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Abstract 
 

This work proposed an instruction set that 
achieved small executable codes for embedded 
applications.  The aim of the design is to reduce the 
size of the executable code while maintaining the 
execution speed.  Rather than applying instruction 
compression which required complex additional 
circuits, the approach taken in this work is to design 
the instruction set for the purpose of compact code.  
The result from a small set of benchmark illustrated 
that the static code size can be half of a conventional 
instruction set while the execution speed is 
maintained. 
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1. Introduction 

For small embedded applications, one chip 
solution has been widely used due to its cost 
advantage.  The cost of this type of application 
includes processor area, code segment area and data 
segment area.  The size of an executable code is a 
major part of the total cost so reducing the size is an 
important issue.  There are many approaches to 
reduce the size of executable code [1-10]. The 
instruction compression applies data compression and 
compiler optimization to the executable code.   

 
There are two major approaches: code compression 
and  code compaction. The first approach, code 
compression, uses data compression algorithms on 
machine code. Decompression will slow down the 
system operation in code compression.  On the other 
hand, code compaction reduces the program size by 
using compiler optimization in rearranging and 
eliminating superfluous code. This allows the 
compressed program to be executed immediately 
without needing decompression as in the code 
compression.  However, using compression 
algorithms in code compression is more effective in 
reducing the program size more using code 
compaction.   

 
This work takes a different approach.  The design of 
the instruction set is aimed to reduce the code size. 
There are two possibilities to reduce the code size: 

1) Designing the instruction set such that the total 
number of instruction in an application is 
minimised.  

2) Designing each instruction to be small. 
 

The next section exposes the main contribution of 
this work, the instruction set design. 
 
2. Instruction set 

For a 16-bit processor, a 16-bit fixed length 
instruction format will allow faster instruction fetch, 
plus it is large enough to contain three small 
arguments, so it is adopted as the choice of the 
instruction size.  The instruction set is divided into 
three main groups: arithmetic/logic, load/store, and 
control flow. The arithmetic and logic group, add sub 
and or xor etc., has three arguments. The load and 
store group has one register and one 9-bit address.  
The control flow group,  jmp, call, jt, jf, ret etc., has 
one displacement, the relative displacement is 6 bits, 
the absolute address is 14 bits. The instruction has 4 
formats (Fig. 1): 

 
xx abs:14     jump, call 
xx op:2 r1:3 a:9   load, store direct 
xx op:5 r1:3 r2:3 r3:3 arithmetic, logic 
xx op:5 r1:3 d:6   control flow 

 
Figure 1.  The instruction set format 

 
With these instruction formats, the processor has 14-
bit code address (16 Kwords), 9-bit address that 
directly access data (512 words), 16-bit total data 
address (64 Kwords).  The direct access data space is 
used to store the global data.  The whole data space 
can be accessed via index addressing.  If a larger 
code space is needed, a segment extension can be 
implemented to extend to 64 Kwords (4 segments) as 
the program counter is 16 bits.  A part of instruction 
set is shown in Fig. 2. 



 
 

Instruction  Meaning 
 
jmp a   jump to ads 
call a   call ads 
ret s    return 
retv r1 s   return r1 
jt r1 d   if r1 != 0 pc+=d 
jf r1 d   if r1 == 0 pc+=d 
aop r1 r2 r3  ri = r2 aop r3 
aop r1 r2 #n     r1 = r2 aop n 
ld r1 a   r1 = M[a] 
st r1 a   M[a] = r1 
ldx r1 r2 r3  r1 = M[r2+r3] 
stx r1 r2 r3  M[r2+r3] = r1 
mov r1 r2  r1 = r2 
mvx r1 r2  pass r2 to next r1 

 
where aop is add, sub, and, or, xor, not, shl, shr etc. 

 
Figure 2.  A part of the instruction set 

 
As the argument is limited to 3 bits, the number of 
direct-accessed variable is eight, they are denoted 
r0..r7.  r1..r7 are local variables.  r0 is special, it is 
global and it is used to return a value to the caller.  
The following code (Fig. 3) shows an example of the 
use of this instruction set.  This assembly language 
fragment shows a routine to swap two elements of the 
array "data" and how the main function passed 
parameters; i, j and call "swap": 

 
fun swap a b [ t tmp dp ] 
  ld dp data 
  ldx t dp a     ; t=data[a] 
  ldx tmp dp b   ; tmp=data[b] 
  stx tmp dp a   ; data[a]=tmp 
  stx t dp b     ; data[b]=t 
  ret 0 
 
fun main [ i j ] 
  ... 
  mvx r1 i 
  mvx r2 j 
  call swap 
  ... 

 
Figure 3.  A fragment of an assembly program 

 
3. Register Window 
 A "frame pointer", FP, is a pointer to the base of a 
current activation record.  Accessing a register is 
relative to FP. 
 

rn = R[FP-n]                               (1) 
 
where R[] is the buffer. 
 
The structure of an activation record is as follows: 

 
hi 
 
old pc  <- FP 
r1 
r2 
... 
r7 
 
low 

 
Figure 4.  The structure of an activation record 

 
The size of the current activation record is specified 
in the "call" and "ret" instructions, so it is not 
necessary to store that information in the activation 
record.   
 
To directly support the creation and deletion of an 
activation record, a part of stack segment is cached 
into the register set.  The registers become a buffer 
storing the most recent activation record.  This buffer 
is implemented as a circular buffer (Fig. 5).   
 
When the buffer becomes overflow, such as the 
creation of a new activation record, the oldest 
elements will be "spill" to the memory.  On returning 
from a function call and deleting the current 
activation record, an underflow may occurs.  When 
this happens, the buffer is restored by "pull" old 
elements from the memory.  The larger buffer will 
reduce the number of spill/pull.   
 

 
Figure 5.  The circular register buffer 

 
The maximum size of an activation record is eight.  
The size of buffer should be at least twice the 
maximum size of an activation record to prevent 
"thrashing".  Two pointers: back, front, are used to 
keep track of the register window.  FP is between 
back and front.  This constraint is always true: 
 

  front - back + 1  ≤ W                       (2)   
 
where W is the size of buffer. 

front

  FP 

back



 
Please note that, the arithmetic operations on these 
pointers: front, back, FP, must be modulo W as the 
buffer is circular of size W. 
 
The spill/pull conditions can be described as follows: 
when accessing a register x, if x is outside the 
window and overflow/underflow is (front - back + 1 
> W) 
 
1)  x > front   move front up,  
 

f' = front,  
front = x, 
if overflow then  
  move back up  
  b' = back,  
  back = back + (front - f'),  
  spill registers (b'.. back) to memory 

 
2)  x < back   move back down,  
 

b' = back,  
back = x, 
pull registers (b'.. back) from memory  
if underflow  then 
  move front down  
  front = front - (b' - back) 

 
When underflow occurs, it is not necessary to pull 
registers because it is not the current activation 
record. In fact, the "forwarding" register, (registers 
between FP and front), will be used only to pass 
parameters. They will never be overflown into the 
current activation record as the size of register 
window is at least twice the size of maximum 
activation record.  There is no need to "spill" there 
registers when the front is moved down. 
 
4. Experimental results 
 The following benchmark programs are used: 
 

bubble  sort 20 items 
hanoi    move 6 disks 
matmul  multiply 8x8 matrices 
perm    permuting 4 digits 
quick    sort 20 items 
sieve    find prime ≤ 500 

 
Figure 6.  The benchmark programs 

 
To measure the effectiveness of the proposed 
scheme, this instruction set is compared to its 
predecessor, sm3 [11].  Sm3 is a stack-based 16-bit 
processor, it is used as a reference. This processor has 
byte-coded instructions, with the size one, two or 
three bytes depending on the size of its argument. 
This reference instruction set is typical for a byte-

coded instruction set. Table 1 compare the static code 
size in byte.  Table 2 compare the dynamic 
instruction count (no. of instruction).  Sizing the 
buffer, Table 3 shows the number of spill/pull of all 
tested programs. 
 
Table 1.  The static code size (byte), the proposed 
ISA xs1, the reference sm3, average xs1/sm3 is 0.50  
 

 sm3 xs1 xs1/sm3 
bubble 282 142 0.50 
hanoi 200 104 0.52 
matmul 575 288 0.50 
perm 249 102 0.41 
quick 353 186 0.53 
sieve 381 194 0.51 

 
 
Table 2. The dynamic instruction count (no. of 
instuctions), the proposed ISA xs1, the reference 
sm3, average xs1/sm3 is 0.41           
 

 sm3 xs1 xs1/sm3 
bubble 11925 4379 0.37 
hanoi 2317 1198 0.52 
matmul 13886 6566 0.47 
perm 5469 2083 0.38 
quick 3972 1853 0.47 
sieve 17151 4376 0.26 

 
 
Table 3   Number of spill+pull of varying buffer size 
 

no.of reg 16 24 32 
bubble 0 0 0 
hanoi 165 71 29 
matmul 66 0 0 
perm 548 212 52 
quick 354 246 230 
sieve 2 0 0 

 
 
It is not possible to compare the number of clock 
cycle as the implementation of xs1 has not been 
completed.  The cost of spill/pull depends on the 
access time of the memory.  Because of the register 
buffer, accessing local variables, which is the most 
frequent, is fast.  The register buffer is the internal 
fast register.  From Table 1, the executable code size 
is half of the size of the reference so the goal of 
achieving a small executable is satisfied.  Table 2 
indicates the performance comparsion. The 
performance of xs1 chip should be good as it 
executed around 41% the number of instruction count 
of the reference.  The effect, together with the fast 
instruction fetch, as xs1 has 16-bit fixed length 
instruction format, will result in very good 
performance compared to the reference.  The average  



speedup will be at least 60% (more than 2 times 
faster), not taking into account the cost of spill/pull.  
The number of spill/pull in Table 3 is reasonably 
small compared to the number of executed 
instruction. It should not have a huge impact on the 
cost.  
 
5. Related work 
 A stack-based byte-coded instruction set is well-
known to be small, for example JVM [12].  However, 
to reduce the number of instruction, a three-argument 
register-based instruction set is more compact. A 
proposal to combine the best of these two ideas is 
introduced in [13], where the instruction set is three-
argument register-based but includes an automatic 
register windowing to manage the activation record 
during call/return.   
 
One disadvantage of three-argument register-based 
instruction set is the size of each instruction.  There 
are many fields for each instruction hence the size is 
not small.  The popular approach to reduce the size of 
each instruction is to limit the range of argument, 
such as the number of register, the size of literal 
contained in the instruction. This approach is used in 
two well-known products widely used in mobile 
devices, ARM/Thumb [14] and MIPS/MIPS16 [15] 
where the compact form of their instruction sets are 
available. 
 
The use of register windowing to manage parameter 
passing was invented at the period of RISC concept 
in RISC1[16] and still use in present in SPARC [17]. 
The caching of stack segment into an on-chip buffer 
has been done in Picojava chip [18]. 
 
6. Conclusion 
 This work proposed a design of a compact code 
instruction set for a processor suitable for embedded 
applications.  The main goal is to achieve a small 
executable code.  Using a small set of benchmark, the 
static of size is half of the reference. The number of 
executed instruction is also greatly reduced to less 
than half of the reference.  To evaluate the 
performance, the detailed design of microarchitecture 
must be completed so that the cost of spill/pull of 
register buffer can be evaluated. 
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