nsvineteyaliguiieldesnisiuiinuay

PYANITY ASASSAUSNY

a

'3‘1/1EJﬂﬁwuﬁ‘ﬁﬁ]udawﬁwaamiﬁﬂwwmwé’ﬂqmﬂ'%zgiynmﬂﬁmmamqwaﬂ’msﬁm
ANUTYIAMNTIUABNNADS NIAIYIAINTTUADUNADS
ANIEIAINTIUANENT PUIRINTAUNTINGRE
Un1s@nwn 2558

Eéuam%éuawmaaﬂiﬂimﬁwmé’a

DATA REUSABILITY PREDICTION FOR CACHE BYPASSING

Miss Warisa Sritriratanarak

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Engineering
Department of Computer Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2015

Copyright of Chulalongkorn University

Thesis Title DATA REUSABILITY PREDICTION FOR CACHE BYPASSING
By MissWarisa Sritriratanarak

Field of Study Computer Engineering

Thesis Advisor Professor Prabhas Chongstitvatana, Ph.D.

Thesis Co-advisor Assistant Professor Mongkol Ekpanyapong, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

............................. Dean of the Faculty of Engineering
(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

............................. Chairman

(Assistant Professor Sukree Sinthupinyo, Ph.D.)

............................. Thesis Advisor
(Professor Prabhas Chongstitvatana, Ph.D.)

............................. Thesis Co-advisor

(Assistant Professor Mongkol Ekpanyapong, Ph.D.)

............................. Examiner

(Assistant Professor Krerk Piromsopa, Ph.D.)

............................. External Examiner

(Assistant Professor Kemathat Vibhatavanij, Ph.D.)

By elesuing o mehuwedeyaldtiiiedeinisiufinuey (Data
Reusability Prediction for Cache Bypassing) 8. 1USnw1Ing dnusvan : A.ag.
Usznd Wadndiau, 0. MUTABTImMITINUSTI © NAATNIAE LonTygIned,

72 v,

MIUsUUTImheanuduasmgisuemaduitiivaussauzdmsunie
AnuTayszauaninglunbeUssinanavasunudstayadiulvg limegniinduuildlvg
agalsimumadianisasimnaniounwaefisnumseglnegmiddasans 1wy s

Tidtiunazase vilildasnsauntymnisiiauiadududouresdiusziananarsunule

=

Ane1dnusatulausITnIuaen lAgN1SYINUIENaYRINISYNUNENA LA LITNND T AL IALAD S Wl

=

) v 8 Y a £ 1 o o
YUY Iﬂﬁﬁfdﬂ?iLﬂ‘UsUmJUanﬂLi‘EJﬂI?ﬁ]’]ﬂ‘lﬁU’JEJUigll’JaNﬁIﬂEJI‘UiLLﬂiiJ"\]’]ﬁ@ﬂﬂ’]i‘Vl’]x‘l’m‘UEJ\‘l

Y

= v A

milgUsznanavateuny Feleyaiiliagyihuilnnsiieusaieniesdnsnisenitdnneie
LDAMDTHUTTU NAFNWSTLARBAIVINIUIENITUIINIENALNLEUAMTUF U TEUIANANA1 BN
dnneinnemesuuriuassinduidayaunaziagniivasiumbernuduawnioly wiwi
N15IPNAN 8 I UTWNTUTIADINITVNIUYBINUIANUILATLNDINUT LANS ANV INULY

o 1 dd” = v 1 dl' :’1 a 5‘:4' Y [
ANMUILATINATULNEILA NAVDINITNAADILEAILIIAUINIDAINITRe S AL zau AR ugw

¢ ¢ a P ° A U oa < v = ' ' o v &

WOINLIALMBTUUYTY raasaasnuuaauiedndulaiiuteyavieudesnudeyalady

98197 wazasaLiugnsINsfayauamula 5.34% anelalusunsuinanauasy

'
=

AAIYT ;. IFINTIUPBUN LSS AN VONAN.

AN IFNIIUABUNMDS a1e39%0 8. MUSNE NN TWUSUEN o

UnsAnw1 2558 aneilate 9. AUSNE NI DWUSIY

5371814921: MAJOR COMPUTER ENGINEERING

KEYWORDS: CACHE MEMORY / CACHE BYPASSING/ SUPPORT VECTOR MA-

CHINE
WARISA SRITRIRATANARAK : DATA REUSABILITY PREDICTION FOR
CACHE BYPASSING. ADVISOR : PROF. PRABHAS CHONGSTITVATANA,
Ph.D., CO-ADVISOR : ASST. PROF. MONGKOL EKPANYAPONG, Ph.D., 72

pp-

Cache bypassing emerged as a performance improvement method for shared Last-
Level Caches (LLC) in multicore processors where large portions of data are never reused.
However, most bypass techniques have relied on ad hoc methods such as counters and
tables which can not tackle the complexity of multicore workloads. In this dissertation, we
propose an alternative method to predict cache bypassing using Support Vector Machine
(SVM) models. Based on access traces obtained from representative benchmarks running
on the Multi2Sim simulator, supervised SVM training was performed in order to obtain
a bypass prediction model suitable for LLC in multi-core processors. The SVM outputs
bypassing classifiers which are integrated on the simulator to quantify LLC performance
improvements. Results show that, with appropriate parameters and kernel functions,
SVM is capable of generating bypassing models which improve LLC performance on
multicore processors, achieving an average 5.34% hit rate improvement across SPLASH2

benchmark combinations.

Department : Computer Engineering . Student’s Signature
Field of Study : ... Computer Engineering = Advisor’s Signature

Academic Year :........... 2016 ... Co-advisor’s Signature..................

Acknowledgements

A PhD dissertation is a hard proof of patience and perseverance of a person dedi-
cated with their life. This work could never be accomplished without a kind guidance from
my adviser, Prof. Prabhas Chongstitvatana. My deepest gratitude is always expressed
towards him. Also, I am sincerely grateful to my co-supervisor, Asst. Prof. Mongkol
Ekpanyapong, for his informative guidance and support throughout my Ph.D. candida-
ture. My dissertation would not be completed without his insightful and knowledgeable

suggestions. I am truly proud that I was under their supervision.

I greatly appreciate Asst. Prof. Sukree Sinthupinyol, Asst. Prof. Krerk Piromsopa,
and Asst. Prof. Kemathat Vibhatavanij, for being in my dissertation committee and

giving many useful comments and suggestions to improve my dissertation.

Many thanks are due to all Intelligent System Laboratory’s members and all Ph.D.
fellows for their discussions and contributions to research works. And to all my dear

friends who understand a Phd’s life and always so supportive.

I would like to thank Department of Computer Engineering for the opportunity and
meaningful experience. During my time at this department, I have learned an important

lesson: Patience and effort are the most important things during a hard time.

Last but not least, this long journey could never be completed without the support
from my lovely family whom enjoyed my not-so-schedule work hours and exploited them
extensively. Also my life partner, Paulo, who dedicated himself to enlighten me during
those depressive hours and let me know the limit of his patience is endless. This disser-

tation is dedicated to them.

vi

Contents

Page
Abstract (Thai) iv
Abstract (English) v
Acknowledgements vi
Contents vii
List of Tables ix
List of Figures xi
Chapter
1 Introduction 1
1.1 Objectives of Research 5
1.2 Scopesof Study 5
1.3 Summary of Contributions 6
1.4 Dissertation Organization 6
I Background 7
2.1 Cache e 7
2.1.1 Cache Organization 7
2.1.2 Cache Replacement Policy 9
2.1.3 Cache Writes 10
2.1.4 Multilevel cache 10
2.1.5 Cache Consistency 11
2.2 Machine Learning 11
IIT Literature Reviews 15
3.1 Cache Partitioning 15
3.2 Cache Replacement Policy 16
3.3 Cache Prefetching 17
3.4 Cache Bypassing 20
IV Methodology 24
4.1 The offline process 25
4.1.1 Preparing data 25

4.1.2 The simulator 25

viii

Chapter Page
4.1.3 Benchmarks 26

4.1.4 The training data 27

4.1.5 Features and Kernel Functions 28

4.2 The online process 29
4.3 The implementation considerations 30

V Results and discussion o Lo 31
5.1 Results. 31
5.2 Discussions 32
VI Conclusion 52
6.1 Dissertation summary 52
6.2 Limitations and future work L o 52

Biography 61

List of Tables

Table Page

2.1 The most common kernel functions L.
4.1 Parameters of the simulated cache 00 L.
4.2 Benchmark application domain L.
4.3 Benchmark combination
4.4 The hit rate of the training data with different window sizes, approximately
first 100k accesses
4.5 The number of data in bypass class in 100k training data
4.6 SVM parameters
5.1 Memory and cycles usage for each benchmark combinations
5.2 Baseline LLC hit rate for each benchmark combinations.
5.3 Best hit rate achieved using 6 features and 7 features using training data
with n=5000 window size
5.4 Best hit rate achieved from the classifier prediction with 6 features and
using training data with n=5000 window size
5.5 Best hit rate achieved from the classifier prediction with 7 features and
using training data with n=5000 window size
5.6 The hit rate achieved from different kernel functions using 6 features and
training data with n=5000 window size.
5.7 The hit rate achieved from different kernel functions using 7 features and
training data with n=5000 window size.
5.8 Result of Coml using 6 features from window size n=2000 training data
5.9 Result of Coml using 6 features from window size n=>5000 training data
5.10 Result of Coml using 6 features from window size n=10000 training data . . .
5.11 Result of Com1 using 7 features from window size n=5000 training data
5.12 Result of Com2 using 6 features from window size n=2000 training data
5.13 Result of Com2 using 6 features from window size n=5000 training data
5.14 Result of Com2 using 6 features from window size n=10000 training data . . .
5.15 Result of Com2 using 7 features from window size n=>5000 training data
5.16 Result of Com3 using 6 features from window size n=2000 training data

5.17 Result of Com3 using 6 features from window size n=5000 training data

Table

5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35

Result of Com3 using 6 features from window size n=10000 training data . . .
Result of Com3 using 7 features from window size n=>5000 training data
Result of Com4 using 6 features from window size n=2000 training data
Result of Com4 using 6 features from window size n=>5000 training data
Result of Com4 using 6 features from window size n=10000 training data . . .
Result of Com4 using 7 features from window size n=>5000 training data
Result of Comb using 6 features from window size n=2000 training data
Result of Comb using 6 features from window size n=5000 training data
Result of Com5 using 6 features from window size n=10000 training data . . .
Result of Com5 using 7 features from window size n=>5000 training data
Result of Com6 using 6 features from window size n=2000 training data
Result of Com6 using 6 features from window size n=>5000 training data
Result of Com6 using 6 features from window size n=10000 training data . . .
Result of Com6 using 7 features from window size n=>5000 training data
Result of Com7 using 6 features from window size n=2000 training data
Result of Com7 using 6 features from window size n=>5000 training data
Result of Com?7 using 6 features from window size n=10000 training data . . .

Result of Com?7 using 7 features from window size n=>5000 training data

Page
42
43
43
44
44
45
45
46
46
47
47
48
48
49
49
50
50
51

List of Figures

Figure Page

1.1

2.1

2.2

2.3

3.1

3.2

4.1

4.2

4.3

5.1

5.2

9.3

Percentage of distant reuse blocks in the 2MB LRU LLC over a memory-
intensive benchmarks from SPEC CPU2006, 81.2% of blocks are not reused
before eviction and 25.6% of blocks are never accessed again. 4
Three types of cache organizations. This is an example of the cache where
block address 13 can be allocated in the gray area. In direct-mapped, 13
mod 8 = 5; the block should be located at location 5. In two-set associative
cache, 13 mod 4 = 1; the block can be allocated at one of the two blocks
at location 1. In fully-associative cache, a block can be allocated anywhere. . . 8
An example view of 32-bit address for 32-byte block. The block address
is used to identify the block, the offset is used to identify which byte in
the block. In case of n-way set associative, the tag is used for checking
which block in the set, and the index is used to select which set. In fully
associative the n in the index field is zero. 9

linear separating hyperplane for the separable case. The support vectors

are circled. (Burges, 1998) 13
Organization of Jalminger and Stenstrém (2003) novel cache approach 21
Organization of Piquet et al. (2007) bypassing method. 21
An overview of the system 24
The marking method to create training data 27

System Structure. The dotted arrows represent the information required
by the classifier. The solid arrows represent data flows when cores request
data from main memory (L2 missed). 29
Hit rate achieved from classifier prediction with 6 features and using train-
ing data with n=5000 window size 33
Hit rate achieved from classifier prediction with 7 features and using train-
ing data with n=5000 window size 34
Best percentage improved compared with the ratio of the LLC accesses

and the baseline hit rate (both scaled down for visualization) 35

xi

CHAPTER 1

INTRODUCTION

Computer system performance nowadays relies heavily on the efficiency of the
memory. Although the performance of the processor has drastically improved in the past
decades, the access time to the main memory has sped up more slowly, therefore leaving a
huge performance gap between processor and the memory, e.g., the processor performance
is improving approximately 75% annum while the DRAM speed steadily increasing by
7% each year (McKee, 2004). In addition, there are efforts to increase the processor per-
formance such as pipelining, branch prediction, out-of-order execution, which eventually
leads to a memory bottleneck. The reason is that memory size is inversely proportional to
memory performance, and size requirements increased more quickly than memory tech-
nology evolved. Main memory has improved, from SDRAM technology to DRAM and
then to DDR-RAM technologies, which allows higher frequencies and bandwidths (HPm,
2010). However, these improvements still can not cope with the bandwidth required by
processors for high utilization, maintaining a performance gap between performance and

memory.

The concept of memory hierarchy is introduced to ameliorate the problem. The
use of a small but fast associative memory called look-aside memory is suggested by Lee
in 1963 to improve the overall performance of the computer. The term cache was first
applied when it was implemented in the IBM System/360 Model 85 as a buffer between
processor and main storage (Liptay, 1968). It was announced as a successful memory
hierarchy implementation that reduced waiting time from storage from microseconds to
nanoseconds. The aim of having the cache is to reduced the long waiting time to acquire
data from the main memory. As the processor-memory performance gap increased, more
levels of cache were used. The level closest to the processor is called the highest level
or the level 1 cache (L1). The levels below are closer to the main memory and called
L2, L3,..., last-level cache. For example, the Intel Pentium processor has level 1 on-chip
cache and level 2 off-chip cache implemented (Horton, 1995); the L2 cache moved up to
be on-chip in the Intel Pentium Pro (Pen, 1996). With the advent of multicore processors,
several private and shared levels of cache are used, i.e., the Intel Core Xeon X5550 has

four cores and three layers of cache: each core has private L1 and L2 cache; the Last-

level cache (LLC) is shared among four cores. With 2.66GHz processor speed, the size
of the cache are 32KB and 256KB for L1 and L2 cache on each core, and the last-level
cache size is 8MB. The access time to L1, L2, and L3, is approximately 4, 10 and 40
cycles, respectively, while the access time to the main memory is approximately 60ns or
120cycles (Levinthal, 2010). Sharing the LLC can reduce the number of duplicate copies
when many cores are running identical applications. Also, when each core has different
working set sizes, shared LLC has better utilization than private LLC. Throughout this

dissertation, the term last-level cache and LLC will be used interchangeably.

An implementation of multilevel cache requires a definition of the relationship be-
tween each level. Inclusion defines a relationship in which data have copies in every lower
levels of cache. When a datum is propagated from main memory to cache, a copy of it is
allocated to all levels of cache. When a datum is modified, all copies of the data also have
to be modified transparently. This is done to simplify the cache management and make
the higher level cache work like an optimized lookup for the lower level cache. Whenever
the upper level cache is full, the data block can be easily discarded because there is always
another copy on the lower level cache; but if the datum on the lower level is discarded, all
the other copies on the higher levels have to be discarded too. Also, since the last-level
cache contains all the data from all upper levels, the looking up can be done by looking in
the LLC only; this allows the L1 to work continuously without being disturbed. On the
other hand, exclusion means that the data can have only one copy in all levels of cache,
avoiding data duplicates. To allocate data on cache, all levels have to be checked to make
sure that no other copies exist elsewhere. It reduces the space wasted from duplication
but looking up a datum requires probing all levels of cache and managing zero duplication
in all levels in all cores can be very complicated. The combination of the two is called
non-inclusion, which does not force either inclusion or exclusion on cache. A datum can
have multiple copies like an inclusive cache but when a datum is discarded from the lower
level cache, the copies in the upper levels are not required to be discarded too. When the
datum moves up from lower level to higher level, the exclusive cache will force deletion of
the copy in lower level while the non-inclusive cache will allow leaving the copy in lower
level, avoid wasting any blocks. In this dissertation, we focus on the non-inclusive cache
only. Non-inclusive memory hierarchies are the simplest to implement, since each cache
can manage its data independently of upper and lower levels. Although this complicates

cache coherency mechanisms, it has been proven that non-inclusive cache achieve better

performance than inclusive cache (Zahran, 2007). The extensive detail on the advantage

of non-inclusive cache can be found in Zahran (2007).

Cache is efficient because it holds the data that are being used by the processors.
The key idea that makes cache useful is the concept of locality of reference (Denning,
1972). The locality of reference is based on the notion that the memory access tends to
be localized in time and space. It stems from the behavior of the programmers that tend
to use data sequentially and looping. The tendency that next required data would be at
the address adjacent to the currently used data means spatial locality while the tendency
that same data will be used again soon means temporal locality. As the complexity
of the programs increased, the memory-access behavior becomes more complicated and
could exhibit larger access patterns. Algorithmic locality defines the access pattern that
repeated, either in time or space, but in a manner larger than normal spatial or temporal
locality. It would depend on the algorithm being used in the application. For instance,
a computer simulation that repeatedly accesses a very large data set stored in dynamic
data structures. The pattern could be captured by observing program behavior and
adapting to it via run-time mechanism. With the benefit of localities, we can exploit
the predictability and improve the memory system performance by accurately predicting

which data should be allocated in cache and reduce the number of processor stall cycles.

Cache terms used to describe the efficiency of the cache are cache hit, which is when
the processor requested data is found in cache, and cache miss, when the data is not found.
The hit rate is the number of hits to the number of data accesses while the miss rate is
the ratio of misses instead. Data in the cache are usually stored in blocks or lines whose
sizes differ between architectures. The goal of using the memory hierarchy is to have a
memory system that hides latency as much as possible, i.e., maximizes the hit rate and
minimizes the access time, while maintaining the system cost-effective. The goal could
be achieved by improving performance of cache by finding algorithms that accurately
predict what to put in cache and how to replace it when it is full. For this reason, most
researchers are focusing their works on techniques for bringing data to the cache which
will be required in the near future, through some form of prediction (prefetching) and
techniques for adequately managing which data to replace on cache when it is full (cache

replacement policy).

Nonetheless, with the use of multicore and multithreaded modern processors, mem-
ory usage has drastically changed to become more complex and the algorithms to manage
cache need to be improved. In multicore, the last-level cache is usually shared and con-
tention from many cores could cause memory thrashing, i.e., the working set is larger
than the cache size and cause the requests to be constant misses. The complexity of the
multicore workloads and the concern for energy consumption make writing all data to
all levels of cache seem lavish. Many workloads today are multimedia applications which
load millions of blocks of data and use them only once. Some data are placed in cache
and never reused again until they are evicted from cache. This is especially true in the
LLC, since exploitation of temporal locality in high level cache means an inversion of
temporal locality on LLC; in other words, data that is accessed frequently will always hit
on level 1 caches, thus remain unused on levels 2 and 3. Although the data is sometimes
requested again from LLC (since L1 is smaller, it might eventually be evicted while it is
still in LLC), the time between first and subsequent requests does not justify its presence
on the LLC if it replaces more valuable data; hence, the justification for bypass. On levels
closer to processor, the high temporal locality makes this approach less feasible. Study
shows that numerous data blocks are allocated to the last-level cache and never reused
or accessed again(Li et al., 2012). Fig 1.1 shows the percentage of distant reuse blocks in
the 2MB LRU LLC over a memory-intensive benchmarks from SPEC CPU2006, 81.2% of
blocks are not reused before eviction and 25.6% of blocks are never accessed again. Those
blocks that are placed in the LLC and never accessed should never be allocated on cache
to waste precious cache space. The method of not allocating some data to cache is called

Cache Bypassing

No reused blocks

Figure 1.1: Percentage of distant reuse blocks in the 2MB LRU LLC over a memory-intensive
benchmarks from SPEC CPU2006, 81.2% of blocks are not reused before eviction and 25.6% of
blocks are never accessed again.

Cache bypassing is a term describing a method that bypasses data from one or more
levels of memory hierarchies. Bypassing could reduce costs from writing unnecessary data
to cache and reduce memory bandwidth in transferring data. In fact, when the cache size
is smaller than workload requirements, writing data to cache wastes more than the cost
of writing only to memory. It also evicts existing valuable data from cache which could
lead to more cache misses and increase processor stall cycles. For this reason, avoiding
allocating never-accessed data is a good solution to improve cache performance. The use
of the non-inclusive cache allows the data to be bypassed from the LLC without changing
any existing architecture. Previous methods for classifying which data should be bypassed
involved using predictors and counters. For example, applying the same approaches to
bypass as the ones applied for branch prediction e.g., assuming a status until error and
then reversing the status when it fails (Tyson et al., 1995; Jalminger and Stenstrém, 2003),
or assuming one out of every n number should be bypassed (Kharbutli and Solihin, 2008;
Kharbutli et al., 2013). This information was then stored on on-cache tables to direct
bypassing logic. While these approaches sufficed for very simple workloads, these ad-hoc
prediction methods can not be easily applied to complex, multicore workloads, driving
the need for new bypass mechanisms. More sophisticated methods should be applied to
the problem. Since we can simplify the problem into classification problem, data should
be bypassed or not, it is known that the perfect method that could intelligently classify
data into two groups is Machine Learning. The two-class classification is called binary
classification; a field where Support Vector Machines have been known to excel. Hence,
this dissertation explores the use of SVM for bypass prediction in shared Last Level

Caches, in order to determine its suitability for the bypass problem.

1.1 Objectives of Research

e To develop an efficient cache architecture that allows bypassing based on the result

of prediction.

o To develop a new technique to predict cache reusability based on machine learning

algorithms.

1.2 Scopes of Study

The scope of this dissertation is limited to the following;:

1.3

14

This work would focus on improving cache performance in multicore processors, i.e.

, quad-core or more using shared last level cache.
The benchmarks that will be used to test the performance is SPLASH2.

Performance measurement can be either instruction per cycle or the number of misses

in accessing cache.

Summary of Contributions

In this dissertations, we provide the following contributions:

We provide a proof of concept that machine learning is capable of predicting data

reusability. It can decide whether to bypass data from cache.

Support Vector Machine is an appropriate tool for classifying which data should be

bypassed from the shared last-level cache.

We provide a list of important attributes that have effects on making bypass deci-

sions.

Dissertation Organization

The rest of the dissertation is organized as follows. The next chapter introduces

background on cache and machine learning. Chapter 3 provides literature reviews in

relevant fields. Chapter 4 describes the method to prove the theory we proposed. Then

we show the results from the experiment in Chapter 5 and state the result discussions.

Finally, the last chapter provides the summary of the dissertation, limitations, and future

works.

CHAPTER 11

BACKGROUND

In this chapter, we provide the background on cache and describe basic cache terms

used in this dissertation.

2.1 Cache

Cache is the name given to the temporary storage that buffers between the pro-
cessors and and the main memory. It can also mean any buffer that temporarily stores
data to speed up the accesses to other storage devices. In this dissertation, we only focus
on the cache that buffers data between the processors and the main memory. The goal
of having a cache is to improve the performance of the processors by having data ready
for the processors to use once needed, while maintaining the cost-efficiency balance. In

general, the performance of the cache is defined by the following terms:

e Cache hit is a the ratio of the number of hits to the number of total cache accesses.

Here, we represent them in percentage.

numbero fhits

CacheHitPercentage = x 100 (2.1)

numberofaccesses

e Cache miss is the ratio of the number of misses to the number of total cache accesses.

Here, we represent them in percentage.

numberofmisses

CacheMissPercentage = x 100 (2.2)

numberofaccesses

e Latency is the amount of time that the processor has to wait for a datum, starting

from request until reception of such datum.

To understand cache, further details on cache terminologies need to be mentioned.

2.1.1 Cache Organization

Cache stores data in blocks or lines whose sizes vary between architectures. In

modern processors, the block size is usually 32-byte or 64-byte. Each block has an address

to identify itself. There are three basic organizations to arrange cache: fully associative,

direct-mapped, and set associative. They are illustrated in Fig. 2.1

Direct-mapped Two-way Set Associative

0 0 0

1 1 1

)))

3 3 3

4

5 Fully Associative

6 0 1 2 3 4 5 6 7
7 T T T T T T]

13 mod 8 =5

Figure 2.1: Three types of cache organizations. This is an example of the cache where block
address 13 can be allocated in the gray area. In direct-mapped, 13 mod 8 = 5; the block should
be located at location 5. In two-set associative cache, 13 mod 4 = 1; the block can be allocated at
one of the two blocks at location 1. In fully-associative cache, a block can be allocated anywhere.

In direct-mapped cache, a block can be allocated in one specific place. In general,
the specific place is where the block address mod with the number of blocks in the cache.
For example, if the address is 13 and the number of blocks in the cache is 8, the place to
put the data is the block number 5. This makes the look up very fast for direct-mapped
cache but it is possible that many data may require the same spot. The competition for
the same block space is called cache contention and could degrade the performance. When
it is fully associative cache, a block can be allocated anywhere in the cache so the cache
contention for a block space does not occur. All the tags in all cache are looked up to find
the match concurrently so it is very fast to find the requested data but the implementation
requires more hardware cost to compare tags at all blocks at once. The combination of
two organizations is a set-associative cache. It is when the blocks are grouped into sets,
the block can be allocated where the block address mod with the number of sets in cache.
For example, if the address is 13 and the number of sets is 4 and the size of each set is 2,
the place to put the block can be one of the two blocks in set 1. The set-associative is a
fast look-up time and cost-friendly organization. When there are n block in each set, the
organization is called n-way set associative. A 32-bit address for a 32-byte block is shown

in Fig. 2.2

Block address Offset

28 bits 4 bits
(28-n)bits | nbits | 4bits
Tag Index byte in

block

Figure 2.2: An example view of 32-bit address for 32-byte block. The block address is used to
identify the block, the offset is used to identify which byte in the block. In case of n-way set
associative, the tag is used for checking which block in the set, and the index is used to select
which set. In fully associative the n in the index field is zero.

2.1.2 Cache Replacement Policy

Placing a data block on cache should be easy if the size of the cache is large enough to
store all the data. In reality, the cache size is small to be efficient, fast and conserve energy.
If the cache organization is direct-mapped, there is only one place to put the data block,
no decision needs to be make as to where to allocate a new block into cache. However,
when the cache is full and a miss occurs in the set-associative or fully-associative cache, the
incoming block has to replace one of the data in cache. The block chosen to be replaced
is referred to as a wvictim block. There are different methods to choose the victim block
but a few basic cache replacement policies should be mentioned. Random replacement
policy randomly selects the victim block to be replaced. The benefit is the simplicity in
the implementation. In First In First Out (FIFO), the first block that goes into cache
will be replaced first. It is also simple to implemented with simple hardware required.
The most common policy is the least-recently used (LRU). All accesses to block have to be
timely recorded and the block that has no reference (read or write) for the longest period
is replaced first. Since the implementation of LRU is complicated and expensive, there is
a simpler version of LRU called Pseudo-LRU which tries to approximate the LRU policy
with less cost. The tree Pseudo-LRU is the most popular method widely used in modern
processor caches. Its implementation is a binary search tree which recognizes which side
of the leaf has been traversed. On a similar principle with LRU, the least frequently used
(LFU) policy chooses the cache block that were referenced least often to be the victim
block. With much less hardware overhead, not recently used (NRU) has one status bit
to recognized if the block referenced recently. Besides from the basic cache replacement
policies, Belady (1966) proposed a method to find the best performance possible from the
cache replacement policy. The key idea is simply to find the block that will be reused

furthest in the future to be a victim block. It requires knowledge of future accesses which

is impossible to implement but provides the best performance possible, typically as a
baseline to compare with other methods. There are other recent replacement policies
suggested by researchers to improve the cache performance; we will discuss them in the

next chapter.

2.1.3 Cache Writes

Most instructions read data and do not write to memory. However, there are two
types of writes that need to be mentioned. When processors are writing to cache, the
writing is to both cache and main memory. This policy is called Write through. When
processors only write to cache and the modified cache block will be written to main
memory later, it is called Write back policy. To identify which data is modified, there is
a status bit attached to each cache block. The status bit is also called the dirty bit, its
duty is to tell whether the data is modified. The write back has the advantage of saving
the bandwidth between the cache and main memory. While the write through policy is

easier to implement.

2.1.4 Multilevel cache

In modern processors, the cache usually has one to three levels, namely, L1, L2, L3.
The first level cache (L1) is the fastest cache but also smallest because of its price and the
power dissipation. When there are many cores together, all levels of cache can be either
private or shared cache. The term private means that the cache space belongs to one core
and reads and writes are exclusive to that core only. On the other hand, shared cache
means that any core can request to read and write the data on the cache. To use the
limited space efficiently, L1 is commonly two split caches that separate instructions and
data. The purpose is to allow the core to access both instruction and data simultaneously
via two different ports. The second level cache (L2) is a larger, medium latency cache,
mostly private to each core and implemented as unified cache, combining both instructions
and data. The last-level cache (L3 or LLC) is normally unified cache which is shared
among cores. The main benefit is more flexible and dynamic allocation of resources,
for example, when some cores are idle, the active core can utilize the whole LLC space.
Since shared last-level cache has become pervasive, there are many researchers focusing

on improving the performance on this cache.

10

2.1.5 Cache Consistency

When many copies of the same datum exist, some policy must be employed to
ensure that the processor receives the correct version of the datum requested. In case of
writes, data in other places require transparent update to guarantee correctness. Cache
coherence verifies that the data is updated in a timely fashion and memory consistency
ensures that processors see exactly the same sequence of changes of all values. There
are two cache coherence protocols used in modern processors, directory-based and snoop-
based protocols. In directory-based protocol, the directory is a table storing state of
each block such as ownership and its sharing status. It is scalable because directories
can be distributed across memories. When there is a write to each block, the status in
the directory has to be updated and send point-to-point updates to processors. On a
snooping system, each cache monitors every bus, comparing the address with the ones it
has stored. Should there be a match, the cache either updates its own copy or marks it
as dirty. Although snooping is rather simple to implement in a small system, it does not
scale well; in a many-core system with multiple caches, each would have to have access
to every bus, leading to area and bandwidth issues. Thus, when the size of the cache is

large, it is more popular to implement the directory-based protocol.

2.2 Machine Learning

Machine learning involves techniques and methods which give the machine an ability
to learn from examples and provide patterns or predictions as results. It is designed to
solve some tasks that could not be defined well by human or some complex problems
which could not be solved by human. Each learning algorithm has different assumptions
and creates different functions and is hence preferred for different kinds of problems, e.g.,
data mining, pattern recognition, classification, knowledge extraction, etc. They could
be classified by types of learning to generate output function into two major groups,

unsupervised learning and supervised learning.

Unsupervised learning refers to a method to uncover structure in unlabeled data.
There is no reward or any signal that could evaluate the solution. Example problem
that required unsupervised learning is data clustering, where objects are grouped into
clusters based on similarities, e.g., document clustering which groups similar documents

together. Another example is knowledge extraction in which we learn rules that are

11

underlined in data. In supervised learning, the input data are labeled with desired outputs
as examples to be observed. An algorithm will try to generate a function that maps labeled
input to desired outputs based on training data. The result function will be capable of
distinguishing between different examples (or patterns) and predict answers for unseen
data. If the desired output is discrete, the problem is called classification problem, and
the function is known as a classifier. The classifier should accurately predict correct
classes for any valid input data. In our problem, we could classify output as two groups
of data, to be reused and never reused. This kind of problem is called binary or two-class
classification where output could be generalized to simply answer with yes or no only. As
it should be supervised learning, we need to label input data or patterns to give samples
to the machine learning algorithms and selectively describe our input by features or the
characteristic of data to solve our problem. This problem of binary classification could be
solved by several machine learning methods, for example, decision tree, artificial neural

network, support vector machines, etc.

Decision tree is a flowchart-like tree structure tool for supervised learning where
internal nodes indicate a test on an input data, branches indicate the outcome of the
test, and leaves or terminal nodes hold a class label. The process of testing starts at
the topmost node or the root and repeats until the leaf node is reached and received the
output. For its simplicity, decision tree is easy to understand and fast learning algorithm.
It is used in large and realistic classification problems, such as medical diagnosis, credit
risk analysis. However, decision tree is extremely sensitive to small perturbations in the
data, i.e., a slight change can result in a drastically different tree, and our prediction is
based on memory address of accessing data which could easily change over time and hence
the tree needs to be reconstructed very often. Moreover, since our training data size needs
to grow if the prediction accuracy is not good enough, training could be difficult because
the tree needs to restart from the beginning if the training data has changed. Accordingly,

the tree could not learn online and would not fit workloads that change continuously.

Support vector machine (SVM) is learning algorithm introduced by Cortes and
Vapnik (1995), it is a prediction tool for classification and regression using machine learn-
ing theory to maximize predictive accuracy while avoiding over-fitting to data. In binary
classification, its operation is to search for optimal hyperplane for linearly separable pat-

terns by learning from sample data. SVM is used extensively in broad subjects to solve

12

13

different complex problems, e.g., web spam detection, facial recognition, medical data
extraction, etc. Support vectors are the data points that lie closest to the decision sur-
face where classification is most difficult. If the data is non-linearly separable, the kernel
function will be applied to map sample data from original space to higher dimensional
feature space to create a linearly separable pattern. The distance from the hyperplane to
the instances closest to it on either side is called the margin. SVM will attempt to extend

maximum margin between two class data samples while maintaining least errors.

o /Margin

Figure 2.3: linear separating hyperplane for the separable case. The support vectors are circled.
(Burges, 1998)

To be specific, sample data are tagged with label —1 and +1 for the two classes. The
training samples are {xj, y;}, where i = {1,..,1} and y; € {—1,1},x; € R%. The points x;
which lie on the hyperplane satisfy w-x+b = 0, where w is normal to the hyperplane,%
is the perpendicular distance from the hyperplane to the origin, and ||w|| is the Euclidean

norm of w. The equation could be written as

w-x; > +1 for y; = +1

w-x; < —1fory, =-1

which could be combine to

yi(wW-x;+b) > +1Vi (2.3)

Any tuples x; that falls on the H1 : w-x;+b=1o0or H2 : w-x;+b = —1
hyperplanes are called support vectors and hence, the perpendicular distance from origin
to the hyperplane H1 and H2 is ﬁ and % respectively. Therefore the distance
between two hyperplanes or the margin is ™I ” In order to predict patterns or classification
of test data x*, the equation could re-written based on the Lagrangian formulation to find

the maximum margin hyperplane as

l
d(x*) = Z yiaxix® + by (2.4)
i=1

where y; is the class label of support vector x; , x* is a test tuple and «; and by are numeric
parameters that were determined automatically by the optimization or SVM algorithm
above; and [is the number of support vectors. We could test the tuple x* by plugging
in equation 2.4 to see if the x® lie on which side of the hyperplane. Accordingly, if the
result is positive, it means that x* lies on or above hyperplane H1 and it belongs to class
+1. Otherwise, if the result is negative then x* lies on or below hyperplane H2 that it
belongs to class -1. In case of non-linearly separable data, a kernel function could be
used to maps the original data into a higher dimensional space. The most common kernel

functions used are listed in Table 2.1

Table 2.1: The most common kernel functions

Kernel Kernel Function

Linear K(x,y) =

Polynomial K(x,y) = (x y+1)
o2

Radial Basis Function K (x,y) = exp[— u]

Sigmoid K(x,y)= anh(éxy 0)

14

CHAPTER III

LITERATURE REVIEWS

Many works have been focused on improving the performance of the cache. Various
techniques can be divided into different groups; cache partitioning, cache replacement

policy, cache prefetching, and cache bypassing.

3.1 Cache Partitioning

By exploiting benefits of locality, early works focus on improving the small direct-
mapped cache by adding an extra buffer. To start with, Jouppi (1990) introduced an
approach to improve the hit ratio of a direct-mapped cache by adding a small fully-
associative buffer called victim cache. The victim cache is used to hold the data evicted
from the main cache and give them a second chance to be hit. It shows temporal locality
of data that evicted data could be reused again. The improved hit rate of Jouppi’s cache
could be as good as two-way set associative cache but requires less circuitry. Similarly,
a small buffer called assist cache is added to the main cache in HP-7200 (Hay et al.,
1996) but it appears to function like a primary cache which stores incoming data and
only forwards data that shows temporal locality to the main cache and bypass data that
shows spatial locality back to the memory. Another work by Rivers and Davidson (1996)
also add a fully-associative buffer called NT buffer to support the main cache. An NT
bit is added to each line in caches to identify the non-temporal data and decide whether
the data should be put in the N'T buffer or the main cache. By managing data based on
temporal locality, the cache is not polluted by non-temporal data so the conflicts in the

main cache are reduced and the hit ratio is increased.

Adding identifying bits can help recognize lines that has temporal locality. Mec-
Farling (1992) also uses sticky-bit and hit-last bit to note that the line has reused and
should be kept in the cache. His dynamic exclusion gives priority to temporal data and
preserved them in cache longer result in better cache performance. Difference approach
in managing two different locality is proposed by Gonzalez et al. (1995). Gonzélez et al.
proposed a cache that separated into two partitions based on data locality, temporal and
spatial cache. When the predictor predicts that data has no locality, it will be bypassed

from both caches.

3.2 Cache Replacement Policy

The main purpose of cache replacement policies is to predict which block in the
cache should be the last one to be re-referenced and that last one should be replaced by a
new block. As mentioned in Chapter 2, LRU is the basic cache replacement policy widely
used in modern processors. LRU policy keeps track of the time when each blocks are
being referenced (read or write). It is similar to a linked list that has the most recently
used block, the latest block referenced, at the head of the list and the least recently used

block at the tail. The victim block that will be replaced is always the one at the tail.

With LRU as basic replacement policy, some modifications to improve the LRU
performance are proposed by changing the status of the block inserted, called the insertion
policy. Qureshi et al. (2007) proposed LRU Insertion Policy (LIP) to insert the new
incoming block at the end of the LRU chain instead. Unless promoted by being referenced
again, the block will be replaced next. This gives priority to the block that is being re-
referenced more than once. Another method proposed is Bimodol Insertion policy (BIP)
which randomly selects where to insert the block, between the MRU and LRU, with
more priority at the latter. The actual run, called Dynamic Insertion Policy (DIP), is
implemented as set-dualing that switches between BIP and the traditional LRU policy
depending on which policy is giving better hit rate at the time. A little modification
of DIP is to make the algorithm thread aware. Thread-aware dynamic insertion policy
(TADIP) has different counters for each different thread. The method claimed to achieve

throughput near the traditional LRU with double cache size.

Besides from LRU, a number of researchers have proposed many methods to select
the victim block. The challenge is to keep track of the time each block was referenced or
to keep the list in order. The counter used to store the time or frequency could take up
precious cache space. With the expense of implementing true LRU, Jaleel et al. (2010)
proposed a Re-Reference Interval Prediction (RRIP) chain to replace the LRU chain by
roughly dividing data into four groups. The RRIP represents the order that the blocks
are predicted to be re-referenced from soonest to furthest. When cache is empty, the
new incoming block is inserted in a position second from the furthest group. It will be
promoted to the sooner group when it is referenced. When the cache is full, the block

in the furthest group will be replaced first. The authors’ method ensures that the data

16

repeatedly re-referenced stay longer in cache and the data that used only once (refer to
as scan by author) are kept in the cache very shortly while requiring less hardware and
outperforming traditional LRU policy. An improvement of the RRIP is proposed in Wu
et al. (2011), Prefetch aware cache management (PACman) is a version of RRIP with
the awareness of which blocks are prefetched or demand fetched. It gives the priority to
the blocks that are demand-fetched to stay longer in the cache. As a result, PACman

improved overall workloads more than 20% from traditional LRU replacement policy.

Khan et al. (2010) observed that the blocks in LLC are dead 86% of the time in
memory-intensive benchmarks, i.e., the blocks are placed in cache and never reused again.
To solve the problem, the authors create a predictor that samples program counter (PC)
to determine if the block is dead and should be removed from LLC. The predictor can
reduce the LLC miss rate from traditional LRU by 23% on multicore workloads while the

sampling requires less overhead than conventional predictors with states storage.

3.3 Cache Prefetching

Prefetching is a method that moves a block of data up in the memory hierarchies
before it is actually needed by the processor (Vanderwiel and Lilja, 2000). It could
be done by either hardware or software or both. Software prefetch generally required
sophisticated compilers to modify code in order to insert fetch data instructions. It would
require extra processor cycles since it added extra lines to activate the prefetch in the
code. As a result, it incurs in significant overhead and could degrade performance in
some benchmarks as shown in Bernstein et al. (1995); Santhanam et al. (1997); Lipasti
et al. (1995). Since software prefetch tends to specific within applications, we would focus

on hardware prefetch here.

Hardware prefetch adds prefetching to the system with no need to modify the code.
Smith (1982) notes in his survey that three important things to concern in prefetch are:
1)when the prefetch should be initiated 2) which data should be prefetched and 3)what
status should be given to the prefetched data. First, the time to activate prefetch can be
either prefetch-on-hit or prefetch-on-miss. Difference is prefetch activates when the data
required by the processor is found in a cache or not. Sometimes it could be prefetch always,
i.e., every time data in cache is accessed, but it would highly cost memory bandwidth. As

the prefetched data displaces existing data in cache, if the prefetched data is fetched too

17

soon that it idles a long time in cache or it is removed before its use then that data will
become cache pollution. Cache pollution could cause not only reduced cache performance

but also wasted memory bandwidth and energy.

Second, choosing which data to prefetch is extremely important. Sequential prefetch
exploits the spatial locality by prefetch data that adjacent to the currently accessed data.
The simplest one is fetching one block of data that adjacent to the block currently ac-
cessed Smith (1978) called one block look-ahead (OBL). For example, if the address that
is currently accessing is a then the prefetch data is a+1. The differences between current
address a and the next address a+1 can be more than one and called stride prefetching.
Jouppi (1990) introduced extra stream buffers to store prefetched next-address data sepa-
rately from the main cache. Later, Baer and Chen (1991) record load/store instructions in
the reference prediction table and predict future accesses that could be non-unit strides.
It is called stride prefetching. Other works alternated stride prefetching by applied it to
different memories Fu et al. (1992), Ibdnez et al. (1998), Kim and Veidenbaum (1997),
Sklenar (1992).

Palacharla and Kessler (1994) proposed equal-sized stream buffers as a secondary
cache. It detected strides and captures stream data behavior without the need for program
counter which is very useful to memory other than on-chip cache. However, constant
stride prefetching is only efficient on large programs with array or data accesses that
exhibit spatial locality. For data access patterns that are different, Baer and Chen (1995)
proposed aggressive prefetcher which predicts the size of stride dynamically. They also
compare the method with Mowry et al. (1992) in Chen and Baer (1994) and concluded
that the performance improvement depends on the program characteristics and there is

no prefetcher with consistently better performance.

Other than stride-based prefetchers, Joseph and Grunwald (1997) interestingly ap-
ply Markov model to learn the miss addresses and predict addresses to prefetch. The
Markov-like model is one kind of correlation-based prefetchers which use one address as a
key and prefetch the next address follows that key. The disadvantage is that the prefetcher
must see the miss reference repeats before it can predict future miss correctly. Sair et al.
(2002) suggested that load instruction behavior can be classified into four groups as fol-

low: next-stride, stride, same-object, and pointer-based, then concluded that the prefetch

18

should be able to classify the behavior and prefetch the correct stream of data. The
same-object refers to prefetching a large object that loaded into different blocks. Zhang
and Torrellas (1995) recognized if the objects are used together and prefetch all blocks.
Pointer-based application is more difficult to predict since the addresses are not pattern.
Many works (Collins et al., 2002; Cooksey et al., 2002; Ramos et al., 2000; Wang et al.,
2003) are targeted to solve the problem. Sair et al. concluded that Markov predictor
is suitable for the type. They improved and proposed predictor-directed stream buffer
based on Sherwood et al. (2000) similar to Kandiraju and Sivasubramaniam (2002); Oly
and Reed (2002) that also modified the Markov predictor and achieved impressive per-

formance.

Besides from predicting method, there are software and hardware based lookahead
method. Software means spending one thread to execute the program in advance only to
fetch the correct prefetched data to another working thread Luk (2001); Moshovos et al.
(2001); Roth et al. (1998). While hardware (Mutlu et al., 2003) use runahead technique to
learn what to prefetch by allowing the processor to pretend to execute program during the
processor stall cycles but not actually commit them. Similarly, Ganusov and Burtscher
(2005); Zhou (2005), use advantages of multicore processor and let one core executes
program ahead to prefetch correct data. These techniques are not quite popular because
all the programs must execute twice only to reduce stall time, it would be a trade off

between energy and time which may not worth spending.

For specific application like multimedia applications, Lee et al. (2003) examined
data access patterns of multimedia applications and grouped them into three types, fixed-
stride, 2way, and 2d streams and add three prefetchers to prefetch data to separated
stream cache. As a result, the misses in multimedia benchmarks are drastically reduced.
This work has showed that data access pattern in specific application could be learned and
guided to achieve impressive performance. Somogyi et al. (2009) use the synergy between
spatial and temporal locality to enhance prefetching performance. Their approach, Spatio-
Temporal Memory Streaming (STeMS), looks at miss history to drive the prefetcher and

prevent further misses through out the memory region.

19

20

3.4 Cache Bypassing

The idea of predicting what data to fetch is similar to predicting which data not
to cache. Tyson et al. (1995) proposed a method to manage data cache by selectively
allow data allocation. It stems from observation that only small number of instructions
are responsible for a large number of cache misses occurred in data cache, i.e., data
allocation from some instructions are the main causes of cache misses. Consequently,
those instructions should be prohibited from allocating data in cache in order to reduce
the miss ratio. Instructions are marked with C/NA (Cacheable/Non Allocatable) if they
are predicted to create a lot of misses. The prediction is made by a version of two-bit
branch predictor by Yeh and Patt (1991). The important result is not the improved hit

ratio but it is the substantially reduced memory bandwidth.

From the very first work, Johnson et al. (1999) proposed another cache bypassing
which based the predictions on the memory access addresses instead of load instructions.
They observed the memory access distribution and traversed through address trace to
analyze the optimal bypassing decisions and the upper bound hit ratio that it could
achieve. The prediction is predicted by partitioning data into Macroblocks and store
access history in the Memory Access Table. It is reported that the result often achieved

hit ratios close to the upper bound which is quite impressive improvement.

Later, Jalminger and Stenstrom (2003) applied the two-level branch predictor simi-
lar to Tyson’s but the prediction is based on the memory access addresses like Johnson’s.
The aim is to predict whether a cache block will be reused within a limit distance or not.
If the data will be reused then it would be allocated in the cache otherwise it would be
placed in the bypass buffer for a short period. There are two types of table, one is for
record each cache line access history called Reuse History Table and the other is for the
two-bit predictor for each pattern per each cache line called Reuse Prediction Table. The
two-bit predictor has four states which update every time a block is accessed based on
the reuse history. Though Jalminger and Stenstrom’s propose achieve high prediction
accuracy (66%-94%) and reduce miss rate for up to 32%, it require a large amount of
memory to record these tables and enormous bandwidth to update two tables every time

the cache is accessed.

Piquet et al. (2007) observed that some data blocks are bought into cache and never

21

L1 L2 |
| Cache Cache |

Memory

| Bypass | |Prediction |
| buffer | |mechanism

Figure 3.1: Organization of Jalminger and Stenstrém (2003) novel cache approach

accessed again before being evicted. Those blocks are named single-usage blocks (SU) and
storing single-usage blocks on the cache creates single-usage pollution. The experiment
shows that single usage pollution occurs only 6% of the time in L1 data cache but 33% in
the L2 (last-level cache), and hence, data should be bypassed from the L2. The authors
propose a method to decide which data should be bypassed based on the instruction who
requested the data. Each line in the L2 is tagged with the Instruction Address (IA) and
an SU bit that set to one when the data is accessed after being allocated in cache. The
IA are stored in the BUP table accompanied with a counter. When a block in the L2 is
evicted, the counter associated with the IA is updated; if the SU bit is one the counter
is reset to zero, and if the SU bit is zero then the counter is incremented. When there is
an L2 allocation, the TA is looked up in the BUP table. If the counter associated with
the TA tag is saturated, the data block will be bypassed from the L2. The organization is
shown in Fig 3.2

L2
'\ /1 To Main
To L1 <: l/ tag data 1A tag[SU Ny > Memory
BUP
«———— | [IAtagpUD

Query on miss

Update on
aviction

Figure 3.2: Organization of Piquet et al. (2007) bypassing method.

Another bypassing approach called Counter-based replacement and bypassing al-
gorithm is introduced in Kharbutli and Solihin (2008). Kharbutli and Solihin observed
that data that are brought to L2 cache often idle for a long period in cache after its
last use because of the Least Recently Used (LRU) replacement policy that hold data a

22

long time before evicted. For some lines, they are never re-accessed again after they are
brought to L2 cache. Therefore, the authors relaxed cache inclusion between L1 and L2
and suggested a method that detect never-reaccessed lines, bypass those lines from L2
cache, and load them to L1 only. Based on counter that count specific access to memory
address, the authors proposed method to identify expired lines and replace them, also,
it could identify bursty temporal data and put them in L1 cache only. As a result, the
algorithm gain speed up in 10 out of 21 SPEC2000 benchmarks while degraded less than

one percent in the rest.

Furthermore, Xiang et al. (2009) suggest that if the working set is larger than the
cache size, remove only lines that will never reused at all is not enough to preserve the
temporal data, more blocks should also bypass from cache. In addition, those blocks that
will be reused only a few times should be removed by using Less Reused Filter (LRF).
LRF consists of Reuse Frequency Predictor for predicting how many times each block
will be reused, A filter buffer for storing less reused lines separated from the main cache,
and the shadow tags for storing only tags of the evicted cache lines from the filter buffer.
With the reuse count prediction, LRF could determine when the data should be placed.
When most of the working sets are retained in cache the higher hit rate can be achieved.
An improvement to LRF is proposed by Qiao et al. (2011) by adjusting LRF to be shared
cache in multicore processor. It received better IPC compared to the uniprocessor and
reduced the cache miss rate. The disadvantage of both LRF is the expensive hardware
cost from keeping many counter values in each cache line and the large size of shadow

tags.

Feng et al. predict data reusability based on previous reuse information and create
a new replacement policy in Feng et al. (2011). The method adaptively switches between
two predictors, reuse information based replacement policy and typical LRU replacement
policy. Similarly, PDP (Duong et al., 2012) use reuse prediction to protect potentially
reuse blocks in cache from being replace, if all the blocks are protected then the incoming
block is bypassed. Optimal Bypass Monitor (OBM) (Li et al., 2012) tried to implement
the optimal replacement policy and adding bypassing feature by comparing whether the
incoming or the victim block will be reuse first and keep the nearest reuse data. The
algorithm keeps track of the reuse information in the form of incoming block and victim

block pair, and also requires another table to store a counter use to predict the reuse

distance of each incoming block. Storing and updating the two tables on every access
cause enormous traffic amount. Another simple approach that claims to be more efficient
than OBM is SCIP (Kharbutli et al., 2013). SCIP basically counts the number of time
each block requested to L2. If the two-bit counter incremented to three then the LLC
would allocate the block, bypasses around 75% of the data. As in their result, SCIP
bypasses at least 82% of the incoming block and achieve an average of 18% speed up

proving that the LLC require to allocate only some portion of data.

Combining partitioning and bypass, most recent work(Khan et al., 2014) proposed
a cache management method that distinguishes between read and write requests and
gives more priority to the read to reduce stalls from write. The author adapted the reuse
prediction method in (Piquet et al., 2007) but only to predict data that will be read reuse
only and bypass predicted writes and not reuse data from cache. The method speedup an
overall average on SPEC2006 benchmarks 5% and 14% on caches-sensitive benchmarks

compare to baseline LRU replacement policy.

23

CHAPTER IV

METHODOLOGY

Shared cache behavior on multicore cannot be predicted by analyzing each core’s
workloads separately. The dynamics of multicore operation result in shared LLC effects,
e.g., cache thrashing, that must be analyzed at shared LLC level. This is in contrast with
private caches behavior where traces can be obtained directly from processor cores, and
bypass algorithm could be directly deduced from processors behavior, e.g., by analyzing
the program counter; this approach is not feasible for shared last-level caches where
multicore interactions must be tackled by more sophisticated methods based on LLC
access traces. In this chapter, we provide details on how support vector machine can
learn from training examples and generate model classifier to predict which data should

be bypass from the shared last-level cache. An overview of the system is shown in Fig. 4.1.

SVM Bypass?

Trainingdata—»{ SVM Testing data—»
& & Models yes/no

Training the Predictor Using the predictor
(Ofiline) (Online)

Figure 4.1: An overview of the system

The system is separated into two parts, the offline process and the online process.
The offline process is the SVM learning process to generate models to classify data into
bypass and not-bypass. It starts from deciding what are the data, getting those data from
the simulator, and preparing the training data for the SVM. The online process is the
cache simulation with the use of the bypass classifier to decide whether to allocate data
on the last-level cache. The offline process detail will be described first and the online

process detail will be described in the latter section.

4.1 The offline process

4.1.1 Preparing data

First, SVM requires labeled training data to learn. The definition of the training
data is a set of known inputs with a known response to the input data. What we consider
that should be the inputs of the SVM are the state of the parameters involving the memory
and the core. The output is the class of the data, bypass or not-bypass. To create input
data, we create a trace of addresses that the cores requested to use, both instruction and
data, including all the features with the following motivations: 1) previous works (Piquet
et al., 2007), (Khan et al., 2014) show that it is important to know which instruction is
requesting the data, thus Program Counter (PC) has impact on making bypass decisions.
2) The locality of data provides the assumption that the data requested are related to the
data previously requested, either in space or time. Therefore, the address of the previously
requested data from the core and the previous miss from the higher level cache (L.1) should
have impact on bypass decision. 3) The core number that requested data indicates whose
request generated from. It can help distinguish which application that is running and
decide which application should be bypassed. 4) It is likely that data should be bypassed
than instructions, so it is important to distinguish between the data and the instructions.
5) The temporal locality suggested that the time of access should be the key feature to
decide bypassing. In conclusion, the trace includes the following information: address
requested, program counter, core number that requested data, access type (Instruction or
Data), previous address requested from the core, previous address requested to the LLC,

and the time of access.

4.1.2 The simulator

We use Multi2Sim simulator (Ubal et al., 2012) to model a quad-core processor
with X86 ISA. All caches are non-inclusive, write-through and write-allocate with true

LRU replacement policy. The cache parameters are depicted in Table 4.1.

Table 4.1: Parameters of the simulated cache

L1 Instruction Cache 8KB, 32B-line size, 2-way
L1 Data Cache 8KB, 32B-line size, 2-way
L2 Shared Last-level Cache | 64KB, 32B-line size, 4-way

25

Cache size is small in relation to benchmark memory usage (working set) in order
to force contention in the shared last-level cache. Since the purpose is to prove the
SVM ability to selectively bypass the data, two-level cache is sufficient to demonstrate

the feasibility and exploiting the relationship between each core’s private cache and the

shared LLC.

4.1.3 Benchmarks

We use SPLASH2 benchmarks because of its multithreaded support and its purpose
of studying parallel machine. The application domain of each benchmark are summarized
in Table 4.2. We create 7 benchmark combinations by randomly selecting 4 out of 11
SPLASH2 benchmarks to run simultaneously, four threads per benchmark. Each combi-
nation is listed in Table 4.3 and simulated for 200 million committed instructions after

fast forwarding the first 100 million instructions.

Table 4.2: Benchmark application domain

Program Application Domain

Barnes High-Performance Computing
Cholesky High-Performance Computing
FFT Signal Processing

FMM High-Performance Computing
LU High-Performance Computing
Ocean High-Performance Computing
Radiosity Graphics

Radix General

Raytrace Graphics

Water-nsquared = High-Performance Computing
Water-spatial High-Performance Computing

Table 4.3: Benchmark combination

com 1 | Raytrace, Radiosity, Water-nsquared, Water-spatial
com 2 | Radiosity, Lu, Ocean, FFT

com 3 | Cholesky, Fmm, Water-nsquared, Radix

com 4 | Barnes, Fmm, FFT, Radix

com 5 | Ocean, Lu, Barnes, Water-spatial

com 6 | Fmm, Cholesky, Lu, Raytrace

com 7 | FFT, Barnes, Radiosity, Water-nsquared

26

27

4.1.4 The training data

The traces are separated into two parts, the training set and the testing set. We
select the first 1 million accesses to be the training data or the input for the SVM. The
rest are reserved for testing the classifier generated by the SVM. On the training data,
each datum must be identified, as belonging to "bypass” or "not-bypass” classes; the data
is marked so it can be used for SVM training (sample data). We manually divide the
data using our knowledge of future behavior, similar to the optimal lookahead in Li et al.
(2012). The difference is the lookahead is limited to the window of size n to check for

future reuse. The marking method is illustrated in Fig. 4.2.

.. ‘ D ‘ I Al ‘ E ‘ ‘ B | Alis found, mark as not-bypass

n
Lookahead for window size=n

‘ B ‘ ‘ B ‘ ‘ G ‘ ‘ B | Ajis not found, mark as bypass

T
Lookahead for window size=n

Figure 4.2: The marking method to create training data

For example, when address A is accessed, LLC trace is checked for n addresses,
determining whether or not address A will be reused. If so, then A will be marked as
not-bypass and will be allocated in LLC normally. If not, then A is marked as bypass and
will be bypassed from LLC. Experimental results suggest the most efficient window size
for our experiment is n=5000; varying window size between 1000 and 10000. We show

the result of our marking method with 3 different n sizes in Table 4.4.

Table 4.4: The hit rate of the training data with different window sizes, approximately first 100k
accesses

Name | Benchmarks baseline | n=2k | n=5k | n=10k
Coml | Raytrace, Radiosity, Water-nsquared, Water-Spatial | 69.10 74.56 | 77.12 | 76.63
Com2 | Radiosity, Lu, Ocean, FFT 44.52 49.36 | 50.27 | 50.58
Com3 | Cholesky, FMM, Water-nsquared, Radix 76.93 77.73 | 80.02 | 80.25
Com4 | Barnes, FMM, FFT, Radix 64.91 69.49 | 72.01 | 71.21
Comb5 | Ocean, Lu, Barnes, Water-Spatial 53.37 62.66 | 65.48 | 61.84
Com6 | FMM, Lu, Cholesky, Raytrace 86.86 85.37 | 87.04 | 88.02
Com7 | FFT, Barnes, Radiosity, Water-nsquared 59.33 65.14 | 67.18 | 67.57

28

4.1.5 Features and Kernel Functions

We use the four most common kernel functions as described in Chapter 2 to find the
most appropriate kernel function for each benchmark combination: Linear, Polynomial,
Radial basis function, and Sigmoid. The SVM that we used is the HR-SVM (Vateekul
et al., 2014), an SVM-based technique specifically tailored for hierarchical multi-label
classification. Multi-label classification consists of multiple binary classification i.e. when
there are ten classes to classify, first the SVM divide the data into class 1 and the rest
9 classes first, then divide the rest 9 classes into class 2 and the rest 8 classes and so
on. Thus, the HR-SVM highly suitable for binary classification with the imbalanced
class issue; our training data have majority in not-bypass more than bypass. For feasible
training, the data is scaled to -1, 1 and sampling was performed to obtain adequate
training data. Empirical results showed that sampling every fifth address for a total of
100,000 data yielded adequate SVM training results. Table 4.4 display the number of
data that are marked as bypass in each training data. The parameters of the SVM are

varied as in Table 4.6

Table 4.5: The number of data in bypass class in 100k training data

Name | Benchmarks n=2k | n=5k | n=10k
Coml | Raytrace, Radiosity, Water-nsquared, Water-Spatial | 43989 | 23272 | 15709
Com?2 | Radiosity, Lu, Ocean, FFT 54302 | 47701 | 45812
Com3 | Cholesky, FMM, Water-nsquared, Radix 34335 | 20203 | 15838
Com4 | Barnes, FMM, FFT, Radix 44551 | 19473 | 14460
Comb5 | Ocean, Lu, Barnes, Water-Spatial 53551 | 35977 | 29547
Com6 | FMM, Lu, Cholesky, Raytrace 33396 | 23629 | 20576
Com7 | FFT, Barnes, Radiosity, Water-nsquared 43749 | 27370 | 18884

Table 4.6: SVM parameters

C Y
0.5 | 0.000488
2 | 0.0025
4 0.025
8 | 0.007813
16 0.25
32 0.25

We use the 21 training data we created in the previous section for the HRSVM to

learn. With 4 kernels and 6 parameters each, we then have 24 classifiers for each training

29

data. We use the trace part that reserved for testing (after 1 million accesses) to test the
efficiency of the classifier. The SVM reads the input trace and then labeled each data to
one of the two classes. The input plus the output from the SVM testing will be referred

to as the predicted trace and will be used in the next section.

4.2 The online process

To measure the efficiency of the classifier, the cache simulator is modified to be
augmented with bypassing capability. The predicted trace will be evaluated through re-
simulation as if the classifier is making the bypass decision on the fly. The system structure
is shown in Fig. 4.3. First, the trace is read as addresses request from the cores and the
L1 cache operates as a normal cache with no modification. When there is a request to
LLC, the LLC first check if there is a hit in the LLC. If it is a miss, the simulator look up
for the data block in the main memory and check the trace which class the data belongs
to, bypass or not-bypass. If the data marked not-bypass, then it is allocated to LLC. If
the data marked as bypass, then the data read will be sent to L1 without allocating to
LLC.

Main Memory

| 1. Address requested
Bypass X features | 2. Program counter
ﬁf Bypass classifier 3. Core number
4. Access type (Instruction or Data)
5. previous address requested from core

1 Not Bypass

1.2 Cache 6. previous address requested to the L2
4
. I
.. I
|
dL1 iL1 dL1 iL1 dL1 iL1 dL1 iL1 I
i | Cache || Cache Cache || Cache Cache || Cache Cache || Cache : I
e o Jror e 2 F I e R T [‘T I I
| Processor0 | | Processori | | Processor2 | | Processor3 | — -4

Figure 4.3: System Structure. The dotted arrows represent the information required by the
classifier. The solid arrows represent data flows when cores request data from main memory (L2
missed).

For simplicity, we treat read requests and write requests equally assuming the write-

through policy with allocate on miss. The replacement policy is true LRU because the

hardware overhead from the implementation can be ignored.

4.3 The implementation considerations

The actual implementation details would require the cores to simultaneously send
the features information to the bypass classifier. The hardware implementation of the
classifier can be done by reducing the models we achieved through HRSVM into an SVM
mathematic equations. In the real-time calculation, it is likely that sometime some SVM
classifiers perform better than the other. It is possible to implement multiple classifiers
with a multiplexor to select the best classifier at the time. One of the methods that is
possible to implement is the set dueling (Qureshi et al., 2007) which has small dedicated
sets for each replacement policy and the remainder are the followers that would choose
the policy following the set that provide the better performance. We could adapt the set
dueling to implement some dedicated sets with some classifiers and the rest can follow
the classifier that provide the best performance at the time. Other than that, in some
specific applications, for example, the video encoding processor; it is possible to learn the
application characteristics beforehand and implement only the specific classifier for that

specific type of workload.

30

CHAPTER V

RESULTS AND DISCUSSION

5.1 Results

In this chapter, we show the experimental results of the SVM bypassing. First, we

show the

information of each combination in Table 5.1

Table 5.1: Memory and cycles usage for each benchmark combinations

Name | Benchmarks Memory Usage | Number of cycles
(Bytes)
Coml | Raytrace, Radiosity, Water-nsquared, Water-Spatial 187,219,968 152,902,582
Com2 | Radiosity, Lu, Ocean, FFT 164,872,192 183,185,868
Com3 | Cholesky, FMM, Water-nsquared, Radix 126,083,072 257,923,134
Com4 | Barnes, FMM, FFT, Radix 140,763,136 225,048,277
Comb | Ocean, Lu, Barnes, Water-Spatial 150,843,392 253,674,883
Com6 | FMM, Lu, Cholesky, Raytrace 159,490,048 167,651,903
Com7 | FFT, Barnes, Radiosity, Water-nsquared 164,716,544 136,200,572

Since we focus on the accesses to the last-level cache which is L2, the number of

LLC accesses and the hit rate are shown in Table 5.2

Table 5.2: Baseline LLC hit rate for each benchmark combinations

Name | Benchmarks LLC accesses | Baseline

Hit Rate
Coml | Raytrace, Radiosity, Water-nsquared, Water-Spatial 2,794,208 72.64%
Com?2 | Radiosity, Lu, Ocean, FFT 1,807,811 43.36%
Com3 | Cholesky, FMM, Water-nsquared, Radix 3,262,796 41.59%
Com4 | Barnes, FMM, FFT, Radix 2,635,956 43.56%
Comb | Ocean, Lu, Barnes, Water-Spatial 3,086,273 49.44%
Com6 | FMM, Lu, Cholesky, Raytrace 2,998,467 70.48%
Com7 | FFT, Barnes, Radiosity, Water-nsquared 1,715,070 66.21%

With all the possible combinations from all the parameters, we try to find the impact

of having different number of features. We compare the results from using all 7 features

and leave out some features and found the best performance from having 6 features and

leave out the time of access. Also, we compare the results from using training data with

32

different window sizes and found the best results from the window size n = 5000. Using
the same training data, the experimental results for the 6 features and 7 features are

shown in Table 5.3.

Table 5.3: Best hit rate achieved using 6 features and 7 features using training data with n=5000
window size

Baseline || 6 features | %improved || 7 features | %improved

Coml 72.64 74.39 2.42% 73.52 1.21%
Com2 43.36 44.09 1.68% 43.62 0.60%
Com3 41.59 44.75 7.60% 44.94 8.05%
Com4 43.56 50.96 16.99% 49.66 14.00%
Comb 49.44 52.27 5.72% 51.52 4.21%
Com6 70.48 69.48 1.42% 71.17 0.98%
Com7 66.21 69.12 4.40% 69.06 4.30%

average 5.34% average 4.77%

The best lookahead window size for the training data is n=5000. The best hit rate
results from each kernel function are shown in Table 5.4 and Table 5.5 and illustrated in

Fig 5.1 and Fig 5.2.

Table 5.4: Best hit rate achieved from the classifier prediction with 6 features and using training
data with n=5000 window size

Baseline || Linear | Polynomial | RBF | Sigmoid Best diff
Coml 72.64 74.05 74.37 | 74.39 74.32 || 74.39 | +1.75
Com?2 43.36 43.50 43.96 | 44.09 43.51 || 44.09 | +0.73
Com3 41.59 44.75 42.68 | 42.03 40.79 || 44.75 | +3.16
Com4 43.56 49.18 49.89 | 49.89 50.96 || 50.96 | +7.40
Comb 49.44 51.75 52.27 | 51.76 52.01 || 52.27 | 4+2.83
Com6 70.48 67.09 69.46 | 69.48 68.30 || 69.48 | -1.00
Com7 66.21 68.50 68.59 | 68.94 69.12 || 69.12 | +2.91

The detailed experimental results are listed at the end of this chapter.

5.2 Discussions

Our experimental results conclude that using proper parameters and kernel func-
tion, SVM can classify which data should be bypassed from the LLC. Evaluating results
yields several conclusions: (1) From the results in Table 5.4 and Table 5.5, the trace with
6 features yield better average hit rate percentage increase. However, having 7 features
provides a hit rate percentage increase in all benchmark combinations. It can be assumed

that the time of access feature can help classify data in time-sensitive benchmarks and

33

Table 5.5: Best hit rate achieved from the classifier prediction with 7 features and using training
data with n=>5000 window size

Baseline || Linear | Polynomial | RBF | Sigmoid Best diff
Coml 72.64 74.31 73.52 | 74.31 74.32 || 73.52 | 40.88
Com2 43.36 43.53 43.46 | 43.62 43.53 || 43.62 | +0.26
Com3 41.59 44.94 41.6 | 41.59 41.43 || 44.94 | +3.35
Com4 43.56 49.10 48.67 | 49.59 49.66 || 49.66 | +6.1
Comb 49.44 51.42 50.20 | 51.52 51.49 || 51.52 | 42.08
Com6 70.48 70.81 71.17 | 70.71 70.71 || 71.17 | 40.69
Com?7 66.21 68.15 69.06 | 68.87 68.87 || 69.06 | +2.85

100.00%

50.00%

B0.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

e Coml Com2 Com3 Comd Com5 Comb Com7

N Bzselne WLinear W Polnomia Radial Bass Function B Sgmoid

Figure 5.1: Hit rate achieved from classifier prediction with 6 features and using training data
with n=5000 window size

that using 7 features seems more promising to improve the hit rate in all combinations.

(2) The kernel that gives the best improvement is not the same throughout com-
binations. It is observed that there is no one perfect kernel function for all benchmarks.
The kernel function suitable for each benchmark depends on the workload and should
be fine tuned for each benchmark to achieve the best result. However, we can imply
from the results in Table 5.6 that for the 6 features training data, the Polynomial kernel
function gives the best average improvement for all benchmark combinations. While with
7 features, the best average improvement for all benchmarks is from the Linear kernel

function, the results are shown in Table 5.7.

(3) An observation on the analysis of the results shows that the hit rate improvement

34

100.00%
90.00%
B0.00%

70.00%

60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
md Coms

0.00%

Coml Com2 Com3 Co Comb Com7

B Ba=elne MLlinear M Polnomia Radial Bask Function W Sgmoid

Figure 5.2: Hit rate achieved from classifier prediction with 7 features and using training data
with n=5000 window size

Table 5.6: The percentage improved from different kernel functions using 6 features and training
data with n=>5000 window size.

Coml | Com2 | Com3 | Com4 | Comb | Com6 | Com7 | Average

Linear 1.94% | 0.32% | 7.60% | 12.90% | 4.67% | -4.81% | 3.46% 3.73%
Polynomial | 2.38% | 1.38% | 2.62% | 14.53% | 5.72% | -1.45% | 3.59% 4.11%
RBF 241% | 1.68% | 1.06% | 14.53% | 4.69% | -1.42% | 4.12% 3.87%

Sigmoid 2.31% | 0.35% | -1.92% | 16.99% | 5.20% | -3.11% | 4.40% 3.46%

by the SVM classifier does not seem to depend on the baseline hit rate nor the number
of LLC accesses. Instead, it appears to depend on the ratio between the two quantities.
Fig. 5.3 shows hit rate improvement in ascending order, the hit rate and the number of
LLC accesses (scaled down for better visualization). The graph visualized that the hit

rate increases when the ratio between the two quantities decreases.

In conclusion, using the SVM classifier may not be useful for (a) the high number of
LLC accesses with poor hit rate. This could cause by the workload that shows no locality
of reference or a large amount of data are never reused. (b) the small number of LLC
accesses with high hit rate. This type of workload already shows strong locality of refer-
ence which traditional replacement policy is already sufficed to ensure high performance.
Consequently, our SVM classifier is useful for the trace with the characteristic between

(a) and (b), where reusable data normally evicted due to never-reuse or less-reuse data

35

Table 5.7: The percentage improved from different kernel functions using 7 features and training
data with n=5000 window size.

Coml | Com2 | Com3 | Com4 | Com5 | Com6 | Com7 | Average

Linear 2.30% | 0.39% | 8.05% | 12.72% | 4.00% | 0.47% | 2.93% | 4.41%
Polynomial | 1.21% | 0.23% | 0.02% | 11.73% | 1.54% | 0.98% | 4.30% | 2.86%
RBF 2.30% | 0.60% | 0.00% | 13.84% | 4.21% | 0.33% | 4.02% | 3.61%

Sigmoid 2.31% | 0.39% | -0.38% | 14.00% | 4.15% | 0.33% | 4.02% | 3.54%

(%]

—phit r e improvement —| | C @Ccesses/Hit Rate Ratio

Figure 5.3: Best percentage improved compared with the ratio of the LLC accesses and the
baseline hit rate (both scaled down for visualization)

in the workload or the working set size is frequently larger than the cache size and cause

cache thrashing most of the time.

In comparison to previous methods, cache bypassing methods at the beginning are
focused on the private cache on single core. Jalminger and Stenstrom (2003) present an
approach to determine bypass by augmenting each cache entry with reuse history bits,
and using a counter to determine whether or not to bypass data from L1. Their approach
is only experimented on L1 (private) cache for single-core systems, reducing the miss rate

by an average of 12%.

Other bypassing methods also use counters as a method of prediction, some based
the prediction on the Instruction that requesting the datum (Tyson et al., 1995; Piquet
et al., 2007; Li et al., 2012; Khan et al., 2014), the others based on the address of the
data itself (Johnson et al., 1999; Jalminger and Stenstrom, 2003; Kharbutli and Solihin,

36

2008; Kharbutli et al., 2013). Our approach utilizes both PC and address and also other

parameters to help the predictor both instruction-aware and thread-aware.

More complete implementations are presented in Piquet et al. (2007); Kharbutli
and Solihin (2008); Li et al. (2012); Kharbutli et al. (2013); Khan et al. (2014) where
bypassing occurs in the last-level cache. Most methods based on counters to predict
cache bypass but using different approach in updating the counter. Piquet et al. (2007)
update the counter every time the block is evicted from LLC. If the block was never
accessed after allocated in the LLC, the counter is incremented. If it has been accessed
while in the cache before eviction, the counter resets to zero. When a block should be
allocated on cache, the counter is consulted and if the counter is saturated, the block will
be bypassed from cache. The Piquet et al.counters method is applied to predict bypass
for read requests in Khan et al. (2014) by bypassing all write requests without prediction.

The counter by Kharbutli and Solihin increment by the number of times the block
is re-accessed after it was placed in the cache. If the counter is zero, it means that the
block was never reused. Each block’s counter is then stored to be looked up in the future,
assuming that it would always have the same behavior. The bypass decision is made when
the same block is going to be allocated on the cache again, if the history counter is zero
then the block will be bypassed from cache. Kharbutli and Solihin (2008) achieve a miss
rate reduction of 19%, using a form of per-cache line counters, which is also the approach
taken in Kharbutli et al. (2013). In SCIP (Kharbutli et al., 2013), the counter has changed
to bypass more data from the LLC, as a result of the temporal locality inverted in last-
level cache. SCIP bypassed approximately 3 out of 4 data which is around 75% of data
and achieved 18% speed up.

Li et al. (2012) update the counter when the incoming block matches the IB-VB
pair in the table. The counter is used to remember whether the incoming block or the
victim block was used earlier and bypass the one that will be used later. Similar to all of
the aforementioned methods, it requires two tables stored on-chip cache and update the
tables every cache accesses. In contrast, our approach is based on machine learning, and
we achieve a miss rate reduction in average of 5.34%. Although the miss rate decrease
is smaller, it suffices to show the suitability of SVM for bypass prediction. In addition,
the bypass mechanism generated by the SVM (the predictor) is of a different nature than

the related work, which applies a mechanism on each cache line. When the cache size is
larger, the conventional methods would have to expand and scale according to the cache
size. It is different from our approach that our predictor would not grow along with the
size of the cache as only one predictor per cache is required. It can also be modified to

replace any counters on any methods to perform as a predictor only.

The only disadvantage from our predictor is that it required information from the
core which may consume higher bandwidth from the bus but the implementation detail
can be explored later. To summarize, our work demonstrated the feasibility of SVM
prediction (kernel function separation of bypass and not-bypass data), leading the way to

research on hardware implementation and optimization of SVM generated predictors.

Table 5.8: Result of Com1 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate’% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1794208 1336207 | 1235183 68.84 437049 24.36
Linear 2 0.0025 1794208 1343544 1231823 68.66 441681 24.62
Linear 4 0.025 1794208 1348151 1231375 68.63 442167 24.64
Linear 8 [0.007813 | 1794208 1335470 | 1235187 68.84 436948 24.35
Linear 16 0.25 1794208 1341456 | 1232665 68.70 440494 24.55
Linear 32 0.25 1794208 1339481 1233852 68.77 438983 24.47
Polynomial | 0.5 | 0.000488 | 1794208 1598797 1103678 61.51 599808 33.43

Polynomial 2 0.0025 1794208 1654846 1124181 62.66 578538 32.24
Polynomial 4 0.025 1794208 1289799 1236457 68.91 434633 24.22
Polynomial 8 0.007813 | 1794208 1639829 1138527 63.46 560739 31.25

Polynomial 16 0.25 1794208 1457667 1181915 65.87 507235 28.27
Polynomial | 32 0.25 1794208 1508545 1153093 64.27 542719 30.25
RBF 0.5 1 0.000488 | 1794208 1299668 1239522 69.08 426677 23.78
RBF 2 0.0025 1794208 1289591 1249590 69.65 419790 23.40
RBF 4 0.025 1794208 1302647 1221181 68.06 441986 24.63
RBF 8 0.007813 | 1794208 1285608 1259538 70.20 395627 22.05
RBF 16 0.25 1794208 1255928 1254377 69.91 411492 2293
RBF 32 0.25 1794208 1382578 1243677 69.32 426892 23.79
Sigmoid 0.5 [0.000488 | 1794208 1453961 1218431 67.91 460863 25.69
Sigmoid 2 0.0025 1794208 1359177 1220990 68.05 455227 25.37
Sigmoid 4 0.025 1794208 1759620 1117579 62.29 588417 32.80
Sigmoid 8 0.007813 | 1794208 1340989 1207430 67.30 469259 26.15
Sigmoid 16 0.25 1794208 1759284 1139415 63.51 564651 31.47

Sigmoid 32 0.25 1794208 1759160 1139799 63.53 564206 31.45

37

Table 5.9: Result of Com1 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1794208 560091 1326889 73.95 229093 12.77
Linear 2 0.0025 1794208 523709 1328696 74.05 220118 12.27
Linear 4 0.025 1794208 523809 1328710 74.06 220127 12.27
Linear 8 10.007813 | 1794208 544973 1327625 74.00 224690 12.52
Linear 16 0.25 1794208 524446 1328675 74.05 220224 12.27
Linear 32 0.25 1794208 523588 1328694 74.05 220094 12.27

Polynomial | 0.5 | 0.000488 | 1794208 1264729 1081365 60.27 609089 33.95
Polynomial 2 0.0025 1794208 523656 1334311 74.37 204305 11.39
Polynomial 4 0.025 1794208 615590 1322028 73.68 240738 13.42
Polynomial 8 0.007813 | 1794208 627784 1322807 73.73 248969 13.88
Polynomial 16 0.25 1794208 425599 1329917 74.12 183567 10.23

Polynomial | 32 0.25 1794208 419747 1329745 74.11 182090 10.15
RBF 0.5 [0.000488 | 1794208 529710 1333501 74.32 212697 11.85
RBF 2 0.0025 1794208 496887 1334394 74.37 209325 11.67
RBF 4 0.025 1794208 581503 1321231 73.64 230440 12.84
RBF 8 0.007813 | 1794208 583277 1326990 73.96 235983 13.15
RBF 16 0.25 1794208 503474 1334157 74.36 207446 11.56
RBF 32 0.25 1794208 505235 1334624 74.39 208866 11.64
Sigmoid 0.5 1 0.000488 | 1794208 552022 1328609 74.05 222078 12.38
Sigmoid 2 0.0025 1794208 527387 1328709 74.06 219272 12.22
Sigmoid 4 0.025 1794208 801957 1288501 71.81 292013 16.28
Sigmoid 8 0.007813 | 1794208 521294 1333519 74.32 212806 11.86
Sigmoid 16 0.25 1794208 1520475 1189219 66.28 479716 26.74
Sigmoid 32 0.25 1794208 1520213 1189290 66.28 479591 26.73

Table 5.10: Result of Com1 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 1794208 470279 1330661 74.16 187022 10.42
Linear 2 0.0025 1794208 327539 1322906 73.73 132767 7.40
Linear 4 0.025 1794208 1662376 1095954 61.08 590262 32.90
Linear 8 0.007813 | 1794208 406062 1332195 74.25 167163 9.32
Linear 16 0.25 1794208 470106 1332796 74.28 197946 11.03
Linear 32 0.25 1794208 413219 1332056 74.24 166465 9.28
Polynomial | 0.5 | 0.000488 | 1794208 596735 1218447 67.91 335910 18.72
Polynomial 2 0.0025 1794208 208681 1318371 73.48 82814 4.62

Polynomial 4 0.025 1794208 336783 1326573 73.94 133110 7.42
Polynomial 8 0.007813 | 1794208 340757 1326991 73.96 134536 7.50

Polynomial 16 0.25 1794208 340971 1326201 73.92 136740 7.62
Polynomial | 32 0.25 1794208 341574 1326149 73.91 136797 7.62
RBF 0.5 | 0.000488 | 1794208 397691 1331246 74.20 162397 9.05
RBF 2 0.0025 1794208 438142 1329870 74.12 183448 10.22
RBF 4 0.025 1794208 352584 1326071 73.91 138918 7.74
RBF 8 0.007813 | 1794208 391917 1328568 74.05 158189 8.82
RBF 16 0.25 1794208 363639 1332206 74.25 143732 8.01
RBF 32 0.25 1794208 369324 1332501 74.27 147434 8.22
Sigmoid 0.5 1 0.000488 | 1794208 447917 1330197 74.14 179530 10.01
Sigmoid 2 0.0025 1794208 362260 1330229 74.14 158175 8.82
Sigmoid 4 0.025 1794208 368629 1327746 74.00 146205 8.15
Sigmoid 8 0.007813 | 1794208 485970 1334577 74.38 187752 10.46
Sigmoid 16 0.25 1794208 886107 1320531 73.60 228683 12.75

Sigmoid 32 0.25 1794208 886219 1320538 73.60 228713 12.75

Table 5.11: Result of Com1 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1794208 485599 1333237 74.31 202859 11.31
Linear 2 0.0025 1794208 499682 1332198 74.25 208408 11.62
Linear 4 0.025 1794208 485041 1333241 74.31 202672 11.30
Linear 8 10.007813 | 1794208 504180 1331684 74.22 210212 11.72
Linear 16 0.25 1794208 509847 1331108 74.19 212131 11.82
Linear 32 0.25 1794208 494227 1332816 74.28 206080 11.49

Polynomial | 0.5 | 0.000488 | 1794208 1364456 1234945 68.83 417737 23.28
Polynomial 2 0.0025 1794208 757130 1312890 73.17 228085 12.71

Polynomial 4 0.025 1794208 147873 1311772 73.11 56184 3.13
Polynomial 8 0.007813 | 1794208 266087 1317928 73.45 105719 5.89
Polynomial 16 0.25 1794208 230351 1319034 73.52 93288 5.20
Polynomial | 32 0.25 1794208 221871 1318117 73.47 90725 5.06
RBF 0.5 [0.000488 | 1794208 509419 1333306 74.31 208265 11.61
RBF 2 0.0025 1794208 296646 1322743 73.72 128012 7.13
RBF 4 0.025 1794208 48820 1306046 72.79 18835 1.05
RBF 8 0.007813 | 1794208 135679 1310694 73.05 52406 2.92
RBF 16 0.25 1794208 1794207 1077955 60.08 632557 35.26
RBF 32 0.25 1794208 1794208 1077955 60.08 632558 35.26
Sigmoid 0.5 1 0.000488 | 1794208 518285 1333533 74.32 210122 11.71
Sigmoid 2 0.0025 1794208 497886 1333002 74.29 206828 11.53
Sigmoid 4 0.025 1794208 1557465 1066919 59.46 627350 34.97
Sigmoid 8 0.007813 | 1794208 974252 1189000 66.27 449304 25.04
Sigmoid 16 0.25 1794208 1113018 1083038 60.36 559511 31.18
Sigmoid 32 0.25 1794208 1218151 1083029 60.36 576518 32.13

Table 5.12: Result of Com?2 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 807811 571844 346772 42.93 334007 41.35
Linear 2 0.0025 807811 590632 346095 42.84 336073 41.60
Linear 4 0.025 807811 594928 345908 42.82 336803 41.69
Linear 8 0.007813 807811 580063 346515 42.90 334796 41.44
Linear 16 0.25 807811 575609 346626 42.91 334397 41.40
Linear 32 0.25 807811 586719 346261 42.86 335543 41.54
Polynomial | 0.5 | 0.000488 807811 580055 346171 42.85 343719 42.55
Polynomial 2 0.0025 807811 582640 346143 42.85 344507 42.65
Polynomial 4 0.025 807811 455901 356137 44.09 299769 37.11
Polynomial 8 [0.007813| 807811 541708 348765 43.17 332753 41.19
Polynomial 16 0.25 807811 497636 354409 43.87 325323 40.27
Polynomial 32 0.25 807811 506672 353161 43.72 330502 40.91
RBF 0.5 | 0.000488 | 807811 541224 348015 43.08 331304 41.01
RBF 2 0.0025 807811 548532 348497 43.14 334118 41.36
RBF 4 0.025 807811 421501 351004 43.45 275301 34.08
RBF 8 0.007813 807811 415452 346764 42.93 265233 32.83
RBF 16 0.25 807811 503147 355323 43.99 326857 40.46
RBF 32 0.25 807811 486483 353504 43.76 314300 38.91
Sigmoid 0.5 | 0.000488 807811 543545 347834 43.06 331684 41.06
Sigmoid 2 0.0025 807811 583993 346439 42.89 335051 41.48
Sigmoid 4 0.025 807811 641705 343398 42.51 335178 41.49
Sigmoid 8 [0.007813| 807811 604802 345618 42.78 337999 41.84
Sigmoid 16 0.25 807811 706670 340600 42.16 340954 42.21
Sigmoid 32 0.25 807811 706218 340598 42.16 340762 42.18

Table 5.13: Result of Com?2 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [807811 494803 351318 43.49 323413 40.04
Linear 2 0.0025 807811 503946 350648 43.41 324631 40.19
Linear 4 0.025 807811 496124 351246 43.48 323548 40.05
Linear 8 10.007813| 807811 503889 350684 43.41 324603 40.18
Linear 16 0.25 807811 494924 351398 43.50 323313 40.02
Linear 32 0.25 807811 497966 351188 43.47 323613 40.06
Polynomial [0.5 | 0.000488 | 807811 540699 347948 43.07 332250 4113
Polynomial 2 0.0025 807811 538513 348121 43.09 331748 41.07
Polynomial 4 0.025 807811 492434 355100 43.96 324630 40.19
Polynomial 8 10.007813 | 807811 489429 351739 43.54 324761 40.20
Polynomial | 16 0.25 807811 498323 354776 43.92 328310 40.64
Polynomial | 32 0.25 807811 498433 354771 43.92 328359 40.65
RBF 0.5 | 0.000488 | 807811 5800068 345152 42.73 342315 42.38
RBF 2 0.0025 807811 518703 350453 43.38 325759 40.33
RBF 4 0.025 807811 433447 351167 43.47 283185 35.06
RBF 8 10.007813| 807811 440451 349283 43.24 287235 35.56
RBF 16 0.25 807811 498333 356126 44.09 323985 40.11
RBF 32 0.25 807811 495230 355757 44.04 324076 40.12
Sigmoid 0.5] 0.000488 [807811 529822 348360 43.12 329289 40.76
Sigmoid 2 0.0025 807811 496616 351121 43.47 323832 40.09
Sigmoid 4 0.025 807811 574411 349430 43.26 315973 39.11
Sigmoid 8 10.007813| 807811 490925 351502 43.51 322462 39.92
Sigmoid 16 0.25 807811 703191 334525 41.41 325820 40.33
Sigmoid 32 0.25 807811 704582 334388 41.39 326684 40.44

Table 5.14: Result of Com?2 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 807811 491527 351757 43.54 322550 39.93
Linear 2 0.0025 807811 492697 351714 43.54 322658 39.94
Linear 4 0.025 807811 491906 351759 43.54 322570 39.93
Linear 8 0.007813 807811 488244 352007 43.58 321934 39.85
Linear 16 0.25 807811 491990 351777 43.55 322505 39.92
Linear 32 0.25 807811 490809 351876 43.56 322244 39.89
Polynomial | 0.5 | 0.000488 807811 550745 347450 43.01 335130 41.49
Polynomial 2 0.0025 807811 544392 348047 43.09 334027 41.35
Polynomial 4 0.025 807811 496512 354986 43.94 326905 40.47
Polynomial 8 [0.007813| 807811 495215 350892 43.44 326725 40.45
Polynomial 16 0.25 807811 497787 354764 43.92 327999 40.60
Polynomial 32 0.25 807811 497711 354746 43.91 327991 40.60
RBF 0.5 | 0.000488 | 807811 495399 350539 43.39 325610 40.31
RBF 2 0.0025 807811 478897 352828 43.68 319259 39.52
RBF 4 0.025 807811 437496 351390 43.50 285277 35.31
RBF 8 0.007813 807811 450378 349814 43.30 294308 36.43
RBF 16 0.25 807811 497722 356899 44.18 322186 39.88
RBF 32 0.25 807811 501449 356604 44.14 323590 40.06
Sigmoid 0.5 | 0.000488 807811 491732 350781 43.42 324925 40.22
Sigmoid 2 0.0025 807811 491821 351599 43.52 322796 39.96
Sigmoid 4 0.025 807811 581517 348326 43.12 317604 39.32
Sigmoid 8 [0.007813| 807811 476356 352355 43.62 318362 39.41
Sigmoid 16 0.25 807811 695409 336691 41.68 324178 40.13
Sigmoid 32 0.25 807811 699187 336658 41.68 326074 40.37

Table 5.15: Result of Com?2 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [807811 115057 351664 43.53 89372 11.06
Linear 2 0.0025 807811 119512 351618 43.53 92368 11.43
Linear 4 0.025 807811 122100 351571 43.52 93904 11.62
Linear 8 10.007813| 807811 121129 351597 43.52 93318 11.55
Linear 16 0.25 807811 121806 351577 43.52 93721 11.60
Linear 32 0.25 807811 117688 351614 43.53 91202 11.29
Polynomial [0.5 | 0.000488 | 807811 557992 347082 42.97 336924 41.71
Polynomial 2 0.0025 807811 551556 347432 43.01 335024 41.47
Polynomial 4 0.025 807811 25864 351091 43.46 18433 2.28
Polynomial 8 10.007813 | 807811 387215 350595 43.40 259927 32.18
Polynomial | 16 0.25 807811 0 350310 43.37 0 0.00
Polynomial | 32 0.25 807811 0 350310 43.37 0 0.00
RBF 0.5 | 0.000488 | 807811 176966 351297 43.49 131572 16.29
RBF 2 0.0025 807811 24790 351292 43.49 18329 2.27
RBF 4 0.025 807811 73767 352367 43.62 51399 6.36
RBF 8 10.007813| 807811 647002 343769 42.56 333653 41.30
RBF 16 0.25 807811 554566 321882 39.85 293676 36.35
RBF 32 0.25 807811 503695 320257 39.65 261739 32.40
Sigmoid 0.5] 0.000488 [807811 248407 349975 43.32 175322 21.70
Sigmoid 2 0.0025 807811 126227 351614 43.53 97184 12.03
Sigmoid 4 0.025 807811 229857 345140 42.73 79760 9.87
Sigmoid 8 [0.007813 | 807811 151524 351447 43.51 113466 14.05
Sigmoid 16 0.25 807811 90346 344259 42.62 37564 4.65
Sigmoid 32 0.25 807811 88509 344329 42.62 36784 4.55

Table 5.16: Result of Com3 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 [2262796 1826452 720668 31.85 1516852 67.03
Linear 2 0.0025 2262796 1811101 732088 32.35 1503419 66.44
Linear 4 0.025 2262796 1808120 735180 32.49 1499834 66.28
Linear 8 0.007813 | 2262796 1785248 738708 32.65 1495139 66.07
Linear 16 0.25 2262796 1801807 742545 32.82 1491536 65.92
Linear 32 0.25 2262796 1829935 748683 33.09 1485928 65.67

Polynomial | 0.5 | 0.000488 | 2262796 2258835 587257 25.95 1675291 74.04
Polynomial 2 0.0025 2262796 2015709 734422 32.46 1502602 66.40
Polynomial 4 0.025 2262796 1870846 747094 33.02 1489613 65.83
Polynomial 8 0.007813 | 2262796 2002444 736916 32.57 1504305 66.48

Polynomial 16 0.25 2262796 2018310 727938 32.17 1520440 67.19
Polynomial | 32 0.25 2262796 2010306 727409 32.15 1519677 67.16
RBF 0.5 [0.000488 | 2262796 1899820 721447 31.88 1522768 67.30
RBF 2 0.0025 2262796 1830684 724791 32.03 1515126 66.96
RBF 4 0.025 2262796 1810467 754286 33.33 1474333 65.16
RBF 8 0.007813 | 2262796 1774634 747173 33.02 1486577 65.70
RBF 16 0.25 2262796 2007781 739462 32.68 1506013 66.56
RBF 32 0.25 2262796 2000909 754909 33.36 1486752 65.70
Sigmoid 0.5 | 0.000488 | 2262796 1923727 715621 31.63 1529242 67.58
Sigmoid 2 0.0025 2262796 1835499 721187 31.87 1517267 67.05
Sigmoid 4 0.025 2262796 1972823 786623 34.76 1436477 63.48
Sigmoid 8 0.007813 | 2262796 1698323 739445 32.68 1483955 65.58
Sigmoid 16 0.25 2262796 1935616 370107 16.36 1651712 72.99

Sigmoid 32 0.25 2262796 1935865 370038 16.35 1651950 73.00

Table 5.17: Result of Com3 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% | Bypassed Bypassed
bypass %
Linear 0.5 10.000488 | 2262796 1115428 1011265 44.69 786283 34.75
Linear 2 0.0025 2262796 1156567 1010718 44.67 831447 36.74
Linear 4 0.025 2262796 1172465 1006274 44.47 857151 37.88
Linear 8 0.007813 | 2262796 1280010 1002441 44.30 911099 40.26
Linear 16 0.25 2262796 1080414 | 1012593 44.75 789065 34.87
Linear 32 0.25 2262796 1292191 1001341 44.25 917708 40.56

Polynomial | 0.5 | 0.000488 | 2262796 1513100 801098 35.40 1204867 53.25
Polynomial 2 0.0025 2262796 740737 965857 42.68 584985 25.85
Polynomial 4 0.025 2262796 1106039 821639 36.31 911501 40.28
Polynomial 8 0.007813 | 2262796 1081922 821745 36.32 892380 39.44
Polynomial 16 0.25 2262796 1669973 811563 35.87 1191576 52.66

Polynomial | 32 0.25 2262796 1676284 808662 35.74 1198214 52.95
RBF 0.5 [0.000488 | 2262796 564625 925382 40.90 416966 18.43
RBF 2 0.0025 2262796 1124457 933394 41.25 847926 37.47
RBF 4 0.025 2262796 712894 897677 39.67 518560 22.92
RBF 8 0.007813 | 2262796 1031968 951139 42.03 762077 33.68
RBF 16 0.25 2262796 1518041 850252 37.58 1271854 56.21
RBF 32 0.25 2262796 1499731 845487 37.36 1270135 56.13
Sigmoid 0.5 1 0.000488 | 2262796 582334 923060 40.79 531464 23.49
Sigmoid 2 0.0025 2262796 2262796 537783 23.77 1725013 76.23
Sigmoid 4 0.025 2262796 1984366 330883 14.62 1717161 75.89
Sigmoid 8 0.007813 | 2262796 1436035 856238 37.84 1042916 46.09
Sigmoid 16 0.25 2262796 2139012 345388 15.26 1821690 80.51
Sigmoid 32 0.25 2262796 1842901 787308 34.79 1402516 61.98

Table 5.18: Result of Com3 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 2262796 1044462 913762 40.38 627440 27.73
Linear 2 0.0025 2262796 1443400 965422 42.67 894462 39.53
Linear 4 0.025 2262796 1080271 943251 41.69 648951 28.68
Linear 8 0.007813 | 2262796 1650441 905489 40.02 1001699 44.27
Linear 16 0.25 2262796 1125427 | 1004381 44.39 851997 37.65
Linear 32 0.25 2262796 1883284 821645 36.31 1232829 54.48

Polynomial | 0.5 | 0.000488 | 2262796 1934319 698341 30.86 1536599 6791
Polynomial 2 0.0025 2262796 1506422 700145 30.94 1157197 51.14
Polynomial 4 0.025 2262796 653701 887210 39.21 516598 22.83
Polynomial 8 0.007813 | 2262796 638076 887529 39.22 509101 22.50

Polynomial 16 0.25 2262796 1477429 857703 37.90 1153374 50.97
Polynomial | 32 0.25 2262796 1489704 860913 38.05 1154835 51.04
RBF 0.5 [0.000488 | 2262796 220832 935250 41.33 174983 7.73
RBF 2 0.0025 2262796 506601 922685 40.78 391255 17.29
RBF 4 0.025 2262796 403957 925647 40.91 332300 14.69
RBF 8 0.007813 | 2262796 444566 929025 41.06 351876 15.55
RBF 16 0.25 2262796 1415282 857056 37.88 1221207 53.97
RBF 32 0.25 2262796 1412706 857920 37.91 1223208 54.06
Sigmoid 0.5 | 0.000488 | 2262796 2099105 384601 17.00 1788147 79.02
Sigmoid 2 0.0025 2262796 1755462 812226 35.89 1220717 53.95
Sigmoid 4 0.025 2262796 2154002 337838 14.93 1841335 81.37
Sigmoid 8 0.007813 | 2262796 2145782 334817 14.80 1836665 81.17
Sigmoid 16 0.25 2262796 2142102 346305 15.30 1823016 80.56

Sigmoid 32 0.25 2262796 2130258 339451 15.00 1820307 80.45

Table 5.19: Result of Com3 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [2262796 773948 1015828 44.89 611594 27.03
Linear 2 0.0025 2262796 798737 1016452 44.92 630974 27.88
Linear 4 0.025 2262796 813070 1016483 44.92 642318 28.39
Linear 8 10.007813 | 2262796 820430 1016614 44.93 647686 28.62
Linear 16 0.25 2262796 819343 1016570 44.93 646759 28.58
Linear 32 0.25 2262796 820597 1016817 44.94 647959 28.64
Polynomial [0.5 | 0.000488 | 2262796 0 941117 41.59 0 0.00
Polynomial 2 0.0025 2262796 237 941107 41.59 225 0.01
Polynomial 4 0.025 2262796 9835 940977 41.58 7804 0.34
Polynomial 8 1 0.007813 | 2262796 3772 941425 41.60 3337 0.15
Polynomial | 16 0.25 2262796 2066910 669581 29.59 1585844 70.08
Polynomial | 32 0.25 2262796 2096034 684627 30.26 1571476 69.45
RBF 0.5 [0.000488 | 2262796 5658 941057 41.59 4502 0.20
RBF 2 0.0025 2262796 0 941117 41.59 0 0.00
RBF 4 0.025 2262796 1187594 448766 19.83 1072945 47.42
RBF 8 10.007813 | 2262796 189271 916446 40.50 91769 4.06
RBF 16 0.25 2262796 2260401 554095 24.49 1708594 75.51
RBF 32 0.25 2262796 2259617 552281 24.41 1710401 75.59
Sigmoid 0.5] 0.000488 [2262796 1297456 874795 38.66 1168147 51.62
Sigmoid 2 0.0025 2262796 2208012 535267 23.66 1713387 75.72
Sigmoid 4 0.025 2262796 2262796 537783 23.77 1725013 76.23
Sigmoid 8 [0.007813 | 2262796 2224144 457214 20.21 1795756 79.36
Sigmoid 16 0.25 2262796 2262796 537783 23.77 1725013 76.23
Sigmoid 32 0.25 2262796 205344 937511 41.43 123677 5.47

Table 5.20: Result of Com4 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 1635956 635621 806594 49.30 614839 37.58
Linear 2 0.0025 1635956 637398 806787 49.32 616172 37.66
Linear 4 0.025 1635956 635094 806716 49.31 614207 37.54
Linear 8 0.007813 | 1635956 636516 806545 49.30 615591 37.63
Linear 16 0.25 1635956 635993 806596 49.30 615105 37.60
Linear 32 0.25 1635956 636307 806547 49.30 615408 37.62

Polynomial | 0.5 | 0.000488 | 1635956 670783 809807 49.50 619188 37.85
Polynomial 2 0.0025 1635956 664968 809823 49.50 619191 37.85
Polynomial 4 0.025 1635956 510943 817258 49.96 448858 27.44
Polynomial 8 0.007813 | 1635956 658575 809187 49.46 616970 37.71
Polynomial 16 0.25 1635956 218243 726680 44.42 140628 8.60

Polynomial | 32 0.25 1635956 203685 726471 44.41 132814 8.12
RBF 0.5 10.000488 | 1635956 674637 810959 49.57 626302 38.28
RBF 2 0.0025 1635956 633747 806676 49.31 611904 37.40
RBF 4 0.025 1635956 421651 783089 47.87 349177 21.34
RBF 8 0.007813 | 1635956 397795 779945 47.68 330227 20.19
RBF 16 0.25 1635956 901366 832716 50.90 660454 40.37
RBF 32 0.25 1635956 896875 831303 50.81 660908 40.40
Sigmoid 0.5 | 0.000488 | 1635956 851254 818774 50.05 657606 40.20
Sigmoid 2 0.0025 1635956 638457 807061 49.33 617101 37.72
Sigmoid 4 0.025 1635956 556933 784824 47.97 518268 31.68
Sigmoid 8 0.007813 | 1635956 640314 806893 49.32 618833 37.83
Sigmoid 16 0.25 1635956 479824 810798 49.56 415062 25.37

Sigmoid 32 0.25 1635956 484620 811665 49.61 418117 25.56

Table 5.21: Result of Com4 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1635956 625469 804487 49.18 603822 36.91
Linear 2 0.0025 1635956 625593 804489 49.18 603862 36.91
Linear 4 0.025 1635956 625590 804489 49.18 603862 36.91
Linear 8 10.007813 | 1635956 625529 804482 49.18 603838 36.91
Linear 16 0.25 1635956 625472 804469 49.17 603817 36.91
Linear 32 0.25 1635956 625418 804458 49.17 603792 36.91

Polynomial | 0.5 | 0.000488 | 1635956 691650 810632 49.55 620965 37.96
Polynomial 2 0.0025 1635956 686582 810145 49.52 619256 37.85
Polynomial 4 0.025 1635956 616171 799985 48.90 589740 36.05
Polynomial 8 0.007813 | 1635956 756378 816188 49.89 637344 38.96
Polynomial 16 0.25 1635956 620867 800958 48.96 604700 36.96

Polynomial | 32 0.25 1635956 621873 800878 48.95 605920 37.04
RBF 0.5 [0.000488 | 1635956 708589 811051 49.58 626827 38.32
RBF 2 0.0025 1635956 832655 816051 49.88 646191 39.50
RBF 4 0.025 1635956 808285 813375 49.72 644748 39.41
RBF 8 0.007813 | 1635956 838902 816231 49.89 646978 39.55
RBF 16 0.25 1635956 86877 727072 44.44 72334 4.42
RBF 32 0.25 1635956 121311 731255 44.70 95584 5.84
Sigmoid 0.5 1 0.000488 | 1635956 747713 812054 49.64 633601 38.73
Sigmoid 2 0.0025 1635956 627381 804547 49.18 604550 36.95
Sigmoid 4 0.025 1635956 549387 833628 50.96 478444 29.25
Sigmoid 8 0.007813 | 1635956 621421 803902 49.14 602282 36.82
Sigmoid 16 0.25 1635956 52825 721113 44.08 38190 2.33
Sigmoid 32 0.25 1635956 38812 720346 44.03 29356 1.79

Table 5.22: Result of Com4 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 1635956 960349 783015 47.86 738197 45.12
Linear 2 0.0025 1635956 949786 784013 47.92 732322 44.76
Linear 4 0.025 1635956 965855 782889 47.86 741204 45.31
Linear 8 0.007813 | 1635956 950917 783460 47.89 733578 44.84
Linear 16 0.25 1635956 942547 792234 48.43 721434 44.10
Linear 32 0.25 1635956 949662 785635 48.02 730619 44.66

Polynomial | 0.5 | 0.000488 | 1635956 917075 822289 50.26 665378 40.67
Polynomial 2 0.0025 1635956 931074 822164 50.26 671342 41.04
Polynomial 4 0.025 1635956 776940 798405 48.80 686023 41.93
Polynomial 8 0.007813 | 1635956 1000272 789433 48.26 745249 45.55

Polynomial 16 0.25 1635956 680202 806633 49.31 634167 38.76
Polynomial | 32 0.25 1635956 683297 806632 49.31 635047 38.82
RBF 0.5 | 0.000488 | 1635956 958087 797168 48.73 717860 43.88
RBF 2 0.0025 1635956 970124 782771 47.85 739603 45.21
RBF 4 0.025 1635956 963754 797407 48.74 720563 44.05
RBF 8 0.007813 | 1635956 958474 795723 48.64 719598 43.99
RBF 16 0.25 1635956 253957 742467 45.38 171571 10.49
RBF 32 0.25 1635956 278641 745845 45.59 185744 11.35
Sigmoid 0.5 | 0.000488 | 1635956 961184 797522 48.75 717616 43.87
Sigmoid 2 0.0025 1635956 965294 783006 47.86 739676 45.21
Sigmoid 4 0.025 1635956 753889 822362 50.27 640284 39.14
Sigmoid 8 0.007813 | 1635956 916771 798343 48.80 709383 43.36
Sigmoid 16 0.25 1635956 1003915 795681 48.64 720815 44.00

Sigmoid 32 0.25 1635956 469131 791730 48.40 328276 20.07

Table 5.23: Result of Com4 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1635956 621144 803311 49.10 602168 36.81
Linear 2 0.0025 1635956 621127 803309 49.10 602161 36.81
Linear 4 0.025 1635956 621159 803308 49.10 602178 36.81
Linear 8 10.007813 | 1635956 621162 803312 49.10 602182 36.81
Linear 16 0.25 1635956 621137 803306 49.10 602169 36.81
Linear 32 0.25 1635956 621154 803309 49.10 602175 36.81

Polynomial | 0.5 | 0.000488 | 1635956 1011997 796138 48.67 728734 44.54
Polynomial 2 0.0025 1635956 1148872 755803 46.20 809262 49.47
Polynomial 4 0.025 1635956 602038 795558 48.63 586600 35.860
Polynomial 8 0.007813 | 1635956 1430177 633633 38.73 974376 59.56

Polynomial 16 0.25 1635956 77553 727379 44.46 59762 3.65
Polynomial | 32 0.25 1635956 82409 727790 44.49 63577 3.89
RBF 0.5 [0.000488 | 1635956 726022 811198 49.59 630493 38.54
RBF 2 0.0025 1635956 1241622 717045 43.83 840438 51.37
RBF 4 0.025 1635956 1485158 428440 26.19 1152328 70.44
RBF 8 0.007813 | 1635956 1201108 749202 45.80 765448 46.79
RBF 16 0.25 1635956 1632820 627117 38.33 1008567 61.65
RBF 32 0.25 1635956 1635581 552629 33.78 1083278 66.22
Sigmoid 0.5 1 0.000488 | 1635956 762082 812357 49.66 636501 38.91
Sigmoid 2 0.0025 1635956 621961 803470 49.11 602436 36.82
Sigmoid 4 0.025 1635956 988239 709330 43.36 576464 35.24
Sigmoid 8 0.007813 | 1635956 724357 809076 49.46 636216 38.89
Sigmoid 16 0.25 1635956 850126 688828 42.11 493713 30.18
Sigmoid 32 0.25 1635956 830509 687236 42.01 485335 29.67

Table 5.24: Result of Comb using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 2086273 1846063 | 1056563 50.64 772420 41.84
Linear 2 0.0025 2086273 1846073 1056564 50.64 772416 37.02
Linear 4 0.025 2086273 1845813 1056545 50.64 772358 37.02
Linear 8 0.007813 | 2086273 1846022 1056558 50.64 772407 37.02
Linear 16 0.25 2086273 1847405 | 1056617 50.65 772706 37.04
Linear 32 0.25 2086273 1851031 1056678 50.65 773488 37.08

Polynomial | 0.5 | 0.000488 | 2086273 1998485 1052976 50.47 801531 38.42
Polynomial 2 0.0025 2086273 2006823 1053028 50.47 802159 38.45
Polynomial 4 0.025 2086273 1955147 1055516 50.59 795483 38.13
Polynomial 8 0.007813 | 2086273 1993856 1053696 50.51 801332 38.41

Polynomial 16 0.25 2086273 1726515 1085608 52.04 732734 35.12
Polynomial | 32 0.25 2086273 1725504 1085941 52.05 732510 35.11
RBF 0.5 | 0.000488 | 2086273 1904486 1055558 50.60 789012 37.82
RBF 2 0.0025 2086273 1860572 1057540 50.69 776568 37.22
RBF 4 0.025 2086273 1951792 1059657 50.79 785641 37.66
RBF 8 0.007813 | 2086273 1930812 1055467 50.59 782831 37.52
RBF 16 0.25 2086273 1693858 1056354 50.63 701936 33.65
RBF 32 0.25 2086273 1611202 1062925 50.95 665991 31.92
Sigmoid 0.5 | 0.000488 | 2086273 1925789 1053327 50.49 793720 38.04
Sigmoid 2 0.0025 2086273 1856254 1057200 50.67 775037 37.15
Sigmoid 4 0.025 2086273 2086273 1046482 50.16 817404 39.18
Sigmoid 8 0.007813 | 2086273 1832497 1058638 50.74 766840 36.76
Sigmoid 16 0.25 2086273 2079011 1046987 50.18 815520 39.09

Sigmoid 32 0.25 2086273 2078714 1046972 50.18 815494 39.09

Table 5.25: Result of Comb using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [2086273 1378727 | 1079649 51.75 676316 32.42
Linear 2 0.0025 2086273 1378703 | 1079643 51.75 676303 32.42
Linear 4 0.025 2086273 1378613 | 1079644 51.75 676300 3242
Linear 8 10.007813 | 2086273 1378908 | 1079626 51.75 676321 3242
Linear 16 0.25 2086273 1378534 | 1079564 51.75 676357 3242
Linear 32 0.25 2086273 1400501 1079436 51.74 678469 32.52
Polynomial [0.5 | 0.000488 | 2086273 1213501 1062003 50.90 584808 28.03
Polynomial 2 0.0025 2086273 1481144 | 1073972 51.48 662110 31.74

Polynomial 4 0.025 2086273 1598113 1081238 51.83 708363 33.95
Polynomial 8 0.007813 | 2086273 1479830 1074222 51.49 662015 31.73
Polynomial 16 0.25 2086273 1578136 1090556 52.27 686361 32.90

Polynomial | 32 0.25 2086273 1577710 1090378 52.26 685470 32.86
RBF 0.5 [0.000488 | 2086273 14380065 1076104 51.58 667483 31.99
RBF 2 0.0025 2086273 1524883 1081335 51.83 696680 33.39
RBF 4 0.025 2086273 1336542 1026449 49.20 558021 26.75
RBF 8 0.007813 | 2086273 1527960 1079831 51.76 692805 33.21
RBF 16 0.25 2086273 1455338 1056507 50.64 611987 29.33
RBF 32 0.25 2086273 1416930 1055605 50.60 600030 28.76
Sigmoid 0.5 1 0.000488 | 2086273 1429710 1074352 51.50 661259 31.70
Sigmoid 2 0.0025 2086273 1434500 1078975 51.72 681250 32.65
Sigmoid 4 0.025 2086273 1368349 1079211 51.73 646476 30.99
Sigmoid 8 0.007813 | 2086273 1343866 1077925 51.67 656455 31.47
Sigmoid 16 0.25 2086273 1639068 1085146 52.01 650529 31.18
Sigmoid 32 0.25 2086273 1641176 1085082 52.01 651099 31.21

Table 5.26: Result of Comb using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 2086273 1326023 | 1075139 51.53 652859 31.29
Linear 2 0.0025 2086273 1340902 1075833 51.57 656846 31.48
Linear 4 0.025 2086273 1285468 1070871 51.33 637526 30.56
Linear 8 0.007813 | 2086273 1337560 1075732 51.56 655775 31.43
Linear 16 0.25 2086273 1338898 | 1075726 51.56 656280 31.46
Linear 32 0.25 2086273 1290957 | 1071366 51.35 639782 30.67
Polynomial | 0.5 | 0.000488 | 2086273 1246667 1069893 51.28 589942 28.28
Polynomial 2 0.0025 2086273 1325679 1065637 51.08 617635 29.60

Polynomial 4 0.025 2086273 1255823 1064978 51.05 594579 28.50
Polynomial 8 0.007813 | 2086273 1229568 1072854 51.42 583844 27.99

Polynomial 16 0.25 2086273 1464357 1085557 52.03 660501 31.66
Polynomial | 32 0.25 2086273 1462917 1085189 52.02 658869 31.58
RBF 0.5 | 0.000488 | 2086273 1475926 1078508 51.70 669187 32.08
RBF 2 0.0025 2086273 1236873 1071022 51.34 617132 29.58
RBF 4 0.025 2086273 1051736 1034321 49.58 447173 21.43
RBF 8 0.007813 | 2086273 1051396 1062989 50.95 523447 25.09
RBF 16 0.25 2086273 1085963 1069031 51.24 451866 21.66
RBF 32 0.25 2086273 1209515 1040997 49.90 511806 24.53
Sigmoid 0.5 | 0.000488 | 2086273 1438140 1075346 51.54 657984 31.54
Sigmoid 2 0.0025 2086273 1328443 1075562 51.55 651377 31.22
Sigmoid 4 0.025 2086273 1197002 1075321 51.54 584568 28.02
Sigmoid 8 0.007813 | 2086273 1352131 1076352 51.59 659538 31.61
Sigmoid 16 0.25 2086273 691814 1095228 52.50 340451 16.32

Sigmoid 32 0.25 2086273 914410 1080965 51.81 469075 22.48

Table 5.27: Result of Comb using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% | Bypassed Bypassed
bypass %
Linear 0.5 1 0.000488 | 2086273 1271532 1072661 51.42 633224 30.35
Linear 2 0.0025 2086273 1270388 1072626 51.41 632856 30.33
Linear 4 0.025 2086273 1270559 1072665 51.42 632899 30.34
Linear 8 0.007813 | 2086273 1272169 1072699 51.42 633365 30.36
Linear 16 0.25 2086273 1272010 1072671 51.42 633354 30.36
Linear 32 0.25 2086273 1271654 | 1072686 51.42 633228 30.35

Polynomial | 0.5 | 0.000488 | 2086273 1818485 1047256 50.20 765322 36.68
Polynomial 2 0.0025 2086273 2078092 1046403 50.16 815593 39.09
Polynomial 4 0.025 2086273 2086207 1046492 50.16 817313 39.18
Polynomial 8 0.007813 | 2086273 2084350 1046241 50.15 816256 39.13
Polynomial 16 0.25 2086273 2080968 1045877 50.13 816285 39.13

Polynomial | 32 0.25 2086273 2082253 1045965 50.14 816413 39.13
RBF 0.5 [0.000488 | 2086273 1390927 1074847 51.52 654191 31.36
RBF 2 0.0025 2086273 2085949 1046421 50.16 817259 39.17
RBF 4 0.025 2086273 1489935 1050864 50.37 562822 26.98
RBF 8 0.007813 | 2086273 2058355 1040749 49.89 811313 38.89
RBF 16 0.25 2086273 739968 1052880 50.47 264712 12.69
RBF 32 0.25 2086273 744255 1054203 50.53 264672 12.69
Sigmoid 0.5 1 0.000488 | 2086273 1427979 1074133 51.49 660907 31.68
Sigmoid 2 0.0025 2086273 1267485 1072356 51.40 631294 30.26
Sigmoid 4 0.025 2086273 1392103 1073146 51.44 647103 31.02
Sigmoid 8 0.007813 | 2086273 1087881 1069622 51.27 569919 27.32
Sigmoid 16 0.25 2086273 420611 1024404 49.10 154594 7.41
Sigmoid 32 0.25 2086273 420345 1024414 49.10 154494 7.41

Table 5.28: Result of Com6 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 1998467 628227 1395053 69.81 280490 14.04
Linear 2 0.0025 1998467 624724 1395017 69.80 279370 13.98
Linear 4 0.025 1998467 635493 1395053 69.81 282811 14.15
Linear 8 0.007813 | 1998467 643052 1395069 69.81 285209 14.27
Linear 16 0.25 1998467 618874 1395145 69.81 277370 13.88
Linear 32 0.25 1998467 645600 1395016 69.80 285993 14.31

Polynomial | 0.5 | 0.000488 | 1998467 703156 1394348 69.77 298471 14.93
Polynomial 2 0.0025 1998467 686395 1394674 69.79 295115 14.77
Polynomial 4 0.025 1998467 634389 1395160 69.81 278358 13.93
Polynomial 8 0.007813 | 1998467 682996 1394769 69.79 294398 14.73

Polynomial 16 0.25 1998467 612330 1398889 70.00 267344 13.38
Polynomial | 32 0.25 1998467 609205 1398900 70.00 266675 13.34
RBF 0.5 | 0.000488 | 1998467 671910 1394341 69.77 291513 14.59
RBF 2 0.0025 1998467 697386 1392752 69.69 297601 14.89
RBF 4 0.025 1998467 612619 1398495 69.98 269025 13.46
RBF 8 0.007813 | 1998467 677290 1394567 69.78 291603 14.59
RBF 16 0.25 1998467 633893 1399102 70.01 275694 13.80
RBF 32 0.25 1998467 623538 1399629 70.04 271410 13.58
Sigmoid 0.5 1 0.000488 | 1998467 723378 1391612 69.63 305706 15.30
Sigmoid 2 0.0025 1998467 649932 1394904 69.80 286835 14.35
Sigmoid 4 0.025 1998467 643423 1403502 70.23 269779 13.50
Sigmoid 8 0.007813 | 1998467 623341 1395113 69.81 278141 13.92
Sigmoid 16 0.25 1998467 1003427 1395483 69.83 328825 16.45

Sigmoid 32 0.25 1998467 1047840 1395087 69.81 345417 17.28

Table 5.29: Result of Com6 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1998467 990294 1340528 67.08 524041 26.22
Linear 2 0.0025 1998467 990538 1340541 67.08 524035 26.22
Linear 4 0.025 1998467 989780 1340483 67.08 526990 26.37
Linear 8 10.007813 | 1998467 990085 1340489 67.08 523976 26.22
Linear 16 0.25 1998467 989235 1340665 67.08 523593 26.20
Linear 32 0.25 1998467 988711 1340821 67.09 523185 26.18

Polynomial | 0.5 | 0.000488 | 1998467 1012689 1341681 67.14 523098 26.17
Polynomial 2 0.0025 1998467 1022408 1340961 67.10 525460 26.29
Polynomial 4 0.025 1998467 918720 1345090 67.31 484290 24.23
Polynomial 8 0.007813 | 1998467 1025958 1340913 67.10 525832 26.31
Polynomial 16 0.25 1998467 812600 1388184 69.46 407060 20.37

Polynomial | 32 0.25 1998467 813702 1388170 69.46 407144 20.37
RBF 0.5 [0.000488 | 1998467 1004724 1341164 67.11 524810 26.26
RBF 2 0.0025 1998467 985181 1344686 67.29 517753 2591
RBF 4 0.025 1998467 703901 1350581 67.58 357042 17.87
RBF 8 0.007813 | 1998467 783050 1360611 68.08 394947 19.76
RBF 16 0.25 1998467 785530 1388526 69.48 411118 20.57
RBF 32 0.25 1998467 809265 1375308 68.82 429069 21.47
Sigmoid 0.5 1 0.000488 | 1998467 1012709 1341234 67.11 525789 26.31
Sigmoid 2 0.0025 1998467 989819 1340518 67.08 523998 26.22
Sigmoid 4 0.025 1998467 1105672 1340715 67.09 533231 26.68
Sigmoid 8 0.007813 | 1998467 991726 1340601 67.08 524230 26.23
Sigmoid 16 0.25 1998467 716880 1364827 68.29 259583 12.99
Sigmoid 32 0.25 1998467 716877 1364813 68.29 259602 12.99

Table 5.30: Result of Com6 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 1998467 608163 1396183 69.86 270119 13.52
Linear 2 0.0025 1998467 606733 1396292 69.87 269525 13.49
Linear 4 0.025 1998467 609475 1396113 69.86 270497 13.54
Linear 8 0.007813 | 1998467 608184 1396430 69.88 269714 13.50
Linear 16 0.25 1998467 605568 1396959 69.90 268299 13.43
Linear 32 0.25 1998467 608163 1396981 69.90 268996 13.46

Polynomial | 0.5 | 0.000488 | 1998467 532098 1403347 70.22 243277 12.17
Polynomial 2 0.0025 1998467 622370 1400687 70.09 267458 13.38
Polynomial 4 0.025 1998467 585018 1399622 70.03 258508 12.94
Polynomial 8 0.007813 | 1998467 641840 1396270 69.87 279496 13.99

Polynomial 16 0.25 1998467 443787 1403711 70.24 219801 11.00
Polynomial | 32 0.25 1998467 442388 1403731 70.24 219204 10.97
RBF 0.5 10.000488 | 1998467 643935 1395361 69.82 282598 14.14
RBF 2 0.0025 1998467 604420 1395711 69.84 270149 13.52
RBF 4 0.025 1998467 552157 1401388 70.12 248294 12.42
RBF 8 0.007813 | 1998467 554712 1400444 70.08 250268 12.52
RBF 16 0.25 1998467 547863 1417577 70.93 228494 11.43
RBF 32 0.25 1998467 511247 1417942 70.95 217710 10.89
Sigmoid 0.5 1 0.000488 | 1998467 657854 1395657 69.84 285706 14.30
Sigmoid 2 0.0025 1998467 614277 1395586 69.83 272915 13.66
Sigmoid 4 0.025 1998467 817678 1392347 69.67 323538 16.19
Sigmoid 8 0.007813 | 1998467 612471 1396046 69.86 271485 13.58
Sigmoid 16 0.25 1998467 711113 1383183 69.21 263036 13.16

Sigmoid 32 0.25 1998467 707383 1383412 69.22 261574 13.09

Table 5.31: Result of Com6 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5] 0.000488 [1998467 208185 1415184 70.81 121860 6.10
Linear 2 0.0025 1998467 211061 1415116 70.81 123294 6.17
Linear 4 0.025 1998467 213654 1414897 70.80 124627 6.24
Linear 8 10.007813 | 1998467 207679 1415103 70.81 121532 6.08
Linear 16 0.25 1998467 211739 1415030 70.81 123568 6.18
Linear 32 0.25 1998467 216890 1415198 70.81 126214 6.32
Polynomial [0.5 | 0.000488 | 1998467 161709 1422346 71.17 91632 4.59
Polynomial 2 0.0025 1998467 177724 1421808 71.14 99942 5.00
Polynomial 4 0.025 1998467 16402 1412939 70.70 15680 0.78
Polynomial 8 1 0.007813 | 1998467 186443 1421455 71.13 103659 5.19
Polynomial | 16 0.25 1998467 77909 1419107 71.01 54086 2.71
Polynomial | 32 0.25 1998467 77488 1418999 71.00 53721 2.69
RBF 0.5 [0.000488 | 1998467 392727 1401976 70.15 191114 9.56
RBF 2 0.0025 1998467 17315 1413192 70.71 16981 0.85
RBF 4 0.025 1998467 13659 1412329 70.67 13529 0.68
RBF 8 10.007813 | 1998467 1023 1408419 70.47 918 0.05
RBF 16 0.25 1998467 1454336 | 1291694 64.63 590938 29.57
RBF 32 0.25 1998467 1441669 | 1282608 64.18 595158 29.78
Sigmoid 0.5] 0.000488 [1998467 509902 1398260 69.97 229327 11.48
Sigmoid 2 0.0025 1998467 240756 1405732 70.71 138167 6.91
Sigmoid 4 0.025 1998467 879370 1383844 69.25 365386 18.28
Sigmoid 8 1 0.007813 | 1998467 484584 1405267 70.32 231490 11.58
Sigmoid 16 0.25 1998467 161315 1398324 69.97 35410 1.77
Sigmoid 32 0.25 1998467 164393 1398006 69.95 36491 1.83

Table 5.32: Result of Com?7 using 6 features from window size n=2000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 715070 488474 493274 68.98 166556 23.29
Linear 2 0.0025 715070 477479 493485 69.01 165590 23.16
Linear 4 0.025 715070 486858 493280 68.98 166450 23.28
Linear 8 0.007813 715070 479205 493440 69.01 165753 23.18
Linear 16 0.25 715070 478166 493474 69.01 165659 23.17
Linear 32 0.25 715070 478246 493479 69.01 165661 23.17
Polynomial | 0.5 | 0.000488 715070 501995 4934306 69.01 164966 23.07
Polynomial 2 0.0025 715070 501669 493343 68.99 164528 23.01
Polynomial 4 0.025 715070 487588 493114 68.96 167289 23.39
Polynomial 8 [0.007813| 715070 516509 493832 69.06 164781 23.04
Polynomial 16 0.25 715070 455916 494895 69.21 163010 22.80
Polynomial 32 0.25 715070 461397 494758 69.19 163438 22.86
RBF 0.5 | 0.000488 | 715070 481968 493543 69.02 166371 23.27
RBF 2 0.0025 715070 449202 494677 69.18 161785 22.63
RBF 4 0.025 715070 454228 494911 69.21 159759 22.34
RBF 8 0.007813 715070 450260 494948 69.22 159535 22.31
RBF 16 0.25 715070 461424 495351 69.27 161628 22.60
RBF 32 0.25 715070 458795 495901 69.35 160804 22.49
Sigmoid 0.5 | 0.000488 715070 553510 492068 68.81 169174 23.66
Sigmoid 2 0.0025 715070 476830 493373 69.00 165766 23.18
Sigmoid 4 0.025 715070 507955 493394 69.00 158552 2217
Sigmoid 8 [0.007813| 715070 477501 493584 69.03 165455 23.14
Sigmoid 16 0.25 715070 620059 490365 68.58 167256 23.39
Sigmoid 32 0.25 715070 610445 490493 68.59 166240 23.25

Table 5.33: Result of Com?7 using 6 features from window size n=5000 training data

Kernel C gamma | #accesses #predicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5]0.000488 [715070 402645 489811 68.50 154696 21.63
Linear 2 0.0025 715070 400868 489831 68.50 154597 21.62
Linear 4 0.025 715070 393226 489688 68.48 153539 21.47
Linear 8 10.007813 [715070 384798 489141 68.40 152110 21.27
Linear 16 0.25 715070 403564 489784 68.49 154776 21.64
Linear 32 0.25 715070 399427 489837 68.50 154414 21.59
Polynomial [0.5 | 0.000488 [715070 559175 450814 63.04 207567 29.03
Polynomial 2 0.0025 715070 480384 448322 62.70 204745 28.63
Polynomial 4 0.025 715070 332874 490476 68.59 138111 19.31
Polynomial 8 10.007813 715070 335744 490284 68.56 138430 19.36
Polynomial | 16 0.25 715070 178492 478852 66.97 79637 11.14
Polynomial | 32 0.25 715070 196600 476851 66.69 88138 12.33
RBF 0.5 | 0.000488 | 715070 357488 488750 68.35 144428 20.20
RBF 2 0.0025 715070 338916 488578 68.33 144318 20.18
RBF 4 0.025 715070 292930 492955 68.94 125904 17.61
RBF 8 10.007813 715070 311651 491061 68.67 133566 18.68
RBF 16 0.25 715070 203873 490718 68.63 95577 13.37
RBF 32 0.25 715070 191762 487665 68.20 90248 12.62
Sigmoid 0.5]0.000488 [715070 362831 488822 68.36 145320 20.32
Sigmoid 2 0.0025 715070 391753 489348 68.43 152794 21.37
Sigmoid 4 0.025 715070 4222227 494280 69.12 139472 19.50
Sigmoid 8 10.007813 [715070 405648 490024 68.53 155472 21.74
Sigmoid 16 0.25 715070 693888 476601 66.65 190332 26.62
Sigmoid 32 0.25 715070 692373 475951 66.56 189602 26.52

Table 5.34: Result of Com7 using 6 features from window size n=10000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% [Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 | 715070 176268 493964 69.08 89719 12.55
Linear 2 0.0025 715070 354884 444743 62.20 180092 25.19
Linear 4 0.025 715070 193014 495038 69.23 89720 12.55
Linear 8 0.007813 715070 684876 450181 62.96 218008 30.49
Linear 16 0.25 715070 177266 495522 69.30 90177 12.61
Linear 32 0.25 715070 161389 493483 69.01 86245 12.06
Polynomial | 0.5 | 0.000488 715070 335672 445462 62.30 175855 24.59
Polynomial 2 0.0025 715070 349094 444851 62.21 180064 25.18
Polynomial 4 0.025 715070 203460 495925 69.35 95502 13.36
Polynomial 8 [0.007813| 715070 192217 495401 69.28 89753 12.55
Polynomial 16 0.25 715070 157880 486371 68.02 71058 9.94
Polynomial 32 0.25 715070 156241 486264 68.00 70409 9.85
RBF 0.5 | 0.000488 | 715070 208038 495149 69.24 92470 12,93
RBF 2 0.0025 715070 211937 496050 69.37 96566 13.50
RBF 4 0.025 715070 182246 495642 69.31 93469 13.07
RBF 8 0.007813 715070 184233 495029 69.23 91408 12.78
RBF 16 0.25 715070 159161 492587 68.89 74478 10.42
RBF 32 0.25 715070 152084 488303 68.29 69221 9.68
Sigmoid 0.5 | 0.000488 715070 208235 495884 69.35 99511 13.92
Sigmoid 2 0.0025 715070 175139 492009 68.81 88112 12.32
Sigmoid 4 0.025 715070 427866 493625 69.03 138602 19.38
Sigmoid 8 [0.007813| 715070 189195 494826 69.20 93982 13.14
Sigmoid 16 0.25 715070 264746 483384 67.60 90175 12.61
Sigmoid 32 0.25 715070 257195 483154 67.57 87886 12.29

Table 5.35: Result of Com?7 using 7 features from window size n=5000 training data

Kernel C gamma | #accesses fpredicted #Hits | Hitrate% | Bypassed Bypassed
bypass %
Linear 0.5 | 0.000488 715070 108307 487293 68.15 64409 9.01
Linear 2 0.0025 715070 107091 487118 68.12 63793 8.92
Linear 4 0.025 715070 106836 487088 68.12 63659 8.90
Linear 8 [0.007813| 715070 107077 487117 68.12 63787 8.92
Linear 16 0.25 715070 107413 487165 68.13 63962 8.94
Linear 32 0.25 715070 108535 487319 68.15 64522 9.02
Polynomial | 0.5 | 0.000488 [715070 176685 493862 69.06 88109 12.32
Polynomial 2 0.0025 715070 487679 492693 68.90 162139 22.67
Polynomial 4 0.025 715070 266349 484769 67.79 106882 14.95
Polynomial 8 0.007813 715070 353059 489674 68.48 135391 18.93
Polynomial | 16 0.25 715070 272675 487166 68.13 125964 17.62
Polynomial | 32 0.25 715070 271043 487258 68.14 125457 17.54
RBF 0.5 | 0.000488 715070 142154 492488 68.87 79392 11.10
RBF 2 0.0025 715070 181427 481177 67.29 93535 13.08
RBF 4 0.025 715070 555616 492432 68.86 166693 23.31
RBF 8 [0.007813| 715070 689548 447477 62.58 215469 30.13
RBF 16 0.25 715070 715071 451366 63.12 220960 30.90
RBF 32 0.25 715070 715071 451366 63.12 220960 30.90
Sigmoid 0.5 | 0.000488 715070 141995 492448 68.87 79312 11.09
Sigmoid 2 0.0025 715070 109407 487436 68.17 64971 9.09
Sigmoid 4 0.025 715070 145634 477056 66.71 63739 8.91
Sigmoid 8 0.007813 715070 102288 486897 68.09 61484 8.60
Sigmoid 16 0.25 715070 352053 474650 66.38 124284 17.38
Sigmoid 32 0.25 715070 352608 474650 66.38 124525 17.41

51

CHAPTER VI

CONCLUSION

6.1 Dissertation summary

In this dissertation, we studed the possibility of improving the performance of the
shared last-level cache by using the cache bypassing method. We proposed a novel method
to predict cache reusability by using a machine learning tool, specifically the Support
Vector Machine. A number of experiments have been conducted to find appropriate
features, parameters and kernel functions, that affect the decision to bypass the data.
In summary, we proved that the SVM is capable to learn the data classification and
classify which data should be bypassed from the LLC. To the best of our knowledge, this
is the first proof-of-concept of applying machine learning technique to caches or memory
systems. Moreover, we propose a list of important attributes or features that affect
the bypass decision and, also, the appropriate kernel function to be used. Lastly, the
bypass method is a complementary technique that could be employed in conjunction with
the aforementioned high performance cache replacement policies or cache prefetching to

deliver a higher cache performance.

6.2 Limitations and future work

Our work has shown a preliminary result of the possibility to have machine learning
enhanced the cache bypassing prediction. However, the SVM bypass prediction method
we proposed and the benchmarks we tested have a few limitations that can be extended

as follow:

o Firstly, our hardware resources limit a larger benchmark combinations, e.g. SPEC2006.
Many memory intensive benchmarks can be tested to find other suitable kernel func-
tions to implement bypass prediction for large workloads. It can be combined with
multimedia benchmarks to test the possibility to detect larger mixed workloads and

bypass appropriate data to improve the LLC performance.

¢ Secondly, fine tuning the SVM requires a lot of resources to implement. More experi-

53

ments with different parameters for each kernel function could achieve understanding

about more suitable parameters specific to each benchmark.

Lastly, hardware implementation of the classifier is an area that could be in the
future work. The implementation of the classifier models into hardware classifier is

another field of research that could be explored.

References

2010Memory technology evolution: an overview of system memory technologies Available

from: http://h10032.www1.hp.com/ctg/Manual/c00256987.pdf [].

1996Pentium® pro processor with 1 mb 12 cache at 200 mhz Available from: http://
www.intel.com/design/archives/processors/pro/docs/24357001.pdf [].

Baer, J.-L. and Chen, T.-F. 1991. An effective on-chip preloading scheme to reduce data

access penalty. In Supercomputing, 1991. Supercomputing '91. Proceedings of

the 1991 ACM/IEEE Conference on , pp. 176 —186.

Baer, J.-L. and Chen, T.-F. 1995. Effective hardware-based data prefetching for high-
performance processors. IEEE Trans. Comput. 44.5 (May 1995): 609-623.

Belady, L. A. 1966. A study of replacement algorithms for a virtual-storage computer.
IBM Syst. J. 5.2 (June 1966): 78-101.

Bernstein, D., Cohen, D., and Freund, A. 1995. Compiler techniques for data prefetching
on the powerpc. In Proceedings of the IFIP WG10.3 working conference on

Parallel architectures and compilation techniques, pp. 19-26. Manchester, UK,
UK: IFIP Working Group on Algol.

Burges, C. J. C. 1998. A tutorial on support vector machines for pattern recognition.

Data Min. Knowl. Discov. 2.2 (June 1998): 121-167.

Chen, T.-F. and Baer, J.-L. 1994. A performance study of software and hardware data

prefetching schemes. SIGARCH Comput. Archit. News 22.2 (April 1994): 223—
232.

Collins, J., Sair, S., Calder, B., and Tullsen, D. M. 2002. Pointer cache assisted prefetch-
ing. In Proceedings of the 35th annual ACM/IEEE international symposium on

Microarchitecture, pp. 62—-73. Los Alamitos, CA, USA: IEEE Computer Society

Press.

Cooksey, R., Jourdan, S., and Grunwald, D. 2002. A stateless, content-directed data

prefetching mechanism. SIGARCH Comput. Archit. News 30.5 (October 2002):
279-290.

95

Cortes, C. and Vapnik, V. 1995. Support-vector networks. Machine Learning 20 (1995):
273-297.

Denning, P. J. 1972. On modeling program behavior. In Proceedings of the May 16-18,
1972, Spring Joint Computer Conference, pp. 937-944. New York, NY, USA:
ACM.

Duong, N., Zhao, D., Kim, T., Cammarota, R., Valero, M., and Veidenbaum, A. V.
2012. Improving cache management policies using dynamic reuse distances. In
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 389-400. Washington, DC, USA: IEEE Computer Society.

Feng, M., Tian, C., Lin, C., and Gupta, R. 2011. Dynamic access distance driven cache
replacement. ACM Trans. Archit. Code Optim. 8.3 (October 2011): 14:1-14:30.

Fu, J. W. C., Patel, J. H., and Janssens, B. L. 1992. Stride directed prefetching in scalar
processors. SIGMICRO Newsl. 23.1-2 (December 1992): 102-110.

Ganusov, I. and Burtscher, M. 2005. Future execution: a hardware prefetching technique
for chip multiprocessors. In Parallel Architectures and Compilation Techniques,

2005. PACT 2005. 14th International Conference on , pp. 350 — 360.

Gonzélez, A., Aliagas, C., and Valero, M. 1995. A data cache with multiple caching

strategies tuned to different types of locality. In International Conference on

Supercomputing, pp. 338-347.

Hay, C. C., Schumacher, F. X., Kurpanek, G. P., Zheng, J., Keller, J. R., and Chan, K. K.
1996. Design of the HP PA 7200 CPU. (1996):

Horton, T. 1995. Selecting the right cache architecture for high performance pcs. In
Electro/95 International. Professional Program Proceedings., pp. 111-122.

Ibanez, P., Vinals, V., Briz, J. L., and Garzaran, M. J. 1998. Characterization and

improvement of load/store cache-based prefetching. In Proceedings of the 12th

international conference on Supercomputing, pp. 369-376. New York, NY, USA:
ACM.

Jaleel, A., Theobald, K. B., Steely, S. C., Jr.., and Emer, J. 2010. High performance

cache replacement using re-reference interval prediction (rrip). In Proceedings of

56

the 37th annual international symposium on Computer architecture, pp. 60-71.

New York, NY, USA: ACM.

Jalminger, J. and Stenstréom, P. 2003. A Novel Approach to Cache Block Reuse Predic-

tions. In International Conference on Parallel Processing, pp. 294-302.

Johnson, T. L., Connors, D. A., Merten, M. C., and mei W. Hwu, W. 1999. Run-Time
Cache Bypassing. IEEE Transactions on Computers 48 (1999): 1338-1354.

Joseph, D. and Grunwald, D. 1997. Prefetching using markov predictors. SIGARCH
Comput. Archit. News 25.2 (May 1997): 252-263.

Jouppi, N. P. 1990. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In Proceedings of the 17th

annual international symposium on Computer Architecture, pp. 364-373. New

York, NY, USA: ACM.

Kandiraju, G. B. and Sivasubramaniam, A. 2002. Going the distance for tlb prefetching:
an application-driven study. SIGARCH Comput. Archit. News 30.2 (May 2002):
195-206.

Khan, S., Alameldeen, A., Wilkerson, C., Mutluy, O., and Jimenezz, D. 2014. Improving
cache performance using read-write partitioning. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on, pp. 452
463.

Khan, S. M., Tian, Y., and Jimenez, D. A. 2010. Sampling dead block prediction for last-
level caches. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 175-186. Washington, DC, USA: IEEE

Computer Society.

Kharbutli, M., Jarrah, M., and Jararweh, Y. 2013. Scip: Selective cache insertion
and bypassing to improve the performance of last-level caches. In Applied

Electrical Engineering and Computing Technologies (AEECT), 2013 IEEE

Jordan Conference on, pp. 1-6.

Kharbutli, M. and Solihin, Y. 2008. Counter-based cache replacement and bypassing
algorithms. IEEE Trans. Comput. 57.4 (April 2008): 433-447.

57

Kim, S. and Veidenbaum, A. V. 1997. Stride-directed prefetching for secondary caches.
In Proceedings of the international Conference on Parallel Processing, pp. 314—.

Washington, DC, USA: IEEE Computer Society.

Lee, F. F. 1969. Study of "look-aside” memory. IEEE Trans. Comput. 18.11 (November
1969): 1062-1064.

Lee, J., Park, C., and Ha, S. 2003. Memory access pattern analysis and stream cache
design for multimedia applications. In Proceedings of the 2003 Asia and South
Pacific Design Automation Conference, pp. 22-27. New York, NY, USA: ACM.

Levinthal, D. 2010. Performance analysis guide for intel® core™ i7 processor and in-
tel® xeon™ 5500 processors Available from: https://software.intel.com/sites/

products/collateral /hpe/vtune/performance_analysis guide.pdf [].

Li, L., Tong, D., Xie, Z., Lu, J., and Cheng, X. 2012. Optimal bypass monitor for

high performance last-level caches. In Proceedings of the 21st International

Conference on Parallel Architectures and Compilation Techniques, pp. 315-324.
New York, NY, USA: ACM.

Lipasti, M. H., Schmidt, W. J., Kunkel, S. R., and Roediger, R. R. 1995. Spaid: software

prefetching in pointer- and call-intensive environments. In Proceedings of the

28th annual international symposium on Microarchitecture, pp. 231-236. Los

Alamitos, CA, USA: IEEE Computer Society Press.

Liptay, J. S. 1968. Structural aspects of the system/360 model 85: Ii the cache. IBM
Syst. J. 7.1 (March 1968): 15-21.

Luk, C.-K. 2001. Tolerating memory latency through software-controlled pre-execution in
simultaneous multithreading processors. SIGARCH Comput. Archit. News 29.2
(May 2001): 40-51.

McFarling, S. 1992. Cache replacement with dynamic exclusion. In Proceedings of the

19th annual international symposium on Computer architecture, pp. 191-200.

New York, NY, USA: ACM.

McKee, S. A. 2004. Reflections on the memory wall. In Proceedings of the 1st Conference
on Computing Frontiers, pp. 162—. New York, NY, USA: ACM.

58

Moshovos, A., Pnevmatikatos, D. N., and Baniasadi, A. 2001. Slice-processors: an imple-
mentation of operation-based prediction. In Proceedings of the 15th international

conference on Supercomputing, pp. 321-334. New York, NY, USA: ACM.

Mowry, T. C., Lam, M. S., and Gupta, A. 1992. Design and evaluation of a compiler
algorithm for prefetching. SIGPLAN Not. 27.9 (September 1992): 62-73.

Mutlu, O., Stark, J., Wilkerson, C., and Patt, Y. N. 2003. Runahead execution: An
alternative to very large instruction windows for out-of-order processors. In
Proceedings of the 9th International Symposium on High-Performance Computer

Architecture, pp. 129—. Washington, DC, USA: IEEE Computer Society.

Oly, J. and Reed, D. A. 2002. Markov model prediction of i/o requests for scientific appli-
cations. In Proceedings of the 16th international conference on Supercomputing,

pp. 147-155. New York, NY, USA: ACM.

Palacharla, S. and Kessler, R. E. 1994. Evaluating stream buffers as a secondary cache

replacement. In Proceedings of the 21st annual international symposium on

Computer architecture, pp. 24-33. Los Alamitos, CA, USA: IEEE Computer

Society Press.

Piquet, T., Rochecouste, O., and Seznec, A. 2007. Exploiting single-usage for effective

memory management. In Proceedings of the 12th Asia-Pacific Conference on

Advances in Computer Systems Architecture, pp. 90-101. Berlin, Heidelberg:

Springer-Verlag.

Qiao, F., Yu, B., Ma, J., Chen, T., and Hu, T. 2011. Slrf: A high-efficiency

shared less reused filter in chip multiprocessors. In Proceedings of the 2011

Fourth International Conference on Intelligent Computation Technology and

Automation - Volume 02, pp. 1191-1197. Washington, DC, USA: IEEE Com-

puter Society.

Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and Emer, J. 2007. Adaptive insertion
policies for high performance caching. SIGARCH Comput. Archit. News 35.2
(June 2007): 381-391.

Ramos, L., Ibanez, P., Vinals, V., and Llaberia, J. M. 2000. Modeling load address

behaviour through recurrences. In Proceedings of the 2000 IEEE International

Symposium on Performance Analysis of Systems and Software, pp. 101-108.

Washington, DC, USA: IEEE Computer Society.

Rivers, J. A. and Davidson, E. S. 1996. Reducing Conflicts in Direct-Mapped Caches with

a Temporality-Based Design. In International Conference on Parallel Processing

59

1, pp. 154-163.

Roth, A., Moshovos, A., and Sohi, G. S. 1998. Dependence based prefetching for linked
data structures. SIGPLAN Not. 33.11 (October 1998): 115-126.

Sair, S., Sherwood, T., and Calder, B. 2002. Quantifying load stream behavior. In

Proceedings of the 8th International Symposium on High-Performance Computer

Architecture, pp. 197—. Washington, DC, USA: IEEE Computer Society.

Santhanam, V., Gornish, E. H., and Hsu, W.-C. 1997. Data prefetching on the hp pa-

8000. In Proceedings of the 24th annual international symposium on Computer

architecture, pp. 264-273. New York, NY, USA: ACM.

Sherwood, T., Sair, S., and Calder, B. 2000. Predictor-directed stream buffers.
In Proceedings of the 33rd annual ACM/IEEE international symposium on

Microarchitecture, pp. 42-53. New York, NY, USA: ACM.

Sklenar, I. 1992. Prefetch unit for vector operations on scalar computers (abstract).

In Proceedings of the 19th annual international symposium on Computer

architecture, pp. 430— New York, NY, USA: ACM.

Smith, A. J. 1978. Sequential program prefetching in memory hierarchies. Computer

11.12 (December 1978): 7-21.

Smith, A. J. 1982. Cache Memories. ACM Computing Surveys 14 (1982): 473-530.

Somogyi, S., Wenisch, T. F., Ailamaki, A., and Falsafi, B. 2009. Spatio-temporal mem-

ory streaming. In Proceedings of the 36th Annual International Symposium on

Computer Architecture, pp. 69-80. New York, NY, USA: ACM.

Tyson, G. S., Farrens, M. K., Matthews, J., and Pleszkun, A. R. 1995. A mod-

ified approach to data cache management. In International Symposium on

Microarchitecture, pp. 93-103.

Ubal, R., Jang, B., Mistry, P., Schaa, D., and Kaeli, D. 2012. Multi2Sim: A Simula-
tion Framework for CPU-GPU Computing . In Proc. of the 21st International

60

Conference on Parallel Architectures and Compilation Techniques.

Vanderwiel, S. P. and Lilja, D. J. 2000. Data prefetch mechanisms. ACM Comput. Surv.

32.2 (June 2000): 174-199.

Vateekul, P., Kubat, M., and Sarinnapakorn, K. 2014. Hierarchical multi-label classi-
fication with svms: A case study in gene function prediction. Intelligent Data

Analysis 18.4 (2014):

Wang, Z., Burger, D., McKinley, K. S., Reinhardt, S. K., and Weems, C. C. 2003. Guided
region prefetching: a cooperative hardware/software approach. SIGARCH
Comput. Archit. News 31.2 (May 2003): 388-398.

Wu, C.-J., Jaleel, A., Martonosi, M., Steely, S. C., Jr.., and Emer, J. 2011. Pacman:
Prefetch-aware cache management for high performance caching. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 442-453. New York, NY, USA: ACM.

Xiang, L., Chen, T., Shi, Q., and Hu, W. 2009. Less reused filter: improving 12 cache per-
formance via filtering less reused lines. In Proceedings of the 23rd international

conference on Supercomputing, pp. 68-79. New York, NY, USA: ACM.

Yeh, T.-Y. and Patt, Y. N. 1991. Two-level adaptive training branch prediction. In
Proceedings of the 24th annual international symposium on Microarchitecture,

pp. 51-61. New York, NY, USA: ACM.

Zahran, M. 2007. Non-inclusion property in multi-level caches revisited.

Zhang, Z. and Torrellas, J. 1995. Speeding up irregular applications in shared-memory
multiprocessors: memory binding and group prefetching. SIGARCH Comput.
Archit. News 23.2 (May 1995): 188-199.

Zhou, H. 2005. Dual-core execution: building a highly scalable single-thread instruction
window. In Parallel Architectures and Compilation Techniques, 2005. PACT

2005. 14th International Conference on , pp. 231 — 242.

Biography

Warisa Sritriratanarak was born in Bangkok, Thailand, on July, 1981. She gradu-
ated from Triamudom Suksa school in 1999. She received B.Eng. Computer Engineering,
from Chulalongkorn University, Thailand, in 2003 and M.Sc. from California State Uni-
versity, Long Beach, USA, in 2006. She worked as a Lecturer at Bangkok University from
2006 to 2008. Her doctorate has been under the supervision of Prof. Prabhas Chongstit-
vatana and Asst. Prof. Mongkol Ekpanyapong. She was granted the CP Chulalongkorn
Graduate Scholarship. During Oct 2012 - Aug 2013, she received an Erasmus Mundus
scholarship Action 2 to perform an exchange study period at University of Minho, Portu-
gal. Her field of interest includes various topics of Computer Architecture with emphasis

on memory system, cache, and machine learning application on cache performance.

61

