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1.1. Background
1.1.1. Motivation
In the present days, there are many groups of problems that are difficult to solve
because complexity is high and time required to solve these problems increases very
quickly as the sizes of the problems grow[1]. As a result, the evolutionary algorithms

have been developed and designed to fix these problems and one of the most popular
evolutionary algorithms is the genetic algorithm [2, 3] due to its efficient ability to
precisely search the best answers.

However, the genetic algorithm still cannot avoid premature convergence leading
to it being stuck in local optima [4]. These issues are the general problems in
evolutionary algorithms. In addition, although the genetic algorithm is an effective
algorithm, there is a major problem with the size of memories used to keep the whole

possible solution or solution space [5].

Consequently, the compact genetic algorithm is an interesting algorithm that can
reduce the size of memories by using probabilistic vector instead of collecting all
possible solutions. Moreover, the compact genetic algorithm is also equivalent to the
simple genetic algorithm with uniform crossover [5].

As the premature convergence still cannot be prevented in the compact genetic
algorithm, parallelization is widely used to support the problems. In addition to the
parallelization, the probabilistic vector of the compact genetic algorithm has an
important advantage that affects the process of exploring solution space in the

paralleled method [6].

This research focuses on designing a new algorithm supporting paralleled works in
the compact genetic algorithm emphasizing on migration processes of some specific
variables. We are also interested in studying the process of searching the high-quality
solutions in search space. In detailed, we will use traveling salesman problem [7], bin
packing problem [8], knapsack problem [9] and subset sum problem [10] in the

experiment because they are in the group of the challenging problems. Their
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complexity are quite high due to the variety of the high-quality solutions and long time

required to find the best solution.

1.1.2. Problem statement

The compact genetic algorithm is one of the effective heuristic search
algorithms to solve many challenging problems. However, there are some hard
problems that the compact genetic algorithm cannot solve them effectively. Because
of the highly deceptive local optima, it is inevitable to getting stuck in the local
optima. Moreover, it is very complicated to escape from local optima. Although the
parallelization is used to improve the performance of many algorithms, it cannot
completely prevent getting trapped in local optima. Thus, the purposes of this research
are to design and improve the mechanism for the parallelization of the compact
genetic algorithm to escape from the local optima and focus on the migration process
of some specific data to increase the performance of the compact genetic algorithm

and avoid premature convergence problem.

1.1.3. Scope

- Interested in migration methods and migrated parameters.

Use Traveling salesman problem (11, 15, 17 cities), bin packing problem (so
items), knapsack problem (maximum of 200 items) and subset sum problem
(maximum of 21 numbers) in the experiment

Network issues are not concerned because all algorithms are tested on one

computer.

- The number of iterations executed by a cGA node must not exceed 200,000

iterations.

The numbers of iterations executed and the percentage errors are used to

measure the performance.
- The runtime of iterations is not concerned.

- The experiment has one master node and four slave nodes
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1.2. Objectives
The objective of the research is to improve the existing parallel compact genetic
algorithm to escape from local optima and increase the performance by focusing on

the shared parameters and the sharing mechanism.
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2.1. Concept and Theory

2.1.1. Genetic algorithm (GA) [2]

Genetic algorithm is a search algorithm inspired by natural evolution. The
main idea is to improve a set of solutions called population instead of only one
solution. To initialize a population in GA, it starts from a set of random possible
solutions to keep diversity. Moreover, the diversity of the population must be
concerned, and the size of the population must be large enough to find the best result
efficiently but not too large to slow down the GA. Then, in each iteration, some
solutions in the set will be replaced by their children which are produced by some
rules. Moreover, the algorithm produces offspring in the next generation by three
main operations; selection, mutation, and crossover.

For selection, it is the first step to produce offspring by selecting a set of
expected high-quality solutions from the current population. There are many ways of
parent selections. For example, Fitness Proportionate Selection -- exploit fitness
scores of each solution in population to indicate the chances to be selected,
Tournament Selection -- randomly select some solutions from population and choose
the best one, Rank Selection -- choose solutions from the population by the rank of
their fitness scores, and Random Selection.

For Mutation, its idea is based on simple random change a solution. Mutation
maintains the diversity in the solution pool and prevent premature convergence. It
makes change or flip values of some fragments of a solution.

Crossover exchanging parts between two solutions by swapping of some bits
with randomly choosing crossover points.

To update the population, all possible solutions in the current generation will
be evaluated by the fitness function to calculate how good they are and give scores to
them. Furthermore, the diversity of the population should be maintained. There are
also many ways to update the population such as replacing all population by solutions
from the next generation, replacing the solutions that have the worst scores by the

solutions from the next generation, etc.
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Algorithm: Genetic Algorithm

1: Inputs: L is chromosome Length, N is population size

2: Initialize: population = Generate_population(N, L), fitness =
Fitness_function(individual)

3: Repeat

4: Parents = Parent_Selection(population)
Offspring = CrossOver(Parents)
Offspring = Mutaion(Offspring)
Fitness_Offspring = Fitness_function(Offspring)
Update Population

9: Find current best solution
11: Until termination criteria are reached
12: Outputs: best solution

® N

Figure 2.2: Pseudocode of Genetic Algorithm

2.1.2. Parallel Genetic algorithm

A parallel genetic algorithm is a group of the genetic algorithm that cooperates
with each other to discover the high-quality solutions. There are many types of the
parallel genetic algorithm such as master-slave, fine-grained and coarse-grained
[11],[22]. In the master-slave model, Master has duties to control and share data to all
slaves, while slaves have the same duties. For example, Master controls parent
selection and fitness assignment, and Slaves receive a set of solution and do the
remaining steps of GA. In Coarse-grained or island model, the population is divided
into subpopulations as the initial population of each island. Each island runs a genetic
algorithm and sometimes share some data to other islands. In Fine-grained model,
there is only one population, however, it has special structure for each node to only
share data to its neighbors. Considering cooperation among nodes, we can clearly
divide these groups into two types, non-migration, and migration. Moreover, in the
migration process, there are many significant factors that should be carefully
considered such as migration size, migration topology, migration frequency and

migration strategies [13]
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2.1.3. Compact genetic algorithm (cGA)

The compact genetic algorithm is proposed by Harik, Lobo, and Goldberg [5].
The main idea of the compact genetic algorithm is similar to the concept of the
genetic algorithm and also proved that it is equivalent to the simple genetic algorithm
with single point crossover. In detailed, the compact genetic algorithm attempts to
search for high-quality solutions in the group of all possible solution or called solution
space by imitating natural evolution. Firstly, a probabilistic vector is defined to
represent the solution space. The size of the probabilistic vector indicates the number
of bits required to represent a solution.
For example [14]:

Square roots problem:

Input: Given a real number

Output: Square roots of the input

Probabilistic vector: size of 30

Table 2.1: The example of the initialized probabilistic vector
0] 05|05 [0s]os]os|0s|osos]os{os|os|os]os|os]os|os]os]os]0s]os|os]os]os]os]os]0s]o0s]o0s

05

From the example above, the easiest way is to define a real number by binary
digits 1 and 0. A method suggested that 30 bits (the size of the vector is 30) are
divided into two parts equally, so the best number we can represent is a 2!° integer
(32768) with a decimal precision of 2'3. To illustrate, 000000000000011
110000000000000, 000000000000011 is the sum of 2° and 2! which is equal to 3 and
110000000000000 is the sum of 27! and 22 which is equal to 0.75, so
000000000000011 110000000000000 represents 3.75. In addition, Each element of
the probabilistic vector can possibly be a real number in the range to 0 to 1 because
each element of the probabilistic vector means the probability that the i-th bit will be
1. After designing the probabilistic vector, the process begins with initializing values
to the vector using a various method such as uniform distribution that all elements in

the vector are set to 0.5. Then, a group of numbers or called individuals are sampling



0675928.8€

T :bes / zT:€£:8T 29522060 :Ava1 / sisayt 129220209 sisaur 1 ro NI

from the probabilistic vector. After that, two individuals will be evaluated its quality
or called score by a function called fitness function which is designed depending on
problems. In the case of square roots, the fitness function can be the difference
between the power of two of an individual and the input number, so the less the
difference is, the higher quality the individual has. Two individuals will compete with
each other to find winners and losers which will be used for updating the probabilistic
vector. To update the probabilistic vector, each position of the losers and the winners
will be considered. If they are not equal, the probability of the vector in that position
will be increased or decreased following the winner. All of these steps will be

repeated until finding individuals that their scores are satisfactory.

Algorithm: Compact Genetic Algorithm

1: Inputs: L is chromosome Length, N is population size

2: Initialize: Prob_vector = Generate_vector(),

3 a = Generate_candidate(Prob_vector),

b = Generate_candidate(Prob_vector)

: Repeat

winner, loser = evaluate(Fitness_function(a), Fitness_function(b))

For i=1to L Do // Update probabilistic vector
If winner[i] '= 1 Then Prob_vector[i] = Prob_vector][i] + 1/N
Else Prob_vector[i] = Prob_vector[i] - 1/N

10: Find current best solution

11: Until termination criteria are reached

12: Outputs: best solution

@ o NDa A

Figure 2.3: Pseudocode of Compact Genetic Algorithm [5]

2.1.4. Simulated Annealing (SA)

Simulated annealing is an optimizing algorithm proposed by Kickpatrick,
Gelett, and Vecchi (1983) [15] and Cerny (1985) [16]. The idea of the algorithm is
inspired by the cooling process of forging metals that atoms in metals move
unpredictably in high temperature. In the simulated annealing algorithm, in each
temperature that is decreasing, it searched neighboring solution of the current
solution. In the case that the neighboring solutions are better, they will always be
accepted. However, if the neighboring solutions are worse, it may be accepted

according to the current temperature-dependent probability given by



0675928.8€

9T :bas / zT:g£:8T 29522060 a1 / sisauy 1z9z2£0209 s 1saul 1 ro [N

10

1 if Cost(x;) < Cost(x;)

PT = —(Cost(x)—Cost(x}))
e T if Cost(x;) > Cost(x;)

Where T is the current temperature, x; is the current solution,

x; is neighboring solutions

Algorithm: Simulated Annealing

1: Inputs: Problem_size, iterationSmax, teMpPmax

2: Initialize: Scurrent = CreatelnitialSolution(Problem_size), Spest = Scurrent
3: Repeat i = 0 to iterationSmax

4: Si = createNeighborSolution(Scurrent)

5 tempcurr = CalculateTempurature(i, tempmax)

6 If(Cost(Si) <= Cost(Scurrent))

7. Scurrent = Si

8: If(Cost(Si) <= Cost(Sbest))

9: Sbest = Si

10: End

11: Elseif(Exp( (Cost(Scurrent- Cost(Si)))/tempeurr ) > Rand())
12: Scurrent = Si

13: End

12: Outputs: Spest

Figure 2.4: Pseudocode of Simulated Annealing [17]

2.1.5. Traveling Salesman Problem

Traveling Salesman Problem (TSP) is a difficult problem. It consists of cities
and a salesman. The problem is to find the shortest path that the salesman can visit all
cities just once and come back to the first city [7].

For example [18]:
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Input :
cities = {A, B, C, D, E}
distances =

Table 2.2: The adjacency matrix showing the example of the input distances of the
traveling salesman problem

Cities A B C D E
A 0 2 0 12 5
B 2 0 4 8 0
C 0 4 0 3 3
D 12 8 3 0 10
E 5 0 3 10 0

To find a path of the problem is equivalent to find a Hamiltonian cycle which is NP-
complete. For example, path {A, B, C, D, E, A} is a total length of 24

2.1.6. Bin Packing Problem

Bin packing problem is an NP-hard problem which is to find the minimum
number of bins of fixed capacity that can contain all items having various weights.
Formally, given n item types with weights W = {wy,..., w,,}. There is the unlimited
number of bins of fixed capacity c. The problem is [19], [20]

Minimize k  where Kk is the number of bins used to contain all items

Subject to

i < X 2%, x;w; where x;; = 1if bin i contains item j,

otherwise x;; = 0

k —
je1xij=0o0r1 and Vw; <c where w; € W
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For example [18] :
Input:
Weight W = {4, 8, 1, 4, 2, 1}
Bin Capacity ¢ = 10
Output: 2
First bin = {4, 4, 2} and second bin= {8, 1, 1}

2.1.7.  Knapsack Problem

Knapsack problem is a NP-hard problem that fills the knapsack with items
chosen from n items with various weights and values in order to get the highest sum
of values or profits without exceeding the weight capacity of the knapsack. Formally,
it is given n items with weights W = {w,,..., w,,} and values V = {v,,..., v,} and
assumed that all of them are positive integers. X = {x4,..., x,,} shows which items are
chosen and maximize the sum of profit without crossing the capacity c. x; = 1 if item i

is chosen, otherwise x; =0. The problem is [21]

Maximize Y7, x; vy
Subject to
tix;w; <c
For example [22]:
Input:
Value V = {60, 100, 120}
Weight W = {10, 20, 30}
Knapsack capacity ¢ = 50
Output: 220
Solution = {10} , sum of value = 60 ; Solution = {20} , sum of value = 100
Solution = {30} , sum of value = 120 ; Solution = {20, 10} , sum of value = 160
Solution = {30, 10} , sum of value = 180 ; Solution = {30, 20} , sum of value = 220
Solution = {30, 20, 10} > 50
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2.1.8. Subset Sum Problem
In subset sum problem, a set of numbers S = {s;, ..., s, } and a fixed number c
are given. The problem is to find a subset of the given set and its sum is closest to the
fixed number without exceeding it. Formally [23],
Maximize Y7-, x; s;
Subject to
tixi s <c ,x; €{0,1} where x; =1 if the ith
number is chosen, otherwise x; = 0
For example [24]:
Input:
S={3,34,4,12,5, 2}
c=9
Output: {4, 5}

2.2. Related works
2.2.1. Simple mechanisms for escaping from local optima
2.2.1.1. Restart
Restart is a simple and straightforward way to escape from local optima by
reinitializing search process when it gets stuck in a local optimum. While it works
effectively in the case that the number of local optima is not high and the cost of

restarting is low, in other cases, it may not be suitable [25], [26], [27].

2.2.1.2.  Non-improving steps
Non-improving step is another simple way to escape from local optima. The
idea is to allow choosing neighboring solutions when a local optimum is encountered.
There are many ways to choose neighboring solutions such as a random selection
from all neighbors (uninformed Random Walk step) or from all neighbors that have
the lowest increase (mildest ascent step). The example of the algorithms that use this

mechanism is the stimulated annealing [25],[28].
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2.2.2. Problems with Genetic algorithm and some heuristic algorithms
2.2.2.1.  Traveling Salesman Problem
A Hybrid Heuristic for the Traveling Salesman Problem is proposed by R.
Baraglia, J.I. Hidalgo, and R. Perego. [29] It is the combination of compact genetic
algorithm and the Lin-Kernighan local search. For the compact genetic algorithm, the
initialized probabilistic matrix of i*i, where i is the number of the input cities, is
assigned by EL model. The concept is to assign high probability to short edges by the

following equation:

0 ifi=j
pij = L, - d(cf ¢) , otherwise
El -1

Where L, =max{d(c,¢):j € {1,2,...i—1}}

1, = min {d(ci, cj):j € {1,2,..,i— 1}}
And d(c;, ¢;) = distance from i-th city to j-th city
To generate a solution, the first visited city is randomly chosen, while the
other is selected by the ranks of their probabilities as the first priority and distances
from the currently selected city.
To update the probabilistic matrix, two solutions are considered which one has
a higher score (winner). The idea is to update the probabilistic matrix by following the

winner and escaping from the loser according to the equation:

pij
(p{fj +% if ((ci,cj) or (cj, c;) € Winner) and ((ci, cj) or (cj, c;) ¢ loser)
= 4| Pk, —% if ((ci, ¢;) or (cj,c;) ¢ Winner) and ((ci,cj) or (¢, ¢;) € loser)
\ p; otherwise

Where p{‘fj = the probability of i-th city to j-th city in the k-th iteration
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Algorithm: Compact Genetic Algorithm for Traveling Salesman Problem

1: Inputs: L is chromosome Length, N is population size
2: Initialize: Prob_vector = Generate_vector(), F_best = INT_MAX
4: Repeat

5: S[1] = Generate_candidate(Prob_vector)
6: F[1] = Tour_Length(S[1])
7: idx_best =1
8: Fork=2tosdo
9: S[k] = Generate_candidate(Prob_vector)
10: F[k] = Tour_Length(S[K])
11: If (F[K] < F[idx_best]): idx_best = k
12: Fork=1tosdo
13: If (F[idx_best] < F[k]) then Update(Prob_vec,S[idx best],S[i])
14: If (F[idx_best] <F best) :
15: count = 0;
16: F best = F[idx_best];
17: S best = S[idx_best];
18: Else
19: Update(Prob_vec, S best, S[idx_best]);
20: count = count + 1;
21: end if
22:

23: Until Convergence(Prob_vec) OR count > CONV_LIMIT
24: Outputs: S_best, F_best

Figure 2.5: Pseudocode of Compact Genetic Algorithm for Traveling Salesman
Problem [29]
2.2.2.2.  Bin Packing Problem

Junkerneier proposed how to apply a genetic algorithm to the Bin Packing
problem [19]. The concept is to randomly generate solutions and use the First-fit
algorithm as the fitness function to calculate their scores. Given a set of numbers (the
weights of items) and the fixed capacity of bins. First, it starts by randomly generate
permutations of the same size as the set of numbers. Each permutation represents the
index of the items that will be considered by the First-fit algorithm. Then, the First-Fit
algorithm is applied to all permutations in the population. The First-Fit algorithm
considers each item according to the order of indexes in the permutation. Because

bins are also ordered by the time they are initialized, Items are assigned to the first bin
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that fits. If there are no current bins can fit the item, the new bin is initialized. The
scores are the number of initialized bins, the less the better. Here is an example:

A solution in population = {4,5,6,3,9,2}, Bin_capacity = 13

Binl = {4}

Binl = {4,5}

Binl = {4,5}, Bin2 = {6}

Binl = {4,5,3}, Bin2 = {6}

Binl = {4,5,3}, Bin2 = {6}, Bin3 = {9}

Binl = {4,5,3}, Bin2 = {6,2}, Bin3 = {9}

For the parent selection, it uses the tournament selection. In the crossover step,
it uses two parents to create an offspring by copying elements in the parents ordered
from the first to the last one and from either of the parents alternatively. Next, the
genetic algorithm randomly swaps two elements in a solution for the mutation step.
To update the population, all solutions in the population will be replaced by all

current offspring.

2.2.2.3. Knapsack Problem

For knapsack problem, Ken-Li li, Guang-Ming Dau and Qing-Hua Li
proposed a genetic algorithm for the unbounded knapsack [22]. P.C. chu and J.E.
Beasley proposed a genetic algorithm for the multidimensional knapsack [30]. Both of
them use the total profits as scores for each solution. They use n-bit string, where n is
the number of input items, to represent each solution (1 means selected item).

To generate and repair infeasible solutions from the mutation and crossover
steps, they use Repair-operator to fix the infeasible solutions by deleting some
selected items from the solutions and adding some items that should increase the total
profits to the solutions according to the proportion of each item's profits and weights
under the rule of not exceeding the bin capacity. For parent selection, mutation and
crossover steps, they both use the same algorithms which are the tournament selection
for parent selection, random bits converting from 0 to 1 and 1 to O for mutation and

random copying elements from two parents for crossover.
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2.2.2.4.  Subset Sum Problem

For the subset sum problem, Rong Long Wang proposed a genetic algorithm
to solve the subset sum problem [31]. The 0-1 vector was used to represent the
solutions with the condition that the total sum of the selected numbers must not
exceed the fixed value. Moreover, the following equation was used as the fitness
function.

Fitness function f(x) = k x (C — A(x)) + (1 — k) X A(x)

Where A(x) = X%, x;s; , X Is a candidate, C is the fixed value, and k = 1 if

and only if (C — A(x)) = 0, otherwise k = 0.

For other operations like parent selection, crossover, and mutation, the
processes were not different much, but the proposed algorithm used the proportion of
the length of solutions and the number of the different genes of each pair of parent

chromosome to control these operations.

2.2.3. Parallel Compact genetic algorithm

In theory, the compact genetic algorithm is equivalent to the genetic algorithm
with crossover. Moreover, the compact genetic algorithm which uses the probabilistic
vector instead of the collection of the whole populations will offer the alternative way
to share the probabilistic vector which can affect to performance. There are two

examples that use this alternative method to solve problems.

2.2.3.1. The Cooperative Compact Genetic Algorithm (CoCGA)

The first example is the Cooperative Approach to Compact Genetic
Algorithm [32], this algorithm uses the cellular model. In detail, there are two types of
nodes, the leader as a center, and the normal CoCGA are neighbours (4 cells). A
variable called confidence counter (cc) is used to consider which probabilistic vector
of each normal node will be updated to the probabilistic vector of the leader node.
When all confidence counters of CoCGA around a leader are updated, the leader will
choose the probabilistic vector from a CoCGA that has the highest confidence count

at that time and then broadcast to the other CoCGA around it to update their
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probabilistic vectors. The result shows that the CoCGA with two normal nodes and
one leader is at least three times better than a single compact genetic algorithm in

term of execution time.

Other neighbor cells Other neighbor cells

Probability Vector
Probability Vector Probability Vector
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Figure 2.6: The structure of A Cooperative Approach to Compact Genetic Algorithm
(CoCGA)

2.2.3.2.  Massive parallelization of the compact genetic algorithm
The second example is that Lobo, Lima, and Martires [33]. They propose a
parallel compact genetic algorithm using the master-slave model. Firstly, a
probabilistic vector of each slave will be sent to master when the number of time that
fitness function executed reaches the time interval of migration. Then, the master will
calculate probabilistic vector obtained and resend a new probabilistic vector back to

the slave. The point is that the master node may be updated many times, while a slave
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is working, so it is the way for all slaves to share information with each other.
Moreover, this research measured the performance of the algorithm by counting the
number of time that the fitness function are executed and shows the comparison of the

performance with the various number of slaves and migration rates.

model
model difference

Figure 2.7 : The structure of the Massive parallelization of the compact genetic
algorithm [33]
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2.3. Contribution

This research focuses on the parallel compact genetic algorithm as to the
Massive parallelization of the compact genetic algorithm and the Cooperative
Compact Genetic Algorithm. The cooperative compact genetic algorithm is based on
master-slave but this research uses simulated annealing and restart mechanism to
escape from local optima. The simulated annealing is used to consider whether the
probabilistic vector should be restarted or not and the number of iterations executed
after the newest best solution is found is used as the temperature in the simulated
annealing algorithm. Moreover, the restart mechanism is applied to two levels. The
first level is the average the current probabilistic vector and the restart point because
to reinitialize the probabilistic vector have a high cost from restarting to search for
solutions from the beginning again. The simulated annealing is used for this level.
However, if applying restart at the first level cannot escape from local optima and find
the expected solution after k number of iterations executed by the slave, the restart is
applied to the second level. The probabilistic vector must be reinitialized to the restart
point. The experiment is different from the Massive parallelization of the compact
genetic algorithm and the Cooperative Compact Genetic Algorithm. This research
uses traveling Salesman Problem, Bin Packing Problem, Knapsack Problem, Subset
Sum Problem in the tests, while the Massive parallelization of the compact genetic
algorithm presents the experiment on a bounded deceptive function consisting of the
concatenation of 10 copies of a 3-bit trap function with the deceptive-to-optimal ratio
of 0.7 and the Cooperative Compact Genetic Algorithm uses One-Max and the De
jong test functions (F1,F2,F3) [34].
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This chapter is about material and methodology. The process started by

choosing the setting/test data that were suitable for the experiment. From the scope of

the research, the experiment used the traveling salesman problem, bin packing

problem, knapsack problem, and subset sum problem as the setting/test data. The

compact genetic algorithm was designed for each problem to use in phase Il

(Implement and test Massive parallelization of the compact genetic algorithm and the

Cooperative Compact Genetic Algorithm with the test data). In phase 11, the test data

started from small input and, from the observation, the sizes of input data were

chosen. After that, the two algorithms were tested again and collected results. From

observation, the proposed algorithm was designed in phase 1.

3.1. The definition of attributes and Setting/Test Data

3.1.1. The definition of attributes

Table 3.1: The definition of attributes

Attributes

Definition

cGA

Compact genetic algorithm node

master node/leader node

The node that control all cGA nodes

around it

iteration/cc

The node that control all cGA nodes

around it

count The number of iterations since the latest
finding of good solution

bin_cap Bin capacity

pop_size The number of individuals or feasible

solutions in the population generated

from the probabilistic vector/matrix

state

The shared variables in the master node
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3.1.2. Setting Data (Test)

3.1.2.1.  Traveling Salesman Problem

The problems in the experiment has 3 sizes of cites (11, 15, and 17 cities and 5
problems per each). A problem of the 17-cities problems was from TSPLIB, a
collection of traveling salesman problem datasets maintained by Gerhard Reinelt [35].
A problem of the 15-cities problems was created by John Burkardt [36], Florida
State University and One problem of the 11-cities problems was from StackOverflow
[37]. Other problems in each group were created by transforming from the problem

in each group that was from other sources.

3.1.2.2.  Bin Packing Problem

The experiment uses 4 problems of the bin packing problem from Prof. Dr.
Armin Scholl and Dr. Robert Klein [38]. All problems have 50 items with average
weight is “bin capacity/3”. The first problem has the maximum deviation of all weight

is 20 percent from the average weight, while the others has 50 percent.

3.1.2.3.  Knapsack Problem

The 4 knapsack problems from Johny A. Ortega R. (Jao Ruiz) [39] are used as
the test data. The second problem is in low-dimensional group with 20 items and 878
for bin capacity. The first, the third the fourth bin capacity around 1000 but the third

one has 200 items, while the others have 100 items.

3.1.2.4.  Subset Sum Problem

In the experiment, the 4 subset sum problems are used from John Burkardt,
Florida State University [40]. The first and the fourth problems are a set of 10
numbers for a target of 50. The second problem consists of 21 numbers for an
expected solution of 2463098. Then, the third one also has 10 numbers but for a target
of 5842.
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3.2. Phase I: Design cGa for Test data

All problems have similar structure of cGA: initialize probabilistic vector,
generate individuals, evaluate populations and update the probabilistic vector.
Solutions or individuals of each problem are different because of the different
purposes of representation. Thus, the initialization of probabilistic vector may be
different. However, the way to update the probabilistic vector is the same for all
problems. The concept is the same as the update process of normal cGA which
attempts to move searching areas torward to the winners and away from the losers by
increasing and decreasing the probability in the vector. In the case of unsuccess to
discover the expected solutions, the maximum iterations of each cGA node is 250,000

iterations

3.2.1. Traveling Salesman Problem
Initialize probabilistic vector

The algorithm uses a probabilistic matrix of size n X n instead of a
probabilistic vector of size n by defining an element in row i-th column j-th to be a
probability that city i-th will go to city j-th.
Generate individuals

A population will be generated by assigning the first city as the first visit and
then randomizing the next city that has the chance to be visited over a constant. If the
other cities have lower chances than the constant, the next city to be visited will be
randomly selected. Moreover, each city must be visited only once.
Evaluate populations

Each population is assessed by its tour length. The goal is to discover the

minimize tour length.

3.2.2. Bin Packing Problem
Initialize probabilistic vector

The probabilistic matrix initialization assigned 0.5 to each element of a matrix
of size n which n is the number of givens items. The definition of the probability is
that there are 50 percents of items i being in position j which i is a row and j is a

column of the matrix.
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Generate individuals

To generate a population from the probabilistic matrix, we start from
randomizing an item that must have its probability to be in the first position over a
constant. Then, for the other positions, the randomization is similar but, in the case
that there is no other item having the probability to be in the specific position more
than the constant, any of them will be randomly chosen.
Evaluate populations

To evaluate the value of a population, the fitness function for this problem is
using a heuristic algorithm called the first-fit [19] and the less its score is, the better
solution it is. In detailed, the first-fit algorithm is to attempt to sequentially put items

into a group of bins that they first fit.

3.2.3. Knapsack Problem
Initialize probabilistic vector

For the knapsack problem, 0.5 is assigned to all elements in a probabilistic
vector of size n which n is the number of items. It means that each item has 50
percents chance to be put into a knapsack with a fixed capacity.
Generate individuals

The algorithm generates populations from the probabilistic vector by
randomizing each item to put into a knapsack. Each chosen item must have higher
probabilistic than a constant. However, if the other items that can put into the
knapsack without exceeding the capacity have lower probabilities, items will be
randomly chosen to fill the knapsack as many as possible [22].
Evaluate populations

For the evaluation, the sum of profits in a knapsack is used as a score of a

population. The higher the score is, the better the population is.

3.2.4. Subset Sum Problem
Initialize probabilistic vector

All elements of a probabilistic vector in this problem is assigned to 0.5 which
means that all number have 50 percent chances to be selected for a population.

Generate individuals
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Each population is generated by randomizing a number. A number S in the
given set will be chosen, if the randomized number is smaller than a probability of S
in the probabilistic vector.
Evaluate populations

To evaluate a population X = {x4,..., x,,}, a set of numbers S = {s;, ..., s, } and
an expected value C are given. We use an equation below to calculate the population's
score [31]:

Fitness function f(x) = k x (C — A(x)) + (1 — k) X A(x)
Where A(x) = ¥, x;s; and k = L ifand only if (C — A(x)) > 0, otherwise k

3.3. Phase II: Implement and test Massive parallelization of the compact
genetic algorithm and Cooperative Compact Genetic Algorithm
(CoCGA) with the test data

3.3.1. Massive parallelization of the compact genetic algorithm

The algorithm had master-slave topology. In this research, there were 4
normal cGA nodes with 1 master node. The performance of the algorithm was
measured by the number of iterations executed until finding the expected solution or

the number of iterations reached the maximum.

3.3.1.1.  Normal cGA node

Firstly, Normal cGA nodes received the initialized probabilistic vector from
the master node. Then, the 4 cGA nodes run cGA algorithm in parallel. There were 4
main steps as to normal cGA: generate 8 individuals from the probabilistic vector,
evaluate all generated individuals and find the best individual of the current
generation, compete the best individual with the others, update the probabilistic vector
toward the best individual. For sharing data, when the number of iterations executed
after finding the latest best solution reached the time interval of migration, the
difference of the current probabilistic vector and the previous probabilistic vector was

sent to the master node. Next, the master node calculated the received data and sent
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the calculated data back to the cGA node. After that, the received data from the
master node replaces the current probabilistic vector of the normal cGA.

Algorithm: Massive parallelization of the compact genetic algorithm (Normal cGA
node)

1: Inputs: L is chromosome Length, N is population size
2: Initialize: Prob_vector = vectormaster from Master node, iteration =0, k =0
best_candidate =[]

w

4: Repeat

5 If there is an update from Master node:

6: Prob_vector = vectormaser from Master node
7 Prev_vector = Prob_vector
8 Candidates = Generate_candidate(Prob_vector, N)
9: Scores = Fitness_function(Candidates)

10: Update Prob_vector

11: iteration++ , k++

12: diff_vector = Prob_vector - Prev_vector

13: If the best individual from Candidates is better than best_candidate :
14: best_candidate = the best individual from Candidates

15: counter =0

16: Send iteration, diff _vector to the Master node

17: Until a cGA node discovers the expected solution or reach the limit
18: Outputs: best_candidate, iteration

Figure 3.2: Pseudocode of Massive parallelization of the compact genetic algorithm
(Normal cGA node)
3.3.1.2.  Master node

Master node initialized the probabilistic vector and broadcasted to all normal
cGA nodes. The master node had its own probabilistic vector which also was
initialized with the same values as other normal cGA. When a normal cGA sent its
data to the master node, it would add the data to its probabilistic vector and then sent
the calculated variables back to the normal cGA. This was the way to share data
among normal cGA nodes because the number of iterations executed by each normal
cGA nodes reach the interval time of migration at the different points of time. Thus,
during the time a normal cGA run the normal cGA steps, the master node's

probabilistic vector might be updated by other normal cGA nodes.
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Algorithm: Massive parallelization of the compact genetic algorithm (Master node)

1: Inputs: diff_vector'ea , k' ; i = {1,2,3,4} // interrupted and sent by cGA' node
2: Initialize: vectormaster= Generate_vector()

3: Repeat

4: Ifki=8:

5: VeCtOrmaster = VECtOrmaster + diff vector'cga
6: Send vectormaster to CGA' node

11: Until a cGA node discovers the expected solution or reach the limit

Figure 3.3: Pseudocode of Massive parallelization of the compact genetic algorithm
(Master node)

3.3.2. A Cooperative Approach to Compact Genetic Algorithm (CoCGA)

A Cooperative Approach to Compact Genetic Algorithm has cellular model
topology which master nodes must have not more than 4 normal cGA nodes in control
and normal cGA nodes must be connected with less than 5 master nodes. The main
idea was the higher number of the iterations is executed, the better the cGA node was.
Moreover, the number of iterations executed by each normal cGA node must not be

more than 250,000 iterations.

3.3.2.1.  Normal cGA node (Normal CoCGA)

All cGA nodes had their own variables called confident counter (cc) which
was the number of iterations executed. However, other steps were still similar to
normal cGA. For the first step, all cGA nodes generated 8 individuals from the
initialized probabilistic vector from the master node. Then, all individuals were
evaluated by the fitness function and given scores. Next, the best individual with the
highest fitness score was competed with the others and updated the probabilistic
vector toward the best one and to escape the others. To share data, in each iteration,
each node sent its probabilistic vector and confident counter (cc) to its leader node.
Finally, it went back to the first step and so on until it discovered the expected

solutions, or the number of iterations reached the limit
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Algorithm: A Cooperative Approach to Compact Genetic Algorithm for Evolvable
Hardware (Normal CoCGA node)

1: Inputs: L is chromosome Length, N is population size
2: Initialize: Prob_vector = vectormaster from Leader node, cc = 0,

3 best_candidate =[]

4: Repeat

5 If there is an update from Master node:

6: Prob_vector = vectormaser from Master node

7 Candidates = Generate_candidate(Prob_vector, N)

8 Scores = Fitness_function(Candidates)

9: Update Prob_vector
10: cct++
11: If the best individual from Candidates is better than best_candidate :
12: best_candidate = the best individual from Candidates
13: Send cc, Prob_vector to the Leader node

14: Until a cGA node discovers the expected solution or reach the limit
15: Outputs: best_candidate, cc

Figure 3.4: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm
for Evolvable Hardware (Normal CoCGA node) [32]
3.3.2.2.  Leader node
The leader node received cc and probabilistic vectors from all under controlling
CcGA nodes. Then, the leader node checked that all confident counters (cc) were
updated from the previous time that updating data by the leader had happened. If all
confident counters (cc) were changed, the master node chose the probabilistic vector
from the cGA node that had the highest value of the confident counters (cc) and
broadcast it to all under controlling cGA nodes. Moreover, this updated would replace

the current probabilistic vectors of the cGA nodes.

Algorithm: the Cooperative Compact Genetic Algorithm for Evolvable Hardware
(Leader node)

1: Inputs: vector'ca , cc' ;i = {1,2,3,4} // interrupted and sent by cGA' node
2: Initialize: prev_cc' = [0, 0, 0, 0], vectormaster = Generate_vector()

3: Repeat
4: VEeCtOrmaster = Vector™*-¢.sa
5: boardcast to all cGA nodes

6: Until a cGA node discovers the expected solution or reach the limit

Figure 3.5: Pseudocode of A Cooperative Approach to Compact Genetic Algorithm
for Evolvable Hardware (Leader node) [32]
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3.4. Phase I11: Implement the cooperative compact genetic algorithm

The algorithm was improved upon the Massive parallelization of the compact
genetic algorithm. Where the concept of sharing data is the same, the idea of
simulated annealing accepting low-qualified solutions was used to consider an
efficient sharing method. Then, if the sharing method cannot lead the current
searching area away from local optima, the restart mechanism was exploited because
it was more suitable to the probabilistic vector than a random selection from all

neighbors of the Non-improving mechanism.

3.4.1. Restart half way

The concept of restart was exploited to escape local optima. To prevent high
cost of reinitializing the probabilistic vector to restart the searching, there are two
steps to escape from local optima. Restart halfway is the first step that exploited the
idea of simulated annealing to control the sharing method. The number of iterations
executed after finding the latest best local solutions called "counter” was used as the
temperature in the equation of simulated annealing. In the simulated annealing, the
high temperature had more probability to accept the worse solutions, but for this
experiment, the lower value of the counter tended to accept the worse solutions.

Furthermore, after reinitializing the probabilistic vector, these new values
were assigned to the master node's probabilistic vector. Thus, the next sharing data,

other cGA nodes could acquire some effects from the previous restart halfway.

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (SA-step 1)

1: Inputs: counter, solutioncca, solutionmaster

2: Initialize: result = False

3: Calculate: diff val = solutioncea - solutionmaster

4: If diff_val < 0 or Exp(-diff_val/counter) < random():
5. result = True // SA accept the solutioncca

6: End

12: Outputs: result

Figure 3.6: Pseudocode of A Cooperative Compact Genetic Algorithm (SA-step I)
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3.4.2. Restart to the origin

However, the restart halfway may not completely escape from local optima.
The observation of the number of iterations after finding the latest best solution was
used to consider when the fully restart should be used. The observation is from the
collected results of testing the restart halfway. The results show that the number of
iterations of the restart halfway is around 80 iterations, but it still could not discover
the better solutions. The "80 iterations™ is from the maximum of the average iterations
executed since the latest best solution was discovered which was calculated from the
problems of 15-cities TSP, 17-cities TSP, Bin packing and Subset sum problems that
had the highest results of each problem. The calculation considered only the rounds
that had the closest total number of iterations to the average. Moreover, the values that
were assigned to the probabilistic vector to restart were from the average of all
probabilistic vectors from all cGA nodes in the first iteration. The consensus of their

probabilistic vector was used to decide the start point for "Fully restart™ .

Algorithm: the Sharing Knowledge Compact Genetic Algorithm (Master node)

1: Inputs: solution'cca, vector'sa, diff_vector'sa , counter!
2: Initialize: vectormaster = Generate_vector(), solutionmaseer = Max_float, vectorrestart =
avg(vector'sea; i = 1,..,4 , iteration = 1)

3: Repeat:

4: If result from SA-stepl is False :

5: vector'cca = avg(VectOrrestart, VECtOr'cga)
6: Elif counter' > 80:

7: Vector'cca = VECtOrrestart

8 Else :

0: vector'cca = diff_vector'.ca + VeCtormaster

10: Until: a cGA node discovers the expected solution or reach the limit

Figure 3.7: Pseudocode of the Sharing Knowledge Compact Genetic Algorithm
(Master node)
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3.5. Evaluation

To evaluate the proposed method, the average number of the total iterations from
all cGA nodes executed in the test for 10 rounds was used to measure the performance
of the algorithm in the case that the algorithm could discover the expected solutions
for all rounds (the first group). On the other hand, if it could not find the expected
solutions (the second group), the best solution that they can find and the number of
rounds that they cannot find the expected solutions were taken into account to

measure the performance



ceeo (MM

Chapter 4 Results and
discussion

34



35

This chapter is about results and discussion. The first figure illustrates the
description of all result tables below. Then, the result of the experiment in phase Il
(Massive parallelization of the compact genetic algorithm and the Cooperative
Compact Genetic Algorithm) are shown and compared to each other. Next, the results
of the experiment in phase Ill (the proposed algorithm) for each problem were
compared to two algorithms from phase Il. Finally, the results summary and the

overall comparison of each problem for the three algorithms are explained.
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Figure 4.1: The description of the result tables
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‘ Type of problems

| > TRAVELING SALESMAN PROBLEM (11 CITIES)

6
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THE AVERAGE NUMBERS OF ITERATIONS (LOG10)
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PROBLEMS H 1
\ X-axis = Problems in
/ The proposed Algo. mMasterslave  mCC the group

The grey bars represent the proposed algorithm (Sharing
knowledge compact genetic algorithm)

The blue bars represent Massive parallelization of the
compact genetic algorithm

The orange bars represent Cooperative Compact Genetic
Algorithm

Figure 4.2: The description of the summary chart

4.2. Phase Il
4.2.1. Traveling Salesman Problem (TSP)

Overall, from the results of the experiment, the Massive parallelization of the
compact genetic algorithm was more efficient than the Cooperative Compact Genetic
Algorithm. Not only the average numbers of iterations executed were lower, but, in
some rounds of some problems, the Cooperative Compact Genetic Algorithm could
not find the expected solutions. Moreover, from all results, all the lowest numbers of
iterations of each problem were from the Massive parallelization of the compact
genetic algorithm, but the worst ones were from the Cooperative Compact Genetic

Algorithm.
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In 11 cities of TSP problem, Massive parallelization of the compact genetic
algorithm had better results than Cooperative Compact Genetic Algorithm. The table
below shows the total number of iterations in each round of 10 experiments. The
results illustrate that, for all problems for 11 cities, the iterations executed by the
Massive parallelization of the compact genetic algorithm are more than 100 times less
than the iterations executed by the Cooperative Compact Genetic Algorithm.
Moreover, for the second and the fifth problems, Cooperative Compact Genetic
Algorithm could not find the expected solution in some rounds. The best solutions

that it found had an average percentage error at 1.46 and 1.05, respectively.

Table 4.1: The performance on the traveling salesman problem (11 cities) by using
the Massive parallelization of the compact genetic algorithm

11 cities
Master-slave

111 11 2 11 3 11 4 115
sum_round 1 211 110 234 1508 979
sum_round 2 271 1662 166 87 97
sum_round 3 214 193 576 2966 262
sum_round 4 229 216 209 139 1538
sum_round 5 5 205 136 23 122
sum_round 6 41 412 345 355 3043
sum_round 7 89 466 1946 3443 1274
sum_round 8 220 868 220 15 55
sum_round 9 41 565 363 9742 139
sum_round 10 6 1987 325 1033 27506
Average 132.7 668.4 452 1931.1 3501.5
SD 105.33022| 653.23183| 540.05761| 3014.0655| 8487.2264
Best 5 110 136 15 55
Worst 271 1987 1946 9742 27506
Not found 0 0 0 0 0
Not found_percent average
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Table 4.2: The performance on the traveling salesman problem (11 cities) by using
the Cooperative Compact Genetic Algorithm (CoCGA)

11 cities
cc
11 1 11_2 113 11_ 4 115

sum_round 1 5803 2255 355878 27673 47452
sum_round 2 328 2718 548103 543 oo
sum_round 3 16676 oo 45670 55199 17769
sum_round 4 377 505824 9207 4766 1126
sum_round 5 2190 11201 26196 90601 242811
sum_round 6 38519 6061 113043 93 110230
sum_round 7 14167 6332 1328 124082 oo
sum_round 8 4983 13688 272496 190620 2090
sum_round 9 22455 243955 334270 119930 141520
sum_round 10 244362 78625 3114 739315 oo
Average 34986| 96739.8889 170930.5 135282.2| 80428.2857
SD 74537.7378| 172383.483| 193371.009| 221543.512| 89840.4574
Best 328 2255 1328 93 1126
Worst 244362 505824 548103 739315 242811
Not found 0 1 0 0 3

Not found_percent average

1.46%

1.05%

In 15 cities, the Massive parallelization of the compact genetic algorithm still had

better performance, while the Cooperative Compact Genetic Algorithm discovered

the expected solution only for the fifth problem. Furthermore, for the other problems,

the number of rounds that the Cooperative Compact Genetic Algorithm could not find

the expected outcomes were at least 2 rounds with the average percentage error at

0.89, 0.55,2.86 and 0.83, sequentially. Overall, the fourth and the third problems had

the highest difficulty for the Massive parallelization of the compact genetic algorithm

and the Cooperative Compact Genetic Algorithm, respectively, while the fifth

problem was very easy for both algorithms to find the expected solutions.
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the Massive parallelization of the compact genetic algorithm

15 cities
Master-slave

15_1 15_2 15_3 15_4 15_5
sum_round 1 688 6 879 2517 6
sum_round 2 887 4 377 1585 4
sum_round 3 103 27 430 14897 5
sum_round 4 5084 1278 1200 24840 6
sum_round 5 2940 617 1485 4924 5
sum_round 6 967 286 8 98 5
sum_round 7 90 594 179 537 4
sum_round 8 4368 380 201 396 5
sum_round 9 2353 50 299 4783 4
sum_round 10 871 1219 787 1496 4
Average 1835.1 446.1 584.5 5607.3 4.8
SD 1776.4922| 482.14738| 484.16807| 8049.7844| 0.7888106
Best 90 4 8 98 4
Worst 5084 1278 1485 24840 6
Not found 0 0 0 0 0
Not found_percent average

the Cooperative Compact Genetic Algorithm (CoCGA)

15 cities
CC
15_1 15_2 15_3 15_4

sum_round 1 590718 31734 252902 oo
sum_round 2 345561 13 oo 439192
sum_round 3 92396 oo 370293 294309
sum_round 4 347068 1870 oo 700671
sum_round 5 376705 52941 460480 219898
sum_round 6 oo 43 oo o
sum_round 7 4752 7459 oo oo
sum_round 8 53145 oo oo 15524
sum_round 9 522944 4 oo oo
sum_round 10 oo 774 oo oo
Average 291661.125| 11854.75 361225/ 333918.8
SD 218778.342| 19803.4995| 104085.676| 255702.244
Best 4752 4 252902 15524
Worst 590718 52941 460480 700671
Not found 2 2 7 5
Not found_percent average 0.89% 0.55% 2.86% 0.82%

39

Table 4.3 The performance on the traveling salesman problem (15 cities) by using

Table 4.4: : The performance on the traveling salesman problem (15 cities) by using
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In the 17 cities of the TSP, the overall number of iterations executed by the
Massive parallelization of the compact genetic algorithm still was much less than the
results of the Cooperative Compact Genetic Algorithm which could not find the
expected solutions more than two rounds of each problem. While the second problem
seemed to be the most difficult for the Massive parallelization of the compact genetic
algorithm, the Cooperative Compact Genetic Algorithm has the highest number of
rounds in the experiment that could not reach the expected results. It was from the
first problem (17_1) which also has the highest percentage error of 3.76.

Table 4.5: The performance on the traveling salesman problem (17 cities) by using
the Massive parallelization of the compact genetic algorithm

17 cities
Master-slave

17_1 17_2 17_3 17_4 17 5
sum_round 1 1707 1456 477 3164 1394
sum_round 2 3201 1420 1003 833 5117
sum_round 3 1133 1841 310 855 319
sum_round 4 567 7788 11041 507 365
sum_round 5 369 2231 4271 1040 1668
sum_round 6 1007 603 2156 598 1508
sum_round 7 281 2109 1219 819 1215
sum_round 8 1400 196 577 813 5594
sum_round 9 272 6577 1235 1757 138
sum_round 10 2924 1621 1756 871 1630
Average 1286.1 2584.2 2404.5 1125.7 1894.8
SD 1056.08432| 2519.02763| 3244.38908| 791.445801| 1913.70884
Best 272 196 310 507 138
Worst 3201 7788 11041 3164 5594
Not found 0 0 0 0 0
Not found_percent average
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Table 4.6: : The performance on the traveling salesman problem (17 cities) by using
the Cooperative Compact Genetic Algorithm (CoCGA)

17 cities
cc
17_1 17_2 17_3 17_4 17_5
sum_round 1 oo 87990 oo oo 77475
sum_round 2 oo oo oo ©o [
sum_round 3 oo 274015 104139 438858 oo
sum_round 4 oo oo 53135 oo oo
sum_round 5 oo oo 406292 L) 265537
@ sum_round 6 oo 680058 127815 494655 oo
§ sum_round 7 L oo 375770 435201 oo
E sum_round 8 718843 el 252698 oo 4156
° sum_round 9 oo oo oo oo oo
sum_round 10 oo 2107 694420 oo oo
Average 718843 261042.5| 287752.714 456238| 115722.667
SD 0| 301516.741| 224627.566| 33320.3066| 134822.735
Best 718843 2107 53135 435201 4156
Worst 718843 680058 694420 494655 265537
Not found 9 6 3 7 7
Not found_percent average 3.76% 2.06% 1.80% 1.52% 1.75%

4.2.2. Bin Packing Problem

From four bin-packing problems, according to the table below, both the
massive parallelization of the compact genetic algorithm and The Cooperative
Compact Genetic Algorithm had no different performance and both methods could
discover the expected solutions of all four problems in every round. In details, the
result of the massive parallelization of the compact genetic algorithm in the first

problem was better than the result of The Cooperative Compact Genetic Algorithm,

1bas / 2T €€ 8T 2952,060 7991 / sisayl 12922£0209 s1saul 1 ro (I

while the others were slightly worse. Furthermore, the difficulty of each problem for
both algorithms was similar. According to the results from the table, the simplest

problem was the second problem, while the hardest one was the fourth problem.
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Table 4.7: The performance on the bin-packing problem by using the Massive

parallelization of the compact genetic algorithm

Bin-packing
Master-slave

1 2 3 4
sum_round 1 780 40 76 14517
sum_round 2 402 94 1040 4684
sum_round 3 383 24 947 4277
sum_round 4 1241 19 176 37356
sum_round 5 28 9 360 4524
sum_round 6 62 21 433 669
sum_round 7 446 7 2656 9035
sum_round 8 141 32 716 11789
sum_round 9 43 23 1019 5232
sum_round 10 621 70 231 7761
Average 414.7 33.9 765.4 9984.4
SD 387.001019| 27.698576| 755.174182| 10428.0445
Best 28 7 76 669
Worst 1241 94 2656 37356
Not found 0 0 0 0

Not found_percent average

Table 4.8: :

42

The performance on the bin-packing problem by using the Cooperative
Compact Genetic Algorithm (CoCGA)

Bin-packing
CcC

1 2 3 4
sum_round 1 165 15 105 3354
sum_round 2 1554 13 432 6735
sum_round 3 287 35 90 9378
sum_round 4 549 51 2818 10681
sum_round 5 99 6 670 12527
sum_round 6 920 26 999 695
sum_round 7 1249 39 391 4929
sum_round 8 62 69 499 11774
sum_round 9 423 11 412 22050
sum_round 10 551 10 437 512
Average 585.9 27.5 685.3 8263.5
SD 505.052132| 20.7431381| 793.025718| 6519.89586
Best 62 6 90 512
Worst 1554 69 2818 22050
Not found 0 0 0 0
Not found_percent average 0
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4.2.3. Knapsack Problem

For Knapsack problem, the Cooperative Compact Genetic Algorithm and the
Massive parallelization of the compact genetic algorithm had similar performance.
They could discover the expected solutions for the first and second problems.
Moreover, for the third problem, both algorithms could not find the expected solution
for all ten rounds and some rounds from the fourth problem. The Cooperative
Compact Genetic Algorithm had slightly better results for the first and the second
problems, and, although both algorithms could not find the solution, the percentage
error of the Cooperative Compact Genetic Algorithm was smaller. Interestingly,
while, for the fouth problems, the number of rounds that the Massive parallelization
of the compact genetic algorithm could not find the expected solution (2) were less

than that of the Cooperative Compact Genetic Algorithm (4). The percentages error

of both algorithms was equal.

Table 4.9: The performance on the knapsack problem by using the Massive
parallelization of the compact genetic algorithm

Knapsack
Master-slave

1 2 3 4
sum_round 1 4728 4 oo 53147
sum_round 2 7980 4 oo 93740
sum_round 3 230 4 oo oo
sum_round 4 7790 4 oo 422615
sum_round 5 2195 4 oo 2480
sum_round 6 1592 4 oo oo
sum_round 7 6947 4 oo 87394
sum_round 8 920 4 oo 36092
sum_round 9 3279 4 oo 107927
sum_round 10 560 4 oo 16342
Average 3622.1 4 102467.13
SD 3038.6481 0 134738.33
Best 230 4 0 2480
Worst 7980 4 0 422615
Not found 0 0 10 2
Not found_percent average -11.36% -0.04%
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Table 4.10: The performance on the knapsack problem by using the Cooperative
Compact Genetic Algorithm (CoCGA)

Knapsack
CC

1 2 3 4
sum_round 1 1782 1 oo oo
sum_round 2 3014 4 oo 60763
sum_round 3 301 4 oo 73509
sum_round 4 5359 4 oo 41522
sum_round 5 821 4 oo 362495
sum_round 6 135 4 oo oo
sum_round 7 526 4 oo oo
sum_round 8 5084 4 oo 145178
sum_round 9 113 4 oo 4139764
sum_round 10 162 4 oo oo
Average 1729.7 3.7 187205.1667
SD 2054.9559| 0.9486833 171123.8134
Best 113 1 0 41522
Worst 5359 4 0 439764
Not found 0 0 10 4
Not found_percent average -9.50% -0.04%

4.2.4. Subset Sum Problem

For subset sum problem, from the table below, the Massive parallelization of
the compact genetic algorithm had a better performance than the Cooperative
Compact Genetic Algorithm. It is significant in the first and in the fifth problems.
However, for the second and third problems, the Cooperative Compact Genetic

Algorithm were better. Overall, both algorithms could solve the problems.
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Table 4.11: The performance on the subset sum problem by using the Massive
parallelization of the compact genetic algorithm

Subset sum
Master-slave
1 2 3 4
sum_round 1 5 62 225 5
sum_round 2 4 124 9 5
sum_round 3 8 92 12 4
sum_round 4 4 169 4 4
sum_round 5 2758 87 6 4
sum_round 6 4 33 301 6
e sum_round 7 8 32 1130 5
g sum_round 8 4 15 13 9
a sum_round 9 4 818 2490 7
8 sum_round 10 8 35 1057 4
Average 280.7 146.7 524.7 5.3
SD 870.436423| 240.668536| 815.326799| 1.63639169
Best 4 15 4 4
Worst 2758 818 2490 9
Not found 0 0 0 0
Not found_percent average

Table 4.12: The performance on the subset sum problem by using the Cooperative
Compact Genetic Algorithm (CoCGA)

_|
=
)
1%
)
o
o
N
o
@
~
N
o
N
[
—-
=
@
1%
)
-
-
19}
o
<
o
©
o
N
N
al
o
N
=
[e°)
w
w
=
N
-
%
19}
o

Subset sum
CC

1 2 3 4
sum_round 1 10 268 14 4
sum_round 2 32561 6 21 8
sum_round 3 10 24 24 4
sum_round 4 14 14 5 4
sum_round 5 14 283 9 5
sum_round 6 14883 6 2363 4
sum_round 7 8 19 667 5
sum_round 8 25 34 975 18
sum_round 9 24 4 61 5
sum_round 10 4 18 5 4
Average 4755.3 67.6 414.4 6.1
SD 10829.9764| 110.008283| 765.003588| 4.35762423
Best 4 4 5 4
Worst 32561 283 2363 18
Not found 0 0 0 0
Not found_percent average 0
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4.3. Phase 111
The results of the experiment in phase 111 are shown below. In phase I11, the
results of the proposed algorithm were compared with the results from other

algorithms in phase II.

4.3.1. Traveling Salesman Problem (TSP)
In the 11-cities problems, from the table below, the proposed algorithm could

find the expected solutions for all rounds in the experiment. Moreover, the average

0675928.8€

numbers of iterations executed in each problem were not very different. The highest

=8 average number of iterations was from the second problem, while the lowest one was
= from the first problem.
&
2
3 Table 4.13: The performance on the traveling salesman problem (11 cities) by using
@ the proposed algorithm (the sharing knowledge compact genetic algorithm)
> 11 cities
= Proposed Algo.
> 111 112 11_3 11_4 11.5
3 sum_round 1 9 467 906 554 11
iz sum_round 2 111 184 489 190 150
= sum_round 3 5 241 205 174 83
§ sum_round 4 9 507 93 218 9
< sum_round 5 112 575 329 174 227
o sum_round 6 263 231 442 763 383
§ sum_round 7 87 538 113 87 606
R sum_round 8 178 1283 287 407 439
3 sum_round 9 83 665 192 642 128
2 sum_round 10 30 1141 89 4 7
o Average 88.7 583.2 314.5 321.3 204.3
@ SD 83.3907136| 369.606037| 250.567467| 255.238908| 207.314603
o Best 5 184 89 4 7
= Worst 263 1283 906 763 606
4 Not found 0 0 0 0 0
= Not found_percent average




0675928.8€

T :bes / zT:€£:8T 29522060 :Ava1 / sisayt 129220209 sisaur 1 ro NI

47

Moreover, Figure 4.3 shows the comparison of three algorithms for all five problems.
All average number of iterations in the results (the grey bars) were lower than the
results from the Massive parallelization of the compact genetic algorithm (the blue
bars) and the Cooperative Compact Genetic Algorithm (the orange bars). However,
although the results from the proposed algorithm may be better than the results from
the Massive parallelization of the compact genetic algorithm, they were not very
different except the results from the fourth problem that the average number of
iterations was 1931.1 (refer to the table 4.1) in the Massive parallelization of the
compact genetic algorithm, while it was only 204.3, refer to the table 4.13,in the

proposed algorithm.

TRAVELING SALESMAN PROBLEM (11 CITIES)

5.232819563 5131240657

4.985605584 4.905408812
4.543894292
3.544254
3.285804
2.825036
2.765817515
2.655138
2.49762 2.506910
2.310268
2.122870
) 1.947923 B I

11.1 112 11.3 11.4 11.5
PROBLEMS

EN e}

THE AVERAGE NUMBERS OF ITERATIONS (LOG10)
w

58
T
L i

LB

T

% The proposed Algo. ™ Master-slave m CC

Figure 4.3: A bar chart shows the comparison of the results from the three
algorithms on the traveling salesman problem (11 cities)

In the 15-cities problems, the proposed algorithm could find the expected
solutions in every round. The fourth problem was the hardest and the fifth one was the

simplest.
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Table 4.14: The performance on the traveling salesman problem (11 cities) by using
the proposed algorithm (the sharing knowledge compact genetic algorithm)

15 cities
Proposed Algo.
15 1 15 2 15_3 15 4 15 5
sum_round 1 749 187 368 604 4
sum_round 2 269 18 368 160 4
sum_round 3 427 731 512 3879 5
sum_round 4 1957 932 139 619 5
sum_round 5 648 8 890 1299 6
sum_round 6 510 5 714 289 5
w sum_round 7 765 465 90 1821 7
3 sum_round 8 450 8 942 261 4
a sum_round 9 951 5 20 3008 4
8 sum_round 10 205 8 257 396 6
Average 693.1 236.7 430 1233.6 5
SD 500.646127| 348.724039| 327.807871| 1289.37937| 1.05409255
Best 205 5 20 160 4
Worst 1957 932 942 3879 7
Not found 0 0 0 0 0
Not found_percent average

Furthermore, the bar chart below illustrates the comparison of the results from
the three algorithms on the traveling salesman problem (15 cities). While the results
of the Massive parallelization of the compact genetic algorithm (the blue bars) were
better than the results of Cooperative Compact Genetic Algorithm (the orange bars)
because the average number of iterations were lower, the average numbers of
iterations in the results of the proposed algorithm (the grey bars) were lower than the
results of the Massive parallelization of the compact genetic algorithm especially in
the first and fourth problems which the differences of the results were more than 50
percent better, 1835.1 from table 4.3 and 693.1 from the table 4.14, and 5607.3 from
the table 4.3 and 1233.6 from the table 4.14.
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TRAVELING SALESMAN PROBLEM (15 CITIES)

7
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Figure 4.4: A bar chart shows the comparison of the results from the three
algorithms on the traveling salesman problem (15 cities)

In the 17-cities problems, the proposed algorithm still could find the expected
solutions for all problems as to the Massive parallelization of the compact genetic

algorithm.

Table 4.15: The performance on the traveling salesman problem (17 cities) by using
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the proposed algorithm (the sharing knowledge compact genetic algorithm)
17 cities
Proposed Algo.

17_1 172 17_3 17 4 175

sum_round 1 863 2126 2864 656 1125
sum_round 2 418 970 722 203 1732
sum_round 3 246 1441 1920 594 1011
sum_round 4 125 592 1626 657 1633
sum_round 5 1344 282 331 94 338
sum_round 6 969 1780 1129 74 973
sum_round 7 268 5083 948 544 1042
sum_round 8 547 1796 2064 149 746
sum_round 9 522 1288 864 117 702
sum_round 10 403 8637 2585 688 437
Average 570.5 2399.5 1505.3 377.6 973.9
SD 378.909913| 2557.75206| 841.064015| 268.678742| 454.174819
Best 125 282 331 74 338
Worst 1344 8637 2864 688 1732
Not found 0 0 0 0 0
Not found_percent average
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From the bar chart below that the comparison of the results from the three
algorithms on the traveling salesman problem (17 cities), all results (the grey bars)
were the best among the three algorithms. Although the result of the second problem
(problem 17_2 in the Fig. 4.5) is not clearly better than the result from the Massive
parallelization of the compact genetic algorithm, the average numbers of iterations

were lower than 50 percent for the other problems.

TRAVELING SALESMAN PROBLEM (17 CITIES)

~
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o
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Figure 4.5: A bar chart shows the comparison of the results from the three
algorithms on the traveling salesman problem (17 cities)
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4.3.2. Bin Packing Problem
For the Bin Packing Problem, according to the table below, the proposed
algorithm could discover the expected solutions within 200,000 iterations for all

experiments.

Table 4.16: The performance on the bin-packing problem by using the proposed
algorithm (the sharing knowledge compact genetic algorithm)

Bin-packing
Proposed Algo.

1 2 3 4
sum_round 1 384 48 875 3514
sum_round 2 1126 16 904 5721
sum_round 3 219 14 328 850
sum_round 4 126 10 184 10974
sum_round 5 115 20 704 6782
sum_round 6 32 12 60 7935
sum_round 7 331 95 130 1298
sum_round 8 268 6 1765 5954
sum_round 9 251 69 358 5327
sum_round 10 214 41 321 8454
Average 306.6 33.1 562.9 5680.9
SD 306.15254| 29.715129| 518.358831| 3152.50657
Best 32 6 60 850
Worst 1126 95 1765 10974
Not found 0 0 0 0
Not found_percent average

Furthermore, The Fig. 4.6 the comparison of the results from the three
algorithms on the bin-packing problem. The results from the proposed algorithm (the
grey bars) were quite similar to the results from the other algorithms. The numbers of
iterations executed were the lowest among the results from all algorithms except the
result from the second problem (the problem number 2 in the Fig. 4.5) that the
number of iterations was slightly higher than the result from the Cooperative Compact
Genetic Algorithm. Moreover, the trend of the difficulty to solve the problem of the
proposed algorithm was the same as the others' trends. The second problem was the

easiest and the fourth one was the most difficult.
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3.7544171

Figure 4.6: A bar chart shows the comparison of the results from the three

algorithms on the bin-packing problem

4.3.3. Knapsack Problem
For the Knapsack problem, the proposed algorithm could find the expected

solution for four problems. Like the other algorithms, the second problem was the

easiest for the proposed algorithm. While the fourth problem was the hardest.

Table 4.17: The performance on the knapsack problem by using the proposed
algorithm (the sharing knowledge compact genetic algorithm)

Knapsack
Proposed Algo.

1 2 3 4
sum_round 1 536 4 513 402
sum_round 2 228 4 660 3469
sum_round 3 1134 4 836 5317
sum_round 4 1120 4 225 2200
sum_round 5 1141 4 1017 1303
sum_round 6 4346 4 190 1073
sum_round 7 860 4 118 11464
sum_round 8 165 4 155 445
sum_round 9 691 4 1448 2862
sum_round 10 1671 4 587 1986
Average 1189.2 4 574.9 3052.1
SD 1200.17654 0| 433.692274| 3312.57887
Best 165 4 118 402
Worst 4346 4 1448 11464
Not found 0 0 0 0
Not found_percent average
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For the first problem (see Fig. 4.7, the problem number 1), the result from the
proposed algorithm (the blue bar) was better than the results from the Massive
parallelization of the compact genetic algorithm (the orange bar) and the Cooperative
Compact Genetic Algorithm (the gray bar). While the difference may not be clear
between the results from the proposed algorithm and the Cooperative Compact
Genetic Algorithm, it is noticeable. For the second problem (the problem number 2 in
the Fig. 4.7), the performances from the three algorithms were similar. Unlike the
others, the differences were large for the third fourth problems that the proposed

algorithm could find the solutions, and its results were less than 5,000 iterations.

KNAPSACK PROBLEM

5.292115789

IS

3.558960436 3.4845987|

3.237970785
3.0752549
2.759592309

THE AVERAGE NUMBERS OF ITERATIONS (LOG10)
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0.60205 9802059991

ssssssss

Figure 4.7: A bar chart shows the comparison of the results from the three
algorithms on the knapsack problem

4.3.4. Subset Sum Problem

For the Subset Sum Problem, as the Fig. 4.8 that shows the comparison of the
results from the three algorithms on the subset sum problem. The proposed algorithm
(the grey bars) had the best results among the three algorithms. The average numbers
of iterations for each problem were lower than 50 percent of the results from the
Massive parallelization of the compact genetic algorithm (the blue bars) and the
Cooperative Compact Genetic Algorithm (the orange bars) except the result of the
fourth problem and the second problem that compared to the result from the
Cooperative Compact Genetic Algorithm, 57.9 from the table 4.18 and 67.6 iterations,
refer to the table 4.12.
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Table 4.18: The performance on the subset sum problem by using the proposed
algorithm (the sharing knowledge compact genetic algorithm)

Subset sum
Proposed Algo.

1 2 3 4
sum_round 1 7 106 16 6
sum_round 2 16 94 11 6
sum_round 3 10 29 12 6
sum_round 4 10 91 4 6
sum_round 5 5 26 11 6
sum_round 6 6 49 4 4
sum_round 7 7 126 8 6
sum_round 8 290 16 105 5
sum_round 9 7 22 10 5
sum_round 10 8 20 209 4
Average 36.6 57.9 39 5.4
SD 89.0894681| 41.8501294| 66.9444214| 0.84327404
Best 5 16 4 4
Worst 290 126 209 6
Not found 0 0 0 0
Not found_percent average
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Figure 4.8: A bar chart shows the comparison of the results from the three
algorithms on the subset sum problem
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4.4, Results Summary

For Traveling Salesman Problem, the Cooperative Compact Genetic
Algorithm could not find some expected solutions for some problems and had the
worst result. While the Massive parallelization of the compact genetic algorithm and
the proposed algorithm had similar results, the proposed algorithm was better in some
problems. For example, the third and fourth problems of the 17-cities group, the result
from the proposed algorithm were less than 50 percent of the results from the Massive
parallelization of the compact genetic algorithm. For the Bin Packing Problem, all
three algorithms had very similar results. Although the proposed algorithm had the
best performance and the Cooperative Compact Genetic Algorithm was the second
best, the difference in the results of all three algorithms were not distinct. For the
Subset Sum Problem, the proposed algorithm had the best performance. The
Cooperative Compact Genetic Algorithm had better results compared to the Massive
parallelization of the compact genetic algorithm for the second and the third
problems. For the fourth problem, the performance of the three algorithms were very
close. To conclude, for small data set of Traveling Salesman Problem, Bin Packing
Problem, Knapsack Problem, and Subset Sum Problem, the proposed algorithm was
slightly better than the other two problems. Although the difference in the results from
some problems were small, the proposed algorithm could find the expected solution
of all test data and had good results. Thus, the proposed algorithm that employed the
simulated annealing and the restart mechanism improves the overall performances in

some cases such as the third and fourth problems of the Knapsack problem.

4.5. Analysis
The proposed algorithm employed the "Restart™ mechanism to support escaping from
local optima. Because the proposed algorithm developed from the Massive
parallelization of the compact genetic algorithm by adding the restart mechanism and
the simulated annealing, to show that the restart mechanism can decrease the average
number of iterations executed, the number of half-restart and full-restart were
analyzed. Table 1-6 in Appendix show the number of half-restart and full-restart on
each instance of the problems for ten rounds. To illustrate the benefits of having the

restart mechanism in the process, all instances of the problems could be divided into
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two groups by the average number of iterations from the Massive parallelization of
the compact genetic algorithm from tables in phase Il (the fourth and fifth problems of
the traveling salesman problems (11 cities), the first and the fourth problems of the
traveling salesman problems (15 cities), the fourth of the bin-packing problem, the
first, third and fourth problems of the knapsack problems as hard group and the other
problems as easy group). Overall, the restart mechanism worked effectively in the
case that the average number of iterations executed of the Massive parallelization of
the compact genetic algorithm were high such as the fourth problem of the traveling
salesman problem(15 cities) and the third problem of the knapsack problem (hard
group) according to Fig. 4.4 and 4.7 because the costs of the restart mechanism may
have negative results in the case that traps in the problems were not difficult for the
Massive parallelization of the compact genetic algorithm to escape such as the first to
the third problems of the traveling salesman problem (11 cities) from Fig. 4.3.
According to Fig. 4.4, 4.7 and 4.8, for the fifth problem of the traveling salesman
problem(15 cities), the second of the knapsack problem and the fourth problem of the
subset sum problem, there was no half-restart and full-restart occurred during the
process so the average number of the iterations executed so the results of the Massive
parallelization of the compact genetic algorithm and the proposed algorithm were
very similar.

Although hard problems may not always have a high number of half-restart
and full-restart, the number of half-restart and full-restart themselves can be employed
to analyze the difficulty of the problems. The problems that had low numbers of half-
restart and full-restart such as the first problem of traveling salesman problems (11
cities) from the table 1 in Appendix, the second problem of the bin-packing problem
from the table 4 in Appendix and the second and third problems of the subset sum
problem from the table 6 in Appendix also were easy to the Massive parallelization
of the compact genetic algorithm (easy group) according to the results from the table
4.1, 4.7 and 4.11. However, the difficult problems may have to use the behaviors of
the half-restart and full-restart to analyze.

The behaviors of the half restarts and full restarts on each problem were
shown below in figure 4.9 to 4.14 but some problems did not appear below because

there was no restart occurring during their execution. Overall, from Fig. 4.9 to 4.14,
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the half- restart usually occurred at the beginning of the execution. Then, the full-
restart would start to occur in a later period when the half restart mechanism
difficultly discovered better solutions. Thus, the number of full restarts might be
higher than the number of half-restarts in the case that the traps in problems were very
complicated and the half restart could not handle them. For example, from Fig. 4.13,
for the fourth problem of the knapsack problem which the Massive parallelization of
the compact genetic algorithm could not find the expected solution in some rounds,
the half restarts occurred frequently at the early iterations, while the full restarts
started to occur after that and continuously and intensively occurred until the expected
solutions were discovered.

Moreover, the characteristic of traps of each problem also affects the
behaviors of the restart. For the traveling salesman problem that the differences of its
solutions (tour length) are high, the frequency of the half restart at the early iterations
was not much because its traps were too complicated to find the very high-quality
solutions in the early iterations. Thus, the half restart did not occur frequently in the
early stages to escape from local optima. However, for the bin-packing problem, the
feasible solutions are serial numbers so the half restart occurred more frequently due
to the simulated annealing strategy and the chances to find the expected solutions by
the half restart were higher. However, In the case that the very high-quality solution
(the solutions next to the expected solution) was discovered and the number of
iterations after finding the very high-quality solution was high, the half restart would
stop and the full restart would take action and continuously occur until the expected

solution was discovered according to Fig 4.12.
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Figure 4.9: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the traveling salesman problem(11 cities) for ten rounds
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Figure 4.10: The scatter plot shows the behaviors of the half-restart and full-restart
mechanism on the traveling salesman problem(15 cities) for ten rounds
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Figure 4.11: The scatter plot shows the behaviors of the half-restart and full-restart
mechanism on the traveling salesman problem(17 cities) for ten rounds
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Figure 4.12: The scatter plot shows the behaviors of the half-restart and full-restart

mechanism on the bin-packing problem for ten rounds
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Figure 4.13: The scatter plot shows the behaviors of the half-restart and full-restart
mechanism on the knapsack problem for ten rounds



0675928.8€

63

Subsetsum_1 Subsetsum_2
40
601 types types
® half @ half
35
50 1
30
404
@ 2
2 2
S S
£ ®
pr— £ g%
— 30 4
—
8 20
— 20 1
_|
>
o 15
o 104
g 1 9 1 10
~ rounds rounds
o
w
~
N
(¢
N Subsetsum_3
=
~ 70 types
= ® half
D
2
» 80
-
-
@ 50
o
<
2
o 2
© 2 40
N E
N
a1
% 0
=
[ee)
W 20
w
=
N
-~ 10
» 5 7 8
g rounds

Figure 4.14: The scatter plot shows the behaviors of the half-restart and full-restart
mechanism on the subset sum problem for ten rounds
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5.1. Conclusion

The compact genetic algorithm was an effective heuristic algorithm to solve
hard problems. It still cannot prevent or avoid local optima. There are much research
in search optimization attempting to escape from the local optima. Thus, the
parallelization was used to improve the performance of the algorithm.

In this thesis, the research attempted to improve the performance of the
existing parallel compact genetic algorithm by focusing on the shared parameters and
sharing methods. The proposed algorithm exploited the property of the simulated
annealing to consider the shared parameters whether they would be accepted or not.
Moreover, the proposed algorithm used the "Restart" to help escape from local
optima. In the case that the condition applying from the simulated annealing did not
work, the restart was used. However, to prevent the high cost from rediscovering
solution space, the probabilistic vector should be reinitialized by the average value.
The observation of the results from the existing algorithm was employed to consider
when it should restart the search.

In the experiment, the Massive parallelization of the compact genetic
algorithm and the Cooperative Compact Genetic Algorithm were implemented and
tested with Traveling salesman problem (11, 15, 17 cities), bin packing problem (50
items), knapsack problem (maximum of 200 items) and subset sum problem
(maximum of 21 numbers). The proposed algorithm was designed, implemented and
tested. The results of the experiment show that the proposed algorithm that employs
the simulated annealing, the observation, and the restart can improve the performance.
Although some results were not convincing due to the cost of the restart that may
decrease the performance, there were no results from the proposed algorithm that was
worse than the results from the other two algorithms.

However, there was some limitation of the proposed algorithm. Although the
test data were varied, the input data of each test were not large. Thus, the observation
was from the small group of the dataset. This parameter may not be suitable for large
dataset. This challenge can be studied in the future.

Another point was, while the performance was effective, the number of shared

variables of the proposed algorithm were higher than the other algorithms.
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5.2. Future works
This research can be developed further by expanding the structure to more

than four cGAs nodes to be able to exploit the benefits of topology and the
observation number may be improved to be adaptive to each problem instead of using
static value because each problem has different traps. The advantage of topology and
the adaptive value for full restart may decrease the number of iterations executed to
find the expected solutions. Moreover, the network issue should be concerned to
support the scalable aspect of the practical works and the larger sizes of problems in

the future.
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APPENDIX

Table 1: The total number of half and full restart on the traveling salesman
problem(11 cities) for 10 rounds

TSP11_1 TsPil 2 | TsP11_3 |TsP11_ 4 TsP1l 5 |

Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart [Full restart
1 1 0 1 26 28 1 0 0 1 0 0 1 9 0
2 2 0 2 15 0 2 1 0 2 1 2 2 1] 0
3 2 0 3 22 0 3 1 0 3 0 0 3 0 0
4 0| 0 4 30 2 4 5 0 4 9| 0 4 31 3
5 0 0 5 21 2 5 40| 0 5 3 0 5 44 1
6 0 0 6 0 0 6 19 0 6 1 0 6 22 0
7 5 0 7 32 8 7 46, 5 7 0 0 7 0 0
8 0 0 8 0 0 8 18 0 8 10 0 8 15 0
9 10 0 9 3 0 9 39 7 9 20 0 9 0 0
10 5 0 10 7 0 10 3 0 10 4 4] 10| 18 0

Table 2: The total number of half and full restart on the traveling salesman
problem(15 cities) for 10 rounds

TSP15_1 [ TSP15_2 TSP15_3 [TsP15_4 [TSP15_5
Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart Full restart
1 30 0 1 9 0 1 54/ 18 1 88 50 1 0 0|
2 3 0 2 1 0 2 1 0 2 15 0 2 0 0
3 2 0| 3 5 0 3 29| 9 3 18 1 3 0 0
4 49 4 4 14 0 4 1 0 4 110] 106 4 0 0
5 7 0 5 9 0 5 4 0 5| 22 a 5 0 0
6 15 0 6 0 0 6 8 0 6 30 4 6 0 0
7 36 17 7 0 0 7 27 8 7 38 18 7 0 0
8 6 0 8 3 0 8 2 0 8 4 0 8 0 0
9| 71 38 9 2 0 9 1 0 9 40 7 9 0 0
10 59 36 10! 2 0 10| 51 16 10| 43 15 10| 0 0

Table 3: The total number of half and full restart on the traveling salesman
problem(17 cities) for 10 rounds

TSP17_1 ‘TSPIT_Z TSP17_3 ‘ ITSP17_4 ITSP17_5
Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart Full restart
1 2 0 1 0 0 1 26 2 1 5 0 1 19 0|
2 12 2 2 12 7 2 45| 13 2 13| 0 2 51 19
3 48 25 3 52 24 3 10! 1 3 20 0 3 59 10
4 22 0 4 2 0 4 S Q 4 S Q 4 10 0
5 30| 2 5 37 5 5 10 10 5 3 0 5 7 0
6 2 0 6 15 4 6 49 16 6 6 0 6 4 0|
7 8 1 7 19 2 7 12, 15 7 9 0 7| 25 0|
8 14 1 8 13 2 8 71 151 8 62 17 8 7 0|
9 1 0 9 10 3 9 a4| 130 9 33 3 9 22 0
10| 43 23 10| 27 1 10| 46! 38 10| 40 20| 10 29 10|

Table 4: The total number of half and full restart on the

bin-packing problem for 10

rounds
Bin-pack_1 Bin-pack_2 Bin-pack_3 Bin-pack_4

Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart

1 31 0 1 0 0 1 128 0 1 515 0
2 3 0 2 0 0 2 116 0 2 45 1175
3 7 0 3 3 0 3 0 0 3 55 0
4 109 0 4 0 0 4 87 0 4 81 0
5 3 0 5 0 0 5 25 0 B 186 0
6 3 0 6 0 0 6 0 0 6 360 0
7 15 0 7 3 0 7 15 0 7 50 0
8 34 0 8 3 0 8 66 0 8 326 728
9 85 0 9 0 0 9 3 0 9 237 201
10 23 0 10| 0 0 10 35 0 10 325 510
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Table 5: The total number of half and full restart on the knapsack problem for 10

rounds
Knapsack_1 Knapsack_2 Knapsack_3 Knapsack_4
Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart
1 9 3 1 0 0 1 6 1 1 54 167
2 26 40 2 0 0 2 1 0 2 69 515
3 58 287 3 0 0 3 10 54 3 16 54
4 12 6 4 0 0 4 1 0 4 5 0
5 21 80 5 0 0 5 2 0 5 35 130
6 5 0 6 0 0 6 2 0 6 69 262
7 16 24 7 0 0 7 2 0 7 15 33
8 13 19 8 0 0 8 9 30 8 81 678
9 9 1 9 0 0 9 1 0 9 25 29
10 30 67 10 0 0 10 6 12 10 27 25

Table 6: The total number of half and full restart on the subset sum problem for 10
rounds

Subsetsum_1 Subsetsum_2 Subsetsum_3 Subsetsum_4
| Half restart |Full restart Half restart |Full restart Half restart |Full restart Half restart |Full restart
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