [5]. 

The main idea of the compact genetic algorithm is similar to the concept of the 

genetic algorithm and also proved that it is equivalent to the simple genetic algorithm 

with single point crossover. In detailed, the compact genetic algorithm attempts to 

search for high-quality solutions in the group of all possible solution or called solution 

space by imitating natural evolution. Firstly, a probabilistic vector is defined to 

represent the solution space. The size of the probabilistic vector indicates the number 

of bits required to represent a solution. 

For example [14]: 

Square roots problem: 

Input: Given a real number  

Output: Square roots of the input 

Probabilistic vector: size of 30 

 

Table  2.1: The example of the initialized probabilistic vector 

 

From the example above,  the easiest way is to define a real number by binary 

digits 1 and 0. A method suggested that 30 bits (the size of the vector is 30) are 

divided into two parts equally, so the best number we can represent is a 215  integer 

(32768)  with a decimal precision o f  2 15. To illustrate,  000000000000011 

110000000000000, 000000000000011 is the sum of 20 and 21 which is equal to 3 and 

110 000 00 000 00 00   is  the  sum  o f 2 -1  and  2 -2  w hich is equ al to  0 .7 5 , so 

000000000000011 110000000000000 represents 3.75. In addition, Each element of 

the probabilistic vector can possibly be a real number in the range to 0 to 1 because 

each element of the probabilistic vector means the probability that the i-th bit will be 

1. After designing the probabilistic vector, the process begins with initializing values 

to the vector using a various method such as uniform distribution that all elements in 

the vector are set to 0.5. Then, a group of numbers or called individuals are sampling 
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from the probabilistic vector. After that, two individuals will be evaluated its quality 

or called score by a function called fitness function which is designed depending on 

problems. In the case of square roots, the fitness function can be the difference 

between the power of two of an individual and the input number, so the less the 

difference is, the higher quality the individual has. Two individuals will compete with 

each other to find winners and losers which will be used for updating the probabilistic 

vector. To update the probabilistic vector, each position of the losers and the winners 

will be considered. If they are not equal, the probability of the vector in that position 

will be increased or decreased following the winner. All of these steps will be 

repeated until finding individuals that their scores are satisfactory. 

 

Algorithm: Compact Genetic Algorithm 

  1: Inputs: L is chromosome Length, N is population size 

  2: Initialize: Prob_vector = Generate_vector(),  

  3:                  a = Generate_candidate(Prob_vector),  

  4:                  b = Generate_candidate(Prob_vector) 

  5: Repeat 

  6:              winner, loser = evaluate(Fitness_function(a), Fitness_function(b)) 

  7:              For i = 1 to L Do // Update probabilistic vector 

  8:                   If winner[i] != 1 Then Prob_vector[i] = Prob_vector[i] + 1/N 

  9:                   Else Prob_vector[i] = Prob_vector[i] - 1/N 

10:              Find current best solution 

11: Until termination criteria are reached 

12: Outputs: best solution 

Figure  2.3:  Pseudocode of Compact Genetic Algorithm [5] 

 
2.1.4. Simulated Annealing (SA) 

Simulated annealing is an optimizing algorithm proposed by Kickpatrick, 

Gelett, and Vecchi (1983) [15] and Cerny (1985) [16]. The idea of the algorithm is 

inspired by the cooling process of forging metals that atoms in metals move 

unpredictably in high temperature. In the simulated annealing algorithm, in each 

temperature that is decreasing, it searched neighboring solution of the current 

solution. In the case that the neighboring solutions are better, they will always be 

accepted. However, if the neighboring solutions are worse, it may be accepted 

according to the current temperature-dependent probability given by 
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𝑃𝑇 =   {
1                                    𝑖𝑓 𝐶𝑜𝑠𝑡(𝑥𝑖) ≤ 𝐶𝑜𝑠𝑡(𝑥𝑗)

𝑒
−(𝐶𝑜𝑠𝑡(𝑥𝑖)−𝐶𝑜𝑠𝑡(𝑥𝑗))

𝑇   𝑖𝑓  𝐶𝑜𝑠𝑡(𝑥𝑖) > 𝐶𝑜𝑠𝑡(𝑥𝑗) 
 

  Where T is the current temperature, 𝑥𝑖 is the current solution, 

𝑥𝑗 is neighboring solutions 

 

Algorithm: Simulated Annealing 

1: Inputs: Problem_size, iterationsmax, tempmax 

2: Initialize: Scurrent = CreateInitialSolution(Problem_size), Sbest = Scurrent 

3: Repeat i = 0 to iterationsmax 

4:             Si = createNeighborSolution(Scurrent) 

5:            tempcurr = CalculateTempurature(i, tempmax) 

6:                    If(Cost(Si) <= Cost(Scurrent)) 

7:                       Scurrent = Si 

8:                       If(Cost(Si) <= Cost(Sbest)) 

9:                           Sbest = Si 

10:                  End 

11:                  Elseif(Exp( (Cost(Scurrent- Cost(Si)))/tempcurr ) > Rand()) 

12:                             Scurrent = Si 

13:                  End                  

12: Outputs: Sbest 

Figure  2.4: Pseudocode of Simulated Annealing [17] 
 

2.1.5. Traveling Salesman Problem  

Traveling Salesman Problem (TSP) is a difficult problem. It consists of cities 

and a salesman. The problem is to find the shortest path that the salesman can visit all 

cities just once and come back to the first city [7].  

For example [18]: 
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Input :  

cities = {A, B, C, D, E} 

distances =  

Table  2.2: The adjacency matrix showing the example of the input distances of the 

traveling salesman problem 

Cities A B C D E 

A 0 2 0 12 5 

B 2 0 4 8 0 

C 0 4 0 3 3 

D 12 8 3 0 10 

E 5 0 3 10 0 

 
To find a path of the problem is equivalent to find a Hamiltonian cycle which is NP-

complete. For example, path {A, B, C, D, E, A} is a total length of 24 

 

 

2.1.6. Bin Packing Problem  

Bin packing problem is an NP-hard problem which is to find the minimum 

number of bins of fixed capacity that can contain all items having various weights. 

Formally, given n item types with weights W = {𝑤1,..., 𝑤𝑛}. There is the unlimited 

number of bins of fixed capacity c. The problem is [19], [20] 

Minimize k where k is the number of bins used to contain all items 

Subject to  

 ∑ 𝑐𝑘
𝑖=1  ≤  ∑ ∑ 𝑥𝑖𝑗𝑤𝑗

𝑛
𝑗=1

𝑘
𝑖=1  where 𝑥𝑖𝑗 = 1 if bin i contains item j,  

otherwise 𝑥𝑖𝑗 = 0 

  ∑ 𝑥𝑖𝑗
𝑘
𝑗=1 = 0 𝑜𝑟 1  and ∀𝑤𝑗 ≤ 𝑐 where 𝑤𝑗 ∈ 𝑊 
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For example [18] : 

 Input:   

Weight W = {4, 8, 1, 4, 2, 1} 

          Bin Capacity c = 10 

Output: 2 

First bin = {4, 4, 2} and second bin = {8, 1, 1} 

 

2.1.7.    Knapsack Problem  

Knapsack problem is a NP-hard problem that fills the knapsack with items 

chosen from n items with various weights and values in order to get the highest sum 

of values or profits without exceeding the weight capacity of the knapsack. Formally, 

it is given n items with weights W = {𝑤1,..., 𝑤𝑛} and values V = {𝑣1,..., 𝑣𝑛} and 

assumed that all of them are positive integers. X = {𝑥1,..., 𝑥𝑛} shows which items are 

chosen and maximize the sum of profit without crossing the capacity c. 𝑥𝑖 = 1 if item i 

is chosen, otherwise 𝑥𝑖  = 0. The problem is [21] 

 

Maximize  ∑ 𝑥𝑖 
𝑛
𝑖=1 𝑣1 

Subject to 

 ∑ 𝑥𝑖 
𝑛
𝑖=1 𝑤𝑖 ≤ 𝑐 

For example [22]: 

 Input: 

  Value V = {60, 100, 120} 

  Weight W = {10, 20, 30} 

  Knapsack capacity c = 50 

 Output: 220 

Solution = {10} , sum of value = 60 ; Solution = {20} , sum of value = 100 

Solution = {30} , sum of value = 120 ; Solution = {20, 10} , sum of value = 160 

Solution = {30, 10} , sum of value = 180 ; Solution = {30, 20} , sum of value = 220 

Solution = {30, 20, 10} > 50  
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2.1.8. Subset Sum Problem 

In subset sum problem, a set of numbers S = {𝑠1, … , 𝑠𝑛} and a fixed number c 

are given. The problem is to find a subset of the given set and its sum is closest to the 

fixed number without exceeding it. Formally [23],  

Maximize  ∑ 𝑥𝑖 
𝑛
𝑖=1 𝑠𝑖 

Subject to 

 ∑ 𝑥𝑖 
𝑛
𝑖=1 𝑠𝑖 ≤ 𝑐 , 𝑥𝑖 ∈ {0,1}  where 𝑥𝑖 = 1 if the ith 

number is chosen, otherwise 𝑥𝑖 = 0 

For example [24]: 

 Input: 

  S = {3, 34, 4, 12, 5, 2} 

  c = 9 

 Output: {4, 5} 

 

2.2. Related works 

2.2.1. Simple mechanisms for escaping from local optima 

2.2.1.1. Restart 

Restart is a simple and straightforward way to escape from local optima by 

reinitializing search process when it gets stuck in a local optimum. While it works 

effectively in the case that the number of local optima is not high and the cost of 

restarting is low, in other cases, it may not be suitable [25], [26], [27].  

 

2.2.1.2. Non-improving steps 

Non-improving step is another simple way to escape from local optima. The 

idea is to allow choosing neighboring solutions when a local optimum is encountered. 

There are many ways to choose neighboring solutions such as a random selection 

from all neighbors (uninformed Random Walk step) or from all neighbors that have 

the lowest increase (mildest ascent step). The example of the algorithms that use this 

mechanism is the stimulated annealing [25],[28].  
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2.2.2. Problems with Genetic algorithm and some heuristic algorithms 

2.2.2.1. Traveling Salesman Problem  

A Hybrid Heuristic for the Traveling Salesman Problem is proposed by R. 

Baraglia, J.I. Hidalgo, and R. Perego. [29] It is the combination of compact genetic 

algorithm and the Lin-Kernighan local search. For the compact genetic algorithm, the 

initialized probabilistic matrix of i*i, where i is the number of the input cities, is 

assigned by EL model. The concept is to assign high probability to short edges by the 

following equation:  

𝑝𝑖,𝑗 = {

       0              𝑖𝑓 𝑖 = 𝑗    

𝐿𝑖̅ − 𝑑(𝑐𝑖, 𝑐𝑗)

𝐿𝑖̅ − 𝑙𝑖̅

,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Where   𝐿𝑖̅ = 𝑚𝑎𝑥 {𝑑(𝑐𝑖 , 𝑐𝑗): 𝑗 ∈  {1,2,… , 𝑖 − 1}}, 

   𝑙𝑖̅ = 𝑚𝑖𝑛 {𝑑(𝑐𝑖 , 𝑐𝑗): 𝑗 ∈  {1,2,… , 𝑖 − 1}} 

And 𝑑(𝑐𝑖, 𝑐𝑗) = distance from i-th city to j-th city 

To generate a solution, the first visited city is randomly chosen, while the 

other is selected by the ranks of their probabilities as the first priority and distances 

from the currently selected city.     

To update the probabilistic matrix, two solutions are considered which one has 

a higher score (winner). The idea is to update the probabilistic matrix by following the 

winner and escaping from the loser according to the equation: 

𝑝𝑖,𝑗
𝑘+1

= 

{
 
 

 
 𝑝𝑖,𝑗

𝑘 +
1

𝑛
 𝑖𝑓 ((𝑐𝑖 , 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖)  ∈ 𝑤𝑖𝑛𝑛𝑒𝑟)  𝑎𝑛𝑑 ((𝑐𝑖, 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖)  ∉ 𝑙𝑜𝑠𝑒𝑟) 

𝑝𝑖,𝑗
𝑘 −

1

𝑛
 𝑖𝑓 ((𝑐𝑖, 𝑐𝑗) 𝑜𝑟 (𝑐𝑗, 𝑐𝑖)  ∉ 𝑤𝑖𝑛𝑛𝑒𝑟)  𝑎𝑛𝑑 ((𝑐𝑖 , 𝑐𝑗) 𝑜𝑟 (𝑐𝑗 , 𝑐𝑖)  ∈ 𝑙𝑜𝑠𝑒𝑟)

𝑝𝑖,𝑗
𝑘      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑝𝑖,𝑗
𝑘  = the probability of i-th city to j-th city in the k-th iteration 
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Algorithm: Compact Genetic Algorithm for Traveling Salesman Problem  

  1: Inputs: L is chromosome Length, N is population size 

  2: Initialize: Prob_vector = Generate_vector(), F_best = INT_MAX 

  4: Repeat 

  5:              S[1] = Generate_candidate(Prob_vector) 

  6:                 F[1] = Tour_Length(S[1]) 

  7:                 idx_best = 1 

  8:                 For k = 2 to s do 

  9:                       S[k] = Generate_candidate(Prob_vector) 

10:                       F[k] = Tour_Length(S[k]) 

11:                       If (F[k] < F[idx_best]): idx_best = k 

12:                  For k = 1 to s do 

13:                       If (F[idx_best] < F[k]) then Update(Prob_vec,S[idx_best],S[i]) 

14:   If (F[idx_best] < F_best) : 

15:    count = 0; 

16:    F_best = F[idx_best]; 

17:    S_best =  S[idx_best]; 

18:   Else 

19:    Update(Prob_vec, S_best, S[idx_best]); 

20:    count = count + 1; 

21:   end if 

22: 

23: Until Convergence(Prob_vec) OR count > CONV_LIMIT 

24: Outputs: S_best, F_best 

Figure  2.5: Pseudocode of Compact Genetic Algorithm for Traveling Salesman 

Problem [29] 

 
2.2.2.2. Bin Packing Problem 

Junkerneier proposed how to apply a genetic algorithm to the Bin Packing 

problem [19]. The concept is to randomly generate solutions and use the First-fit 

algorithm as the fitness function to calculate their scores. Given a set of numbers (the 

weights of items) and the fixed capacity of bins. First, it starts by randomly generate 

permutations of the same size as the set of numbers. Each permutation represents the 

index of the items that will be considered by the First-fit algorithm. Then, the First-Fit 

algorithm is applied to all permutations in the population. The First-Fit algorithm 

considers each item according to the order of indexes in the permutation. Because 

bins are also ordered by the time they are initialized, Items are assigned to the first bin 
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that fits. If there are no current bins can fit the item, the new bin is initialized. The 

scores are the number of initialized bins, the less the better. Here is an example: 

A solution in population = {4,5,6,3,9,2}, Bin_capacity = 13 

Bin1 = {4} 

Bin1 = {4,5} 

Bin1 = {4,5}, Bin2 = {6} 

Bin1 = {4,5,3}, Bin2 = {6} 

Bin1 = {4,5,3}, Bin2 = {6}, Bin3 = {9} 

Bin1 = {4,5,3}, Bin2 = {6,2}, Bin3 = {9} 

 

For the parent selection, it uses the tournament selection. In the crossover step, 

it uses two parents to create an offspring by copying elements in the parents ordered 

from the first to the last one and from either of the parents alternatively. Next, the 

genetic algorithm randomly swaps two elements in a solution for the mutation step. 

To update the population, all solutions in the population will be replaced by all 

current offspring. 

 

2.2.2.3. Knapsack Problem  

For knapsack problem, Ken-Li li, Guang-Ming Dau and Qing-Hua Li 

proposed a genetic algorithm for the unbounded knapsack [22]. P.C. chu and J.E. 

Beasley proposed a genetic algorithm for the multidimensional knapsack [30]. Both of 

them use the total profits as scores for each solution. They use n-bit string, where n is 

the number of input items, to represent each solution (1 means selected item). 

To generate and repair infeasible solutions from the mutation and crossover 

steps, they use Repair-operator to fix the infeasible solutions by deleting some 

selected items from the solutions and adding some items that should increase the total 

profits to the solutions according to the proportion of each item's profits and weights 

under the rule of not exceeding the bin capacity. For parent selection, mutation and 

crossover steps, they both use the same algorithms which are the tournament selection 

for parent selection, random bits converting from 0 to 1 and 1 to 0 for mutation and 

random copying elements from two parents for crossover. 
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2.2.2.4. Subset Sum Problem 

For the subset sum problem, Rong Long Wang proposed a genetic algorithm 

to solve the subset sum problem [31]. The 0-1 vector was used to represent the 

solutions with the condition that the total sum of the selected numbers must not 

exceed the fixed value. Moreover, the following equation was used as the fitness 

function.  

Fitness function f(x) = 𝑘 × (𝐶 − 𝐴(𝑥)) + (1 − 𝑘) × 𝐴(𝑥) 

 Where 𝐴(𝑥) = ∑ 𝑥𝑖𝑠𝑖
𝑛
𝑖=1  , x is a candidate, C is the fixed value, and k = 1 if 

and only if (𝐶 − 𝐴(𝑥))  ≥ 0, otherwise k = 0. 

 

For other operations like parent selection, crossover, and mutation, the 

processes were not different much, but the proposed algorithm used the proportion of 

the length of solutions and the number of the different genes of each pair of parent 

chromosome to control these operations. 

 

 

2.2.3. Parallel Compact genetic algorithm 

In theory, the compact genetic algorithm is equivalent to the genetic algorithm 

with crossover. Moreover, the compact genetic algorithm which uses the probabilistic 

vector instead of the collection of the whole populations will offer the alternative way 

to share the probabilistic vector which can affect to performance. There are two 

examples that use this alternative method to solve problems.  

 

2.2.3.1. The  Cooperative Compact Genetic Algorithm (CoCGA) 

The first example is the  Cooperative Approach to Compact Genetic 

Algorithm [32], this algorithm uses the cellular model. In detail, there are two types of 

nodes, the leader as a center, and the normal CoCGA are neighbours (4 cells). A 

variable called confidence counter (cc) is used to consider which probabilistic vector 

of each normal node will be updated to the probabilistic vector of the leader node. 

When all confidence counters of CoCGA around a leader are updated, the leader will 

choose the probabilistic vector from a CoCGA that has the highest confidence count 

at that time and then broadcast to the other CoCGA around it to update their 
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probabilistic vectors. The result shows that the CoCGA with two normal nodes and 

one leader is at least three times better than a single compact genetic algorithm in 

term of execution time. 

 

 

Figure  2.6: The structure of A Cooperative Approach to Compact Genetic Algorithm 

(CoCGA) 

 

 
2.2.3.2. Massive parallelization of the compact genetic algorithm 

The second example is that Lobo, Lima, and Martires [33]. They propose a 

parallel compact genetic algorithm using the master-slave model. Firstly, a 

probabilistic vector of each slave will be sent to master when the number of time that 

fitness function executed reaches the time interval of migration. Then, the master will 

calculate probabilistic vector obtained and resend a new probabilistic vector back to 

the slave. The point is that the master node may be updated many times, while a slave 
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is working, so it is the way for all slaves to share information with each other. 

Moreover, this research measured the performance of the algorithm by counting the 

number of time that the fitness function are executed and shows the comparison of the 

performance with the various number of slaves and migration rates. 

 

Figure  2.7: The structure of the Massive parallelization of the compact genetic 

algorithm [33] 
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2.3. Contribution 

This research focuses on the parallel compact genetic algorithm as to the 

Massive parallelization of the compact genetic algorithm and the Cooperative 

Compact Genetic Algorithm. The cooperative compact genetic algorithm is based on 

master-slave but this research uses simulated annealing and restart mechanism to 

escape from local optima. The simulated annealing is used to consider whether the 

probabilistic vector should be restarted or not and the number of iterations executed 

after the newest best solution is found is used as the temperature in the simulated 

annealing algorithm. Moreover, the restart mechanism is applied to two levels. The 

first level is the average the current probabilistic vector and the restart point because 

to reinitialize the probabilistic vector have a high cost from restarting to search for 

solutions from the beginning again. The simulated annealing is used for this level. 

However, if applying restart at the first level cannot escape from local optima and find 

the expected solution after k number of iterations executed by the slave, the restart is 

applied to the second level. The probabilistic vector must be reinitialized to the restart 

point. The experiment is different from the Massive parallelization of the compact 

genetic algorithm and the Cooperative Compact Genetic Algorithm. This research 

uses traveling Salesman Problem, Bin Packing Problem, Knapsack Problem, Subset 

Sum Problem in the tests, while the Massive parallelization of the compact genetic 

algorithm presents the experiment on a bounded deceptive function consisting of the 

concatenation of 10 copies of a 3-bit trap function with the deceptive-to-optimal ratio 

of 0.7 and the Cooperative Compact Genetic Algorithm uses One-Max and the De 

jong test functions (F1,F2,F3) [34].  
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Chapter 3 Material and 

Methodology 
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Figure  3.1: Flow chart of Material and Methodology 
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This chapter is about material and methodology. The process started by 

choosing the setting/test data that were suitable for the experiment. From the scope of 

the research, the experiment used the traveling salesman problem, bin packing 

problem, knapsack problem, and subset sum problem as the setting/test data.  The 

compact genetic algorithm was designed for each problem to use in phase II 

(Implement and test Massive parallelization of the compact genetic algorithm and the 

Cooperative Compact Genetic Algorithm with the test data). In phase II, the test data 

started from small input and, from the observation, the sizes of input data were 

chosen. After that, the two algorithms were tested again and collected results. From 

observation, the proposed algorithm was designed in phase III. 

 

3.1. The definition of attributes and Setting/Test Data 

3.1.1. The definition of attributes 

Table  3.1: The definition of attributes 

Attributes Definition 

cGA Compact genetic algorithm node 

master node/leader node The node that control all cGA nodes 

around it 

iteration/cc The node that control all cGA nodes 

around it 

 

count The number of iterations since the latest 

finding of good solution 

bin_cap Bin capacity 

pop_size The number of individuals or feasible 

solutions in the population generated 

from the probabilistic vector/matrix 

state The shared variables in the master node 
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3.1.2. Setting Data (Test) 

3.1.2.1. Traveling Salesman Problem  

The problems in the experiment has 3 sizes of cites (11, 15, and 17 cities and 5 

problems per each). A problem of the 17-cities problems was from TSPLIB, a 

collection of traveling salesman problem datasets maintained by Gerhard Reinelt [35].  

A problem of the 15-cities problems was created by John Burkardt [36],   Florida 

State University and One problem of the 11-cities problems was from StackOverflow 

[37].   Other problems in each group were created by transforming from the problem 

in each group that was from other sources.  

 

3.1.2.2. Bin Packing Problem 

The experiment uses 4 problems of the bin packing problem from Prof. Dr. 

Armin Scholl and Dr. Robert Klein [38]. All problems have 50 items with average 

weight is “bin capacity/3”. The first problem has the maximum deviation of all weight 

is 20 percent from the average weight, while the others has 50 percent.  

 

3.1.2.3. Knapsack Problem  

The 4 knapsack problems from Johny A. Ortega R. (Jao Ruiz) [39] are used as 

the test data. The second problem is in low-dimensional group with 20 items and 878 

for bin capacity. The first, the third the fourth bin capacity around 1000 but the third 

one has 200 items, while the others have 100 items. 

 

3.1.2.4. Subset Sum Problem 

In the experiment, the 4 subset sum problems are used from John Burkardt, 

Florida State University [40]. The first and the fourth problems are a set of 10 

numbers for a target of 50. The second problem consists of 21 numbers for an 

expected solution of 2463098. Then, the third one also has 10 numbers but for a target 

of 5842. 
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3.2. Phase I: Design cGa for Test data 

All problems have similar structure of cGA: initialize probabilistic vector, 

generate individuals, evaluate populations and update the probabilistic vector. 

Solutions or individuals of each problem are different because of the different 

purposes of representation. Thus, the initialization of probabilistic vector may be 

different. However, the way to update the probabilistic vector is the same for all 

problems. The concept is the same as the update process of normal cGA which 

attempts to move searching areas torward to the winners and away from the losers by 

increasing and decreasing the probability in the vector. In the case of unsuccess to 

discover the expected solutions, the maximum iterations of each cGA node is 250,000 

iterations 

 

3.2.1. Traveling Salesman Problem  

Initialize probabilistic vector 

The algorithm uses a probabilistic matrix of size n × n instead of a 

probabilistic vector of size n by defining an element in row i-th column j-th to be a 

probability that city i-th will go to city j-th. 

Generate individuals 

A population will be generated by assigning the first city as the first visit and 

then randomizing the next city that has the chance to be visited over a constant. If the 

other cities have lower chances than the constant, the next city to be visited will be 

randomly selected. Moreover, each city must be visited only once. 

Evaluate populations 

Each population is assessed by its tour length. The goal is to discover the 

minimize tour length. 

 

3.2.2. Bin Packing Problem 

Initialize probabilistic vector  

The probabilistic matrix initialization assigned 0.5 to each element of a matrix 

of size n which n is the number of givens items. The definition of the probability is 

that there are 50 percents of items i being in position j which i is a row and j is a 

column of the matrix. 
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Generate individuals 

To generate a population from the probabilistic matrix, we start from 

randomizing an item that must have its probability to be in the first position over a 

constant. Then, for the other positions, the randomization is similar but, in the case 

that there is no other item having the probability to be in the specific position more 

than the constant, any of them will be randomly chosen. 

Evaluate populations 

To evaluate the value of a population, the fitness function for this problem is 

using a heuristic algorithm called the first-fit [19] and the less its score is, the better 

solution it is. In detailed, the first-fit algorithm is to attempt to sequentially put items 

into a group of bins that they first fit. 

 

3.2.3. Knapsack Problem  

Initialize probabilistic vector 

For the knapsack problem, 0.5 is assigned to all elements in a probabilistic 

vector of size n which n is the number of items. It means that each item has 50 

percents chance to be put into a knapsack with a fixed capacity.  

Generate individuals  

The algorithm generates populations from the probabilistic vector by 

randomizing each item to put into a knapsack. Each chosen item must have higher 

probabilistic than a constant. However, if the other items that can put into the 

knapsack without exceeding the capacity have lower probabilities, items will be 

randomly chosen to fill the knapsack as many as possible [22]. 

Evaluate populations 

For the evaluation, the sum of profits in a knapsack is used as a score of a 

population. The higher the score is, the better the population is. 

 

3.2.4. Subset Sum Problem 

Initialize probabilistic vector 

 All elements of a probabilistic vector in this problem is assigned to 0.5 which 

means that all number have 50 percent chances to be selected for a population. 

Generate individuals  
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 Each population is generated by randomizing a number. A number S in the 

given set will be chosen, if the randomized number is smaller than a probability of S 

in the probabilistic vector. 

Evaluate populations 

 To evaluate a population X = {𝑥1,..., 𝑥𝑛}, a set of numbers S = {𝑠1, … , 𝑠𝑛} and 

an expected value C are given. We use an equation below to calculate the population's 

score [31]: 

 

 Fitness function f(x) = 𝑘 × (𝐶 − 𝐴(𝑥)) + (1 − 𝑘) × 𝐴(𝑥) 

 Where 𝐴(𝑥) = ∑ 𝑥𝑖𝑠𝑖
𝑛
𝑖=1  and k = 1 if and only if (𝐶 − 𝐴(𝑥))  ≥ 0, otherwise k 

= 0 

 

3.3. Phase II: Implement and test Massive parallelization of the compact 

genetic algorithm and Cooperative Compact Genetic Algorithm 

(CoCGA) with the test data 

 

3.3.1. Massive parallelization of the compact genetic algorithm 

The algorithm had master-slave topology. In this research, there were 4 

normal cGA nodes with 1 master node. The performance of the algorithm was 

measured by the number of iterations executed until finding the expected solution or 

the number of iterations reached the maximum. 

 

3.3.1.1. Normal cGA node 

Firstly, Normal cGA nodes received the initialized probabilistic vector from 

the master node. Then, the 4 cGA nodes run cGA algorithm in parallel. There were 4 

main steps as to normal cGA: generate 8 individuals from the probabilistic vector, 

evaluate all generated individuals and find the best individual of the current 

generation, compete the best individual with the others, update the probabilistic vector 

toward the best individual. For sharing data, when the number of iterations executed 

after finding the latest best solution reached the time interval of migration, the 

difference of the current probabilistic vector and the previous probabilistic vector was 

sent to the master node. Next, the master node calculated the received data and sent 
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the calculated data back to the cGA node. After that, the received data from the 

master node replaces the current probabilistic vector of the normal cGA. 

 

Algorithm: Massive parallelization of the compact genetic algorithm (Normal cGA 

node) 

  1: Inputs: L is chromosome Length, N is population size 

  2: Initialize: Prob_vector = vectormaster from Master node, iteration = 0, k = 0         

  3:                  best_candidate = [] 

  4: Repeat 

  5:            If there is an update from Master node: 

  6:                   Prob_vector = vectormaster from Master node 

  7:                     Prev_vector = Prob_vector 

  8:             Candidates = Generate_candidate(Prob_vector, N) 

  9:             Scores = Fitness_function(Candidates) 

10:             Update Prob_vector  

11:             iteration++ , k++ 

12:             diff_vector = Prob_vector - Prev_vector        

13:             If the best individual from Candidates is better than best_candidate : 

14:                 best_candidate = the best individual from Candidates 

15:                 counter = 0 

16:             Send iteration, diff_vector to the Master node 

17: Until a cGA node discovers the expected solution or reach the limit  

18: Outputs: best_candidate, iteration 

Figure  3.2: Pseudocode of Massive parallelization of the compact genetic algorithm 

(Normal cGA node) 

 
3.3.1.2. Master node 

Master node initialized the probabilistic vector and broadcasted to all normal 

cGA nodes. The master node had its own probabilistic vector which also was 

initialized with the same values as other normal cGA. When a normal cGA sent its 

data to the master node, it would add the data to its probabilistic vector and then sent 

the calculated variables back to the normal cGA. This was the way to share data 

among normal cGA nodes because the number of iterations executed by each normal 

cGA nodes reach the interval time of migration at the different points of time. Thus, 

during the time a normal cGA run the normal cGA steps, the master node's 

probabilistic vector might be updated by other normal cGA nodes. 
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Algorithm: Massive parallelization of the compact genetic algorithm (Master node) 

1: Inputs: diff_vectori
cGA , ki ; i = {1,2,3,4} // interrupted and  sent by cGAi node    

2: Initialize: vectormaster = Generate_vector() 

3: Repeat 

4:            If ki = 8 : 

5:                 vectormaster = vectormaster + diff_vectori
cGA 

6:                 Send vectormaster to cGAi node    

11: Until a cGA node discovers the expected solution or reach the limit 

Figure  3.3: Pseudocode of Massive parallelization of the compact genetic algorithm 

(Master node) 

 
3.3.2. A Cooperative Approach to Compact Genetic Algorithm (CoCGA) 

A Cooperative Approach to Compact Genetic Algorithm has cellular model 

topology which master nodes must have not more than 4 normal cGA nodes in control 

and normal cGA nodes must be connected with less than 5 master nodes. The main 

idea was the higher number of the iterations is executed, the better the cGA node was. 

Moreover, the number of iterations executed by each normal cGA node must not be 

more than 250,000 iterations. 

 

3.3.2.1. Normal cGA node (Normal CoCGA) 

All cGA nodes had their own variables called confident counter (cc) which 

was the number of iterations executed. However, other steps were still similar to 

normal cGA. For the first step, all cGA nodes generated 8 individuals from the 

initialized probabilistic vector from the master node. Then, all individuals were 

evaluated by the fitness function and given scores. Next, the best individual with the 

highest fitness score was competed with the others and updated the probabilistic 

vector toward the best one and to escape the others. To share data, in each iteration, 

each node sent its probabilistic vector and confident counter (cc) to its leader node. 

Finally, it went back to the first step and so on until it discovered the expected 

solutions, or the number of iterations reached the limit 

 

 

 

 

3
8

7
8

7
6

5
1

9
0



 

C
U
 
i
T
h
e
s
i
s
 
6
0
7
0
3
7
2
6
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
0
9
0
7
2
5
6
2
 
1
8
:
3
3
:
1
2
 
/
 
s
e
q
:
 
1
6

 30 

Algorithm: A Cooperative Approach to Compact Genetic Algorithm for Evolvable 

Hardware (Normal CoCGA node) 

  1: Inputs: L is chromosome Length, N is population size 

  2: Initialize: Prob_vector = vectormaster from Leader node, cc = 0,           

  3:                  best_candidate = [] 

  4: Repeat 

  5:            If there is an update from Master node: 

  6:                   Prob_vector = vectormaster from Master node 

  7:             Candidates = Generate_candidate(Prob_vector, N) 

  8:             Scores = Fitness_function(Candidates) 

  9:             Update Prob_vector  

10:             cc++  

11:             If the best individual from Candidates is better than best_candidate : 

12:                 best_candidate = the best individual from Candidates 

13:             Send cc, Prob_vector to the Leader node 

14: Until a cGA node discovers the expected solution or reach the limit  

15: Outputs: best_candidate, cc 

Figure  3.4: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm 

for Evolvable Hardware (Normal CoCGA node) [32] 

 
3.3.2.2. Leader node 

The leader node received cc and probabilistic vectors from all under controlling 

cGA nodes. Then, the leader node checked that all confident counters (cc) were 

updated from the previous time that updating data by the leader had happened. If all 

confident counters (cc) were changed, the master node chose the probabilistic vector 

from the cGA node that had the highest value of the confident counters (cc) and 

broadcast it to all under controlling cGA nodes. Moreover, this updated would replace 

the current probabilistic vectors of the cGA nodes. 

 

Algorithm: the Cooperative Compact Genetic Algorithm for Evolvable Hardware 

(Leader node) 

1: Inputs: vectori
cGA , cci ; i = {1,2,3,4} // interrupted and  sent by cGAi node    

2: Initialize: prev_cci = [0, 0, 0, 0], vectormaster =  Generate_vector() 

3: Repeat 

4:             vectormaster = vectormax_cc
cGA 

5:             boardcast to all cGA nodes 

6: Until a cGA node discovers the expected solution or reach the limit  

Figure  3.5: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm 

for Evolvable Hardware (Leader node) [32] 
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3.4. Phase III: Implement the cooperative compact genetic algorithm 

The algorithm was improved upon the Massive parallelization of the compact 

genetic algorithm. Where the concept of sharing data is the same, the idea of 

simulated annealing accepting low-qualified solutions was used to consider an 

efficient sharing method. Then, if the sharing method cannot lead the current 

searching area away from local optima, the restart mechanism was exploited because 

it was more suitable to the probabilistic vector than a random selection from all 

neighbors of the Non-improving mechanism. 

 

3.4.1. Restart half way 

The concept of restart was exploited to escape local optima. To prevent high 

cost of reinitializing the probabilistic vector to restart the searching, there are two 

steps to escape from local optima. Restart halfway is the first step that exploited the 

idea of simulated annealing to control the sharing method. The number of iterations 

executed after finding the latest best local solutions called "counter" was used as the 

temperature in the equation of simulated annealing. In the simulated annealing, the 

high temperature had more probability to accept the worse solutions, but for this 

experiment, the lower value of the counter tended to accept the worse solutions. 

Furthermore, after reinitializing the probabilistic vector, these new values 

were assigned to the master node's probabilistic vector. Thus, the next sharing data, 

other cGA nodes could acquire some effects from the previous restart halfway. 

 

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (SA-step I) 

  1: Inputs: counter, solutioncGA, solutionmaster 

  2: Initialize: result = False 

  3: Calculate: diff_val = solutioncGA - solutionmaster 

  4: If diff_val < 0 or Exp(-diff_val/counter) < random(): 

  5:      result = True // SA accept the solutioncGA 

  6: End      

12: Outputs: result 

Figure  3.6: Pseudocode of A Cooperative Compact Genetic Algorithm (SA-step I) 
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3.4.2. Restart to the origin 

However, the restart halfway may not completely escape from local optima. 

The observation of the number of iterations after finding the latest best solution was 

used to consider when the fully restart should be used. The observation is from the 

collected results of testing the restart halfway. The results show that the number of 

iterations of the restart halfway is around 80 iterations, but it still could not discover 

the better solutions. The "80 iterations" is from the maximum of the average iterations 

executed since the latest best solution was discovered which was calculated from the 

problems of 15-cities TSP, 17-cities TSP, Bin packing and Subset sum problems that 

had the highest results of each problem. The calculation considered only the rounds 

that had the closest total number of iterations to the average. Moreover, the values that 

were assigned to the probabilistic vector to restart were from the average of all 

probabilistic vectors from all cGA nodes in the first iteration. The consensus of their 

probabilistic vector was used to decide the start point for "Fully restart" . 

 

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (Master node) 

  1: Inputs: solutioni
cGA, vectori

cGA, diff_vectori
cGA , counteri 

  2: Initialize: vectormaster = Generate_vector(), solutionmaster = Max_float, vectorrestart =            

avg(vectori
cGA; i = 1,..,4 , iteration = 1) 

  3: Repeat:  

  4:               If result from SA-step1 is False : 

  5:                   vectori
cGA = avg(vectorrestart, vectori

cGA) 

  6:               Elif counteri > 80: 

  7:                  vectori
cGA = vectorrestart 

  8:               Else :  

  9:                    vectori
cGA = diff_vectori

cGA + vectormaster 

10: Until: a cGA node discovers the expected solution or reach the limit 

Figure  3.7: Pseudocode of the Sharing Knowledge Compact Genetic Algorithm 

(Master node) 
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3.5. Evaluation 

To evaluate the proposed method, the average number of the total iterations from 

all cGA nodes executed in the test for 10 rounds was used to measure the performance 

of the algorithm in the case that the algorithm could discover the expected solutions 

for all rounds (the first group). On the other hand, if it could not find the expected 

solutions (the second group), the best solution that they can find and the number of 

rounds that they cannot find the expected solutions were taken into account to 

measure the performance 
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This chapter is about results and discussion. The first figure illustrates the 

description of all result tables below. Then, the result of the experiment in phase II 

(Massive parallelization of the compact genetic algorithm and the Cooperative  

Compact Genetic Algorithm) are shown and compared to each other. Next, the results 

of the experiment in phase III (the proposed algorithm) for each problem were 

compared to two algorithms from phase II.  Finally, the results summary and the 

overall comparison of each problem for the three algorithms are explained. 

 

4.1. The description of the result tables and the summary chart 

 

Figure  4.1: The description of the result tables 
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Figure  4.2: The description of the summary chart 

 
 

4.2. Phase II 

4.2.1. Traveling Salesman Problem (TSP) 

Overall, from the results of the experiment, the Massive parallelization of the 

compact genetic algorithm was more efficient than  the Cooperative Compact Genetic 

Algorithm. Not only the average numbers of iterations executed were lower, but, in 

some rounds of some problems, the  Cooperative Compact Genetic Algorithm could 

not find the expected solutions. Moreover, from all results, all the lowest numbers of 

iterations of each problem were from the Massive parallelization of the compact 

genetic algorithm, but the worst ones were from the Cooperative Compact Genetic 

Algorithm. 
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In 11 cities of TSP problem, Massive parallelization of the compact genetic 

algorithm had better results than  Cooperative Compact Genetic Algorithm. The table 

below shows the total number of iterations in each round of 10 experiments. The 

results illustrate that, for all problems for 11 cities, the iterations executed by the 

Massive parallelization of the compact genetic algorithm are more than 100 times less 

than the iterations executed by the  Cooperative Compact Genetic Algorithm. 

Moreover, for the second and the fifth problems,  Cooperative Compact Genetic 

Algorithm could not find the expected solution in some rounds. The best solutions 

that it found had an average percentage error at 1.46 and 1.05, respectively.  

 

Table  4.1: The performance on the traveling salesman problem (11 cities) by using 

the Massive parallelization of the compact genetic algorithm 
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Table  4.2: The performance on the traveling salesman problem (11 cities) by using 

the Cooperative Compact Genetic Algorithm (CoCGA) 

 

 

 

In 15 cities, the Massive parallelization of the compact genetic algorithm still had 

better performance, while the  Cooperative Compact Genetic Algorithm discovered 

the expected solution only for the fifth problem. Furthermore, for the other problems, 

the number of rounds that the Cooperative Compact Genetic Algorithm could not find 

the expected outcomes were at least 2 rounds with the average percentage error at 

0.89, 0.55,2.86 and 0.83, sequentially. Overall, the fourth and the third problems had 

the highest difficulty for the Massive parallelization of the compact genetic algorithm 

and the  Cooperative Compact Genetic Algorithm, respectively, while the fifth 

problem was very easy for both algorithms to find the expected solutions. 
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Table  4.3 The performance on the traveling salesman problem (15 cities) by using 

the Massive parallelization of the compact genetic algorithm 

 

 

 

 

Table  4.4: : The performance on the traveling salesman problem (15 cities) by using 

the Cooperative Compact Genetic Algorithm (CoCGA) 
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In the 17 cities of the TSP, the overall number of iterations executed by the 

Massive parallelization of the compact genetic algorithm still was much less than the 

results of the  Cooperative Compact Genetic Algorithm which could not find the 

expected solutions more than two rounds of each problem. While the second problem 

seemed to be the most difficult for the Massive parallelization of the compact genetic 

algorithm,  the  Cooperative Compact Genetic Algorithm has the highest number of 

rounds in the experiment that could not reach the expected results. It was from the 

first problem (17_1) which also has the highest percentage error of 3.76. 

 

Table  4.5: The performance on the traveling salesman problem (17 cities) by using 

the Massive parallelization of the compact genetic algorithm 
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Table  4.6: : The performance on the traveling salesman problem (17 cities) by using 

the Cooperative Compact Genetic Algorithm (CoCGA) 

 

 

 

 

4.2.2. Bin Packing Problem 

From four bin-packing problems, according to the table below, both the 

massive parallelization of the compact genetic algorithm and The Cooperative 

Compact Genetic Algorithm had no different performance and both methods could 

discover the expected solutions of all four problems in every round. In details, the 

result of the massive parallelization of the compact genetic algorithm in the first 

problem was better than the result of The Cooperative Compact Genetic Algorithm, 

while the others were slightly worse. Furthermore, the difficulty of each problem for 

both algorithms was similar. According to the results from the table, the simplest 

problem was the second problem, while the hardest one was the fourth problem. 

 

 

3
8

7
8

7
6

5
1

9
0



 

C
U
 
i
T
h
e
s
i
s
 
6
0
7
0
3
7
2
6
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
0
9
0
7
2
5
6
2
 
1
8
:
3
3
:
1
2
 
/
 
s
e
q
:
 
1
6

 42 

Table  4.7: The performance on the bin-packing problem by using the Massive 

parallelization of the compact genetic algorithm 

 

 

 
 
 
Table  4.8: : The performance on the bin-packing problem by using the Cooperative 

Compact Genetic Algorithm (CoCGA) 
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4.2.3. Knapsack Problem  

For Knapsack problem, the Cooperative Compact Genetic Algorithm and the 

Massive parallelization of the compact genetic algorithm had similar performance. 

They could discover the expected solutions for the first and second problems. 

Moreover, for the third problem, both algorithms could not find the expected solution 

for all ten rounds and some rounds from the fourth problem. The Cooperative 

Compact Genetic Algorithm had slightly better results for the first and the second 

problems, and, although both algorithms could not find the solution, the percentage 

error of the Cooperative Compact Genetic Algorithm was smaller. Interestingly, 

while, for the fouth problems, the number of rounds that the Massive parallelization 

of the compact genetic algorithm could not find the expected solution (2) were less 

than that of the  Cooperative Compact Genetic Algorithm (4). The percentages error 

of both algorithms was equal. 

 

 

Table  4.9: The performance on the knapsack problem by using the Massive 

parallelization of the compact genetic algorithm 

 

 

 

 

 

3
8

7
8

7
6

5
1

9
0



 

C
U
 
i
T
h
e
s
i
s
 
6
0
7
0
3
7
2
6
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
0
9
0
7
2
5
6
2
 
1
8
:
3
3
:
1
2
 
/
 
s
e
q
:
 
1
6

 44 

Table  4.10: The performance on the knapsack problem by using the Cooperative 

Compact Genetic Algorithm (CoCGA) 

 

 

4.2.4. Subset Sum Problem 

For subset sum problem, from the table below, the Massive parallelization of 

the compact genetic algorithm had a better performance than the Cooperative 

Compact Genetic Algorithm. It is significant in the first and in the fifth problems. 

However, for the second and third problems, the Cooperative Compact Genetic 

Algorithm were better. Overall, both algorithms could solve the problems. 
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Table  4.11: The performance on the subset sum problem by using the Massive 

parallelization of the compact genetic algorithm 

 

 

 
 

Table  4.12: The performance on the subset sum problem by using the Cooperative 

Compact Genetic Algorithm (CoCGA) 
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4.3. Phase III 

The results of the experiment in phase III are shown below. In phase III, the 

results of the proposed algorithm were compared with the results from other 

algorithms in phase II.  

 

4.3.1. Traveling Salesman Problem (TSP) 

In the 11-cities problems, from the table below, the proposed algorithm could 

find the expected solutions for all rounds in the experiment. Moreover, the average 

numbers of iterations executed in each problem were not very different. The highest 

average number of iterations was from the second problem, while the lowest one was 

from the first problem.  

 

Table  4.13: The performance on the traveling salesman problem (11 cities) by using 

the proposed algorithm (the sharing knowledge compact genetic algorithm) 

 

 

 
 
 
 
 
 
 
 
 

3
8

7
8

7
6

5
1

9
0



 

C
U
 
i
T
h
e
s
i
s
 
6
0
7
0
3
7
2
6
2
1
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
0
9
0
7
2
5
6
2
 
1
8
:
3
3
:
1
2
 
/
 
s
e
q
:
 
1
6

 47 

Moreover, Figure 4.3 shows the comparison of three algorithms for all five problems. 

All average number of iterations in the results (the grey bars) were lower than the 

results from the Massive parallelization of the compact genetic algorithm (the blue 

bars) and the Cooperative Compact Genetic Algorithm (the orange bars). However, 

although the results from the proposed algorithm may be better than the results from 

the Massive parallelization of the compact genetic algorithm, they were not very 

different except the results from the fourth problem that the average number of 

iterations was 1931.1 (refer to the table 4.1) in the Massive parallelization of the 

compact genetic algorithm, while it was only 204.3, refer to the table 4.13,in the 

proposed algorithm.  

 

Figure  4.3: A bar chart shows the comparison of the results from the three 

algorithms on the traveling salesman problem (11 cities) 

 

In the 15-cities problems, the proposed algorithm could find the expected 

solutions in every round. The fourth problem was the hardest and the fifth one was the 

simplest.  
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Table  4.14: The performance on the traveling salesman problem (11 cities) by using 

the proposed algorithm (the sharing knowledge compact genetic algorithm) 

 

 

 

Furthermore, the bar chart below illustrates the comparison of the results from 

the three algorithms on the traveling salesman problem (15 cities). While the results 

of the Massive parallelization of the compact genetic algorithm (the blue bars) were 

better than the results of Cooperative Compact Genetic Algorithm (the orange bars) 

because the average number of iterations were lower, the average numbers of 

iterations in the results of the proposed algorithm (the grey bars) were lower than the 

results of the Massive parallelization of the compact genetic algorithm especially in 

the first and fourth problems which the differences of the results were more than 50 

percent better, 1835.1 from table 4.3 and 693.1 from the table 4.14, and 5607.3 from 

the table 4.3 and 1233.6 from the table 4.14. 
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Figure  4.4: A bar chart shows the comparison of the results from the three 

algorithms on the traveling salesman problem (15 cities) 

 
In the 17-cities problems, the proposed algorithm still could find the expected 

solutions for all problems as to the Massive parallelization of the compact genetic 

algorithm.  

 

Table  4.15: The performance on the traveling salesman problem (17 cities) by using 

the proposed algorithm (the sharing knowledge compact genetic algorithm) 
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From the bar chart below that the comparison of the results from the three 

algorithms on the traveling salesman problem (17 cities), all results (the grey bars) 

were the best among the three algorithms. Although the result of the second problem 

(problem 17_2 in the Fig. 4.5) is not clearly better than the result from the Massive 

parallelization of the compact genetic algorithm, the average numbers of iterations 

were lower than 50 percent for the other problems. 

 

 

Figure  4.5: A bar chart shows the comparison of the results from the three 

algorithms on the traveling salesman problem (17 cities) 
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4.3.2. Bin Packing Problem 

For the Bin Packing Problem, according to the table below, the proposed 

algorithm could discover the expected solutions within 200,000 iterations for all 

experiments.  

 

Table  4.16: The performance on the bin-packing problem by using the proposed 

algorithm (the sharing knowledge compact genetic algorithm) 

 

 
Furthermore, The Fig. 4.6 the comparison of the results from the three 

algorithms on the bin-packing problem. The results from the proposed algorithm (the 

grey bars) were quite similar to the results from the other algorithms. The numbers of 

iterations executed were the lowest among the results from all algorithms except the 

result from the second problem (the problem number 2 in the Fig. 4.5) that the 

number of iterations was slightly higher than the result from the Cooperative Compact 

Genetic Algorithm. Moreover, the trend of the difficulty to solve the problem of the 

proposed algorithm was the same as the others' trends. The second problem was the 

easiest and the fourth one was the most difficult. 
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Figure  4.6: A bar chart shows the comparison of the results from the three 

algorithms on the bin-packing problem 

 

4.3.3. Knapsack Problem  

For the Knapsack problem, the proposed algorithm could find the expected 

solution for four problems. Like the other algorithms, the second problem was the 

easiest for the proposed algorithm. While the fourth problem was the hardest. 

 

Table  4.17: The performance on the knapsack problem by using the proposed 

algorithm (the sharing knowledge compact genetic algorithm) 
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For the first problem (see Fig. 4.7, the problem number 1), the result from the 

proposed algorithm (the blue bar) was better than the results from the Massive 

parallelization of the compact genetic algorithm (the orange bar) and the Cooperative 

Compact Genetic Algorithm (the gray bar). While the difference may not be clear 

between the results from the proposed algorithm and the Cooperative Compact 

Genetic Algorithm, it is noticeable. For the second problem (the problem number 2 in 

the Fig. 4.7), the performances from the three algorithms were similar. Unlike the 

others, the differences were large for the third fourth problems that the proposed 

algorithm could find the solutions, and its results were less than 5,000 iterations. 

 

 

Figure  4.7: A bar chart shows the comparison of the results from the three 

algorithms on the knapsack problem 
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Table  4.18: The performance on the subset sum problem by using the proposed 

algorithm (the sharing knowledge compact genetic algorithm) 

 

 

 

 
Figure  4.8: A bar chart shows the comparison of the results from the three 

algorithms on the subset sum problem 
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4.4. Results Summary 

For Traveling Salesman Problem, the Cooperative Compact Genetic 

Algorithm could not find some expected solutions for some problems and had the 

worst result. While the Massive parallelization of the compact genetic algorithm and 

the proposed algorithm had similar results, the proposed algorithm was better in some 

problems. For example, the third and fourth problems of the 17-cities group, the result 

from the proposed algorithm were less than 50 percent of the results from the Massive 

parallelization of the compact genetic algorithm. For the Bin Packing Problem, all 

three algorithms had very similar results. Although the proposed algorithm had the 

best performance and the Cooperative Compact Genetic Algorithm was the second 

best, the difference in the results of all three algorithms were not distinct. For the 

Subset Sum Problem, the proposed algorithm had the best performance. The 

Cooperative Compact Genetic Algorithm had better results compared to the Massive 

parallelization of the compact genetic algorithm for the second and the third 

problems. For the fourth problem, the performance of the three algorithms were very 

close.  To conclude, for small data set of Traveling Salesman Problem, Bin Packing 

Problem, Knapsack Problem, and Subset Sum Problem, the proposed algorithm was 

slightly better than the other two problems. Although the difference in the results from 

some problems were small, the proposed algorithm could find the expected solution 

of all test data and had good results. Thus, the proposed algorithm that employed the 

simulated annealing and the restart mechanism improves the overall performances in 

some cases such as the third and fourth problems of the Knapsack problem. 

 

4.5. Analysis 

The proposed algorithm employed the "Restart" mechanism to support escaping from 

local optima. Because the proposed algorithm developed from the Massive 

parallelization of the compact genetic algorithm by adding the restart mechanism and 

the simulated annealing, to show that the restart mechanism can decrease the average 

number of iterations executed, the number of half-restart and full-restart were 

analyzed. Table 1-6 in Appendix show the number of half-restart and full-restart on 

each instance of the problems for ten rounds. To illustrate the benefits of having the 

restart mechanism in the process, all instances of the problems could be divided into 
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two groups by the average number of iterations from the Massive parallelization of 

the compact genetic algorithm from tables in phase II (the fourth and fifth problems of 

the traveling salesman problems (11 cities), the first and the fourth problems of the 

traveling salesman problems (15 cities), the fourth of the bin-packing problem, the 

first, third and fourth problems of the knapsack problems as hard group and the other 

problems as easy group). Overall, the restart mechanism worked effectively in the 

case that the average number of iterations executed of the Massive parallelization of 

the compact genetic algorithm were high such as the fourth problem of the traveling 

salesman problem(15 cities) and the third problem of the knapsack problem (hard 

group) according to Fig. 4.4 and 4.7 because the costs of the restart mechanism may 

have negative results in the case that traps in the problems were not difficult for the 

Massive parallelization of the compact genetic algorithm to escape such as the first to 

the third problems of the traveling salesman problem (11 cities) from Fig. 4.3. 

According to Fig. 4.4, 4.7 and 4.8, for the fifth problem of the traveling salesman 

problem(15 cities), the second of the knapsack problem and the fourth problem of the 

subset sum problem, there was no half-restart and full-restart occurred during the 

process so the average number of the iterations executed so the results of the Massive 

parallelization of the compact genetic algorithm and the proposed algorithm were 

very similar. 

Although hard problems may not always have a high number of half-restart 

and full-restart, the number of half-restart and full-restart themselves can be employed 

to analyze the difficulty of the problems. The problems that had low numbers of half-

restart and full-restart such as the first problem of traveling salesman problems (11 

cities) from the table 1 in Appendix, the second problem of the bin-packing problem 

from the table 4 in Appendix and the second and third problems of the subset sum 

problem from the table 6 in Appendix also  were easy to the Massive parallelization 

of the compact genetic algorithm (easy group) according to the results from the table 

4.1, 4.7 and 4.11. However, the difficult problems may have to use the behaviors of 

the half-restart and full-restart to analyze. 

The behaviors of the half restarts and full restarts on each problem were 

shown below in figure 4.9 to 4.14 but some problems did not appear below because 

there was no restart occurring during their execution. Overall, from Fig. 4.9 to 4.14, 
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the half- restart usually occurred at the beginning of the execution. Then, the full-

restart would start to occur in a later period when the half restart mechanism 

difficultly discovered better solutions. Thus, the number of full restarts might be 

higher than the number of half-restarts in the case that the traps in problems were very 

complicated and the half restart could not handle them. For example, from Fig. 4.13, 

for the fourth problem of the knapsack problem which the Massive parallelization of 

the compact genetic algorithm could not find the expected solution in some rounds, 

the half restarts occurred frequently at the early iterations, while the full restarts 

started to occur after that and continuously and intensively occurred until the expected 

solutions were discovered.  

Moreover, the characteristic of traps of each problem also affects the 

behaviors of the restart. For the traveling salesman problem that the differences of its 

solutions (tour length) are high, the frequency of the half restart at the early iterations 

was not much because its traps were too complicated to find the very high-quality 

solutions in the early iterations. Thus, the half restart did not occur frequently in the 

early stages to escape from local optima. However, for the bin-packing problem, the 

feasible solutions are serial numbers so the half restart occurred more frequently due 

to the simulated annealing strategy and the chances to find the expected solutions by 

the half restart were higher. However, In the case that the very high-quality solution 

(the solutions next to the expected solution) was discovered and the number of 

iterations after finding the very high-quality solution was high, the half restart would 

stop and the full restart would take action and continuously occur until the expected 

solution was discovered according to Fig 4.12. 
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Figure  4.9: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the traveling salesman problem(11 cities) for ten rounds 
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Figure  4.10: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the traveling salesman problem(15 cities) for ten rounds 
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Figure  4.11: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the traveling salesman problem(17 cities) for ten rounds 
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Figure  4.12: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the bin-packing problem for ten rounds 
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Figure  4.13: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the knapsack problem for ten rounds 
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Figure  4.14: The scatter plot shows the behaviors of the half-restart and full-restart 

mechanism on the subset sum problem for ten rounds 
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Chapter 5 Conclusion 
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5.1. Conclusion 

The compact genetic algorithm was an effective heuristic algorithm to solve 

hard problems. It still cannot prevent or avoid local optima. There are much research 

in search optimization attempting to escape from the local optima. Thus, the 

parallelization was used to improve the performance of the algorithm.  

In this thesis, the research attempted to improve the performance of the 

existing parallel compact genetic algorithm by focusing on the shared parameters and 

sharing methods. The proposed algorithm exploited the property of the simulated 

annealing to consider the shared parameters whether they would be accepted or not. 

Moreover, the proposed algorithm used the "Restart" to help escape from local 

optima. In the case that the condition applying from the simulated annealing did not 

work, the restart was used. However, to prevent the high cost from rediscovering 

solution space, the probabilistic vector should be reinitialized by the average value. 

The observation of the results from the existing algorithm was employed to consider 

when it should restart the search.  

In the experiment, the Massive parallelization of the compact genetic 

algorithm and the Cooperative Compact Genetic Algorithm were implemented and 

tested with Traveling salesman problem (11, 15, 17 cities), bin packing problem (50 

items), knapsack problem (maximum of 200 items) and subset sum problem 

(maximum of 21 numbers). The proposed algorithm was designed, implemented and 

tested. The results of the experiment show that the proposed algorithm that employs 

the simulated annealing, the observation, and the restart can improve the performance. 

Although some results were not convincing due to the cost of the restart that may 

decrease the performance, there were no results from the proposed algorithm that was 

worse than the results from the other two algorithms.  

However, there was some limitation of the proposed algorithm. Although the 

test data were varied, the input data of each test were not large. Thus, the observation 

was from the small group of the dataset. This parameter may not be suitable for large 

dataset. This challenge can be studied in the future.  

Another point was, while the performance was effective, the number of shared 

variables of the proposed algorithm were higher than  the other algorithms. 
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5.2. Future works 

This research can be developed further by expanding the structure to more 

than four cGAs nodes to be able to exploit the benefits of topology and the 

observation number may be improved to be adaptive to each problem instead of using 

static value because each problem has different traps. The advantage of topology and 

the adaptive value for full restart may decrease the number of iterations executed to 

find the expected solutions. Moreover, the network issue should be concerned to 

support the scalable aspect of the practical works and the larger sizes of problems in 

the future. 
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APPENDIX 
 

Table 1: The total number of half and full restart on the traveling salesman 

problem(11 cities) for 10 rounds 

 
 

Table 2: The total number of half and full restart on the traveling salesman 

problem(15 cities) for 10 rounds 

 
 

Table 3: The total number of half and full restart on the traveling salesman 

problem(17 cities) for 10 rounds 

 
Table 4: The total number of half and full restart on the bin-packing problem for 10 

rounds 
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Table 5: The total number of half and full restart on the knapsack problem for 10 

rounds 

 
 

Table 6: The total number of half and full restart on the subset sum problem for 10 

rounds 
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