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ABSTRACT Article information:
The local optima problem is one of the biggest obstacles in compact ge-
netic algorithms since each bit in the problem encoding string is inde-
pendent of the others. We propose a quantum-assisted compact genetic
algorithm that uses a quantum amplitude ampli�cation technique in the
selection process to circumvent the said problem. In addition to using
elitism mechanics where a single best candidate solution is kept to drive
the probability vector, the amplitude ampli�cation subroutine also acts as
a mutation operator which, with high probability, enforces the constraint
that the newly generated candidate is a feasible solution. We demonstrate
this idea by applying the algorithm to the traveling salesman problem of
size 3 and 4 cities on IBM Qiskit simulator to show how one would con-
struct the quantum circuit and how to encode the optimization problem
into quantum states via Ising spin model encoding. We then show space
and time complexity analysis based on the quantum circuit model. Finally,
we discuss the number of qubits required for encoding, gate counts in the
circuit model, and the practicality of applying this to a small-scale devices
in the future.
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1. INTRODUCTION

Genetic algorithms [1] are one of the most widely
used variants of heuristic algorithms in the family of
evolutionary algorithms. They try to solve the opti-
mization problem by mimicking behaviors in nature,
such as natural selection and survival of the �ttest.
Although genetic algorithms excel at re�ning the so-
lution quality (local search) via the recombination
process, one main obstacle of genetic algorithms is
the good incorporation of the global search operator
to circumvent the local optima problem. This is usu-
ally done via good initialization and preserving the
population or using a mutation operator, which re-
sults in large memory requirements [2]-[5].

Among various techniques to reduce the memory
requirement of genetic algorithms [6]-[9], the com-
pact genetic algorithm [10] is one such approach that
greatly reduces said requirements. However, it comes
with a trade-o� where the global search aspect of
keeping large diversity of the population is lost and
the only way to prevent that is via a mutation op-

erator, shifting the memory requirement into a more
complex computation task.

Quantum computing has been predicted to have
advantages over classical computing for certain tasks
such as factorization [11], simulation of quantum sys-
tems [12], or generating veri�able random numbers
[13], [14]. Grover's search algorithm [15], the quan-
tum analogue of classical exhaustive search, has been
proven to provide strict speedups. Although the
speedup is only polynomial, it has been shown to have
a wide range of applications as a subroutine in clas-
sical algorithms [16]-[20] due to its query complexity
being O(

√
N ) compared to the classical O(N ), when

the problem has no structure to be exploited.

There have been attempts to combine quantum
computing and genetic algorithms in the hope that
their quantum versions would provide speedups or
novel ideas to the classical algorithms. Quantum-
inspired genetic algorithms [21]-[23] are one of the at-
tempts where the algorithms are still executed purely
in classical computers, but take some of the ideas
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of quantum phenomena such as interference and su-
perposition and translate them into classical ana-
logues. Another approach, quantum-assisted genetic
algorithms [24]-[27] and quantum-assisted compact
genetic algorithm [28], delegates some of the com-
plex tasks to quantum computers, such as the mu-
tation operator or probabilistic elements, while still
performing crossover and population updates on the
classical side. The last approach attempts to rede-
fine the GA in the context of quantum computation
[29]-[31].

In this work, we take the quantum-assisted algo-
rithm route and aim to explore the use of Grover’s
algorithm as a means to incorporate a global search
operator into a compact genetic algorithm. Not only
does the quantum search subroutine help with ex-
panding the search from a local to a global aspect,
but it also serves as a means to restrict the candi-
date generation process to produce a feasible solution
with high probability. We use the traveling salesman
problem (TSP) as an example of our proposed algo-
rithm since it is a non-trivial optimization problem
that requires a rather complex encoding and it has a
tendency to get stuck in local optima without a muta-
tion operator. We present one approach to encoding
the TSP into quantum states using the Ising model
[32]. We show how to translate the probability vec-
tor into quantum states, how to construct an oracle
from the feasibility constraints, and how to construct
the diffusion operator with respect to the probability
vector. Although we use TSP in our example, the
methods outlined in this paper are general and can
be adapted to most optimization problems.

The paper is structured as follows. We first pro-
vide background on the classical evolutionary algo-
rithm and the setting of the compact genetic algo-
rithm which we will use as our baseline in compar-
ison to our quantum-assisted proposal (Section II).
We then describe the quantum search algorithm (Sec-
tion III), our proposed algorithm, how one could en-
code the optimization problem into our setting using
the Ising encoding, and how to construct the quan-
tum circuit to realize our quantum subroutine (Sec-
tion IV). We then talk about our experimental setup
which was done using the IBM Qiskit simulator [33]
(Section V). We discuss results comparing the clas-
sical compact genetic algorithm with elitism and our
proposed quantum-assisted version (Section VI). We
also provide a cost analysis of our approach in terms
of the number of qubits and circuit costs which are
directly related to the quantum space and time com-
plexity (Section VII). We end the paper by discussing
the possible ways of extending our approach into a
more quantum analogue of the compact genetic al-
gorithm, giving connections to QAOA [34], and how
to include the building block structure of encoding
(Section VIII).

2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms (EA) are heuristic-search
algorithms based on the concepts of biological evolu-
tion, such as reproduction, mutation, recombination,
and selection [35],[36]. EA often performs well in hard
problems where the underlying problem structure is
not known, since it does not use any knowledge of the
underlying structure. EA operates by maintaining a
population of candidate solutions or individuals, and
then applying the principle of survival of the fittest
by encoding the optimization goal to the environment
where the population lives. Each individual has a re-
spective fitness value indicating how close it is to the
optimal solution. Higher values are closer. The prob-
lem space is encoded in this population representa-
tion, and a good EA should have the ability to guide
the population or be initialized such that most of the
space can be reached. The population will then evolve
for some time in time steps referred to as generations.
In each generation, a group of individuals with high
fitness is selected as parents, and then through the
application of the breeding operator, which utilizes
the concepts taken from nature such as recombina-
tion and mutation, a new set of individuals will be
generated and replace those of the current popula-
tion with low fitness. From this process, the later
generations should tend towards a population with
higher and higher average fitness until it reaches the
point of equilibrium where the average fitness stays
constant. At this point the algorithm will be stopped.
This process is akin to Darwin’s natural selection and
evolution theory, where newer individuals are better
suited to the environment than their ancestors.

2.1 Genetic algorithm

Genetic Algorithms (GA) are one of the most com-
mon and well-known variants of EAs [1]. In a GA,
the candidate solutions or individuals are encoded
into fixed-length strings referred to as chromosomes.
Each section of the string encodes each variable of the
problem. The population size of a GA can be static
or dynamic. In the simplest form of GA, the simple
genetic algorithm (SGA), a set of individuals is ran-
domly selected from the population. A fixed number
of individuals with the highest fitness are selected as
parents, and a new set of offspring is created by com-
bining substrings from those parents (crossover). Mu-
tations can also be applied to those offspring strings
if one desires. One drawback of GAs is the memory
required to maintain the population size. If the popu-
lation size is not big enough, or the initial population
is not spread enough across the entire space, it will be
easier for evolution to get stuck at a local optimum
as the search space gets larger.
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2.2 Compact genetic algorithm

The compact genetic algorithm (cGA) [10] was
proposed as a way to get around the memory re-
quirement of the original GA. The problem encoding
string is now not any general string. Instead, it is
a bit string consisting of only 0 and 1. Instead of
maintaining the whole population string, a probabil-
ity vector (p) of the same length as the chromosome
string is used. At index i of p (pi) stores a real num-
ber between 0 and 1 which represents the ratio of the
current population’s chromosome at the same index
being 1 to the whole population. In other words, the
probability that the chromosome at index i being 1
if we were to randomly select an individual from the
population. This approach changes the memory re-
quirement from scaling with population size to only
the length of the problem encoding bit string and al-
lows for easier hardware-based acceleration [37]. The
evolution process for cGA is usually done by sam-
pling the probability vector p to get two individuals,
evaluating their fitness, and adjusting the probabil-
ity vector closer to the one with higher fitness if the
chromosome bit in that position differs. The perfor-
mance of cGA is comparable to that of SGA with
uniform crossover and low underlying problem struc-
ture. Since cGA can be viewed as a random walk on
each bit of the chromosome, each bit is independent
of the others. This can lead to cGA getting stuck on
the local optima and not reaching an optimal solution
when no mutation is considered.

2.3 Compact genetic algorithm with an elite

Many techniques have been proposed to circum-
vent the problem of cGA getting stuck in local op-
tima due to each bit being independent of the oth-
ers. One such approach is to include elitism into the
cGA process. For GA, the selection process can play
a huge role in the potency of the algorithm [38]. By
maintaining an “elite set” comprised of top n best in-
dividuals from the population as the only candidates
for the selection of parents, the problem can be alle-
viated a bit by always guaranteeing that once a good
candidate has been found, it will be used to drive
the population so that the newer generations will not
become worse [39], [40]. This is especially useful for
cGA since it suffers heavily from this issue when the
problem has a high building block structure.

We define the cGA with elitism (cGA*) where we
only keep one best candidate which we will use as
the baseline for comparison in Algorithm 1. In the
selection procedure, the first individual is sampled
from the probability vector. The second individual
is also sampled in the same way, but it will be re-
placed by the “current best candidate” if its fitness
is lower. The current best candidate is kept and al-
ways updated when an individual with higher fitness
is found.

3. QUANTUM SEARCH ALGORITHM

Let us briefly review the difference between quan-
tum states and classical states. Unlike a classical bit
where a bit can only hold two values, 0 or 1, a quan-
tum bit or qubit can represent a superposition of |0〉
and |1〉 as

|ψ〉 = α|0〉+ β|1〉, (1)

where α and β are complex numbers referred to as
amplitudes with the constraint that |α|2 + |β|2 = 1.
And in contrast to the classical case where n classical
bits can represent 2n different states, in general, the
quantum state of n qubits has 2n basis states. It can
represent a linear combination of all these basis states
as

|ψ〉 =
N−1∑
i=0

αi|i〉, (2)

where N = 2n the normalization condition forces the
amplitudes to follow

∑
|αi|2 = 1. This means that

a quantum state of n qubits needs 2n numbers to
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describe. The modulus squared of each basis state’s
amplitude refers to the probability of observing each
basis state when the state is measured. After a quan-
tum state is measured, the superposition is destroyed
and the state will stay in the measured state with unit
probability. For full details of quantum information
processing, we refer the readers to [41].

Grover’s search algorithm is a quantum unstruc-
tured search analogous to the classical exhaustive
search which exhibits speedups that no classical algo-
rithm can achieve [15]. The key ingredient of Grover’s
algorithm is the ability to utilize the superposition of
all possible solution states and amplify the probabil-
ity to observe the solution while lowering the proba-
bility to observe a non-solution state. Grover’s algo-
rithm can achieve this task with a query complexity
of O(

√
N ), where N is the number of possible so-

lutions. In contrast, the same task is bounded by
O(N ) for the classical case. Grover’s algorithm is a
special case of a more general technique called ampli-
tude amplification [42] which is known to be optimal
when the problem does not have any structure we can
exploit [43], [44].

Grover’s algorithm consists of three main compo-
nents: (1) quantum state preparation, (2) oracle ap-
plication, and (3) diffusion. Grover’s algorithm is an
iterative process. After initializing the states, the ora-
cle operator is applied, followed by the diffusion oper-
ator. This application of the two operators is denoted
as one iteration of the algorithm.

The first component, quantum state preparation,
is usually done by preparing a uniform superposition
of all states via the application of the Hadamard gate
to all qubits. If only a certain part of the search space
is required, one can also prepare the state in such a
way that it preserves the search space throughout the
algorithm as well [45].

The second component is the oracle operator. The
oracle is an unitary operator O which differentiates
basis states into two sets, the solution set and the
non-solution set. The action of oracle operator O can
be described mathematically as

|x〉 O−→(−1)f(x)|x〉=

{
|x〉 x is not a solution

−|x〉 x is a solution,
(3)

where f(x) is a binary function which outputs 1 when
the state is in the solution set and 0 otherwise.

The final component is the diffusion operator. As
we can see from the oracle operator, what it does
is that it changes the phase or the states while the
magnitude of the amplitude stays unchanged. The
oracle operator alone does not change the probability
of measuring the solution states. The diffusion op-
erator, or the inversion around the average operator
when applied, changes the magnitude of each basis
state. That results in the amplification of the solu-

tion states. The changes in the amplitude of each
state can be explained as

αi
Diffusion−−−−−−−→ 2ᾱ− αi, (4)

where ᾱ is the average of all amplitudes ᾱ =
1/N

∑
αi. It should be noted that Grover’s algo-

rithm suffers from a problem called the “souffle prob-
lem” where too many or too few iterations do not
give good results. Only the right number of iterations
should be performed. The optimal number of itera-

tions for Grover’s algorithm is shown to be (π4 )
√

N
T ,

where N is the number of states and T is the number
of target solutions [43].

4. QUANTUM-ASSISTED COMPACT GE-
NETIC ALGORITHM

In this section, we will explain how to utilize
Grover’s search algorithm as a subroutine for the in-
dividual selection process to generate feasible candi-
dates with high probability. This quantum subrou-
tine not only serves as an improvement to the selec-
tion process, but can also be viewed as a mutation
operator in the sense that the sampling probability
at the end of the amplitude amplification process de-
viates from the probability vector. After the outline
of the algorithm, we will show how to implement it
using a quantum circuit-based model. Although we
picked the Traveling Salesman Problem (TSP) as our
example to show the implementation, it should be
noted that the idea of encoding the problem via the
Ising model works for most NP-hard problems [32].

4.1 Algorithm outline

Having established the idea behind the use of the
quantum subroutine, we now present our algorithm
as outlined in Algorithm 2. It has a similar structure
to that of the cGA* outlined in Algorithm 1. There
used cGA with elitism as the base, but the selection
process to generate the second individual is not sam-
pled from the probability vector directly. Instead,
it is sampled from the quantum states prepared by
the amplitude amplification process which the oracle
operator defines by using a feasibility check function.
This subroutine is not meant to be a full-scale Grover
search. Its purpose is to broaden the reach of indi-
viduals generated from the probability vector.

4.2 Problem encoding

To encode the TSP to be addressed on the quan-
tum processor, we mapped the TSP to the Hamil-
tonian cycle problem. That reduces the problem to
the decision form of an Ising model [32]. It requires
(n − 1)2 qubits to represent a solution, where n is
the number of cities. We designate city 1 to always
appear first in the Hamiltonian cycle. A route is rep-
resented by the matrix (n− 1)× (n− 1). Each cell of
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the matrix is a variable Xi,p where i represents the
node and p represents its order in a prospective cy-
cle, so Xi,p = 1 if city i is visited at order p, and 0
otherwise. For example, a TSP 4 cities with a route
1 → 2 → 3 → 4 → 1 is represented by Fig. 1 or as a
flatted vector X = [1, 0, 0, 0, 1, 0, 0, 0, 1].

Fig.1: Matrix represents the route.

4.3 Fitness function definition

The objective of TSP is to find the shortest route
such that a salesman visits every city exactly once
and returns to the starting point. We require that
every node in the cycle appear exactly once, and that
at each time step a node must be visited. This creates
two constraints as shown below:∑

i

Xi,p = 1; ∀p . (5)∑
p

Xi,p = 1; ∀i . (6)

For the nodes in our prospective ordering, if Xi,p and
Xj,p+1 are both 1, then there should be an energy
penalty for i and j that are not connected in the
cycle. However, in this paper, it will be presumed
that the graph is fully connected. As a result, this
penalty term will not be included. The distance that
needs to be minimized is:

Energy =
∑
i,j

wi,j
∑
p

Xi,pXj,p+1. (7)

Consequently, our energy will have three components
in a single objective function to be minimized, and
we get the following:

Energy =
∑
i,j

wi,j
∑
p

Xi,pXj,p+1

+B
∑
p

(
1−

∑
i

Xi,p

)2

+B
∑
i

(
1−

∑
p

Xi,p

)2

,

(8)

where B is the weight of the penalty term and B >
max(Wi,j) to avoid an infeasible solution. The terms
in underbraces are squared so that the lowest possible
minimum value is zero. A ground state of this system
must have zero for penalty terms if and only if we
have an ordering of vertices where each city is only
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visited once, and for each time a node has to occur.
Therefore, the fitness function of TSP is represented
by the energy of the Ising formulation. We then need
to minimize the energy of the Ising formulation to
find the shortest route possible.

4.4 Quantum state preparation from proba-
bility vector

Recall that quantum states must obey the normal-
ization condition to preserve the probability, which
must be 1. We can rewrite Eq. (2) using this fact to

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉, (9)

where θ, and φ are real numbers with natural ranges
of 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. This way of writing
the qubit representation can be used to visualized the
single qubit state inside a Bloch sphere. A Bloch
sphere is a three-dimensional sphere where states of
a qubit are points on the surface of this unit sphere.
An example of |+〉, a single qubit state with equal
superposition of |0〉 and |1〉, is depicted in Fig. 3.

Using the Bloch sphere representation, it is easy
to see that we can use the Pauli-Y rotation operator
(RY ) to initialize each qubit to have the same proba-
bility of observing |1〉 as the probability vector where
the matrix of RY can be defined as

RY (θ) =

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
. (10)

We set the rotation angle θ to be

θ = 2× arccos
√

1− p, (11)

where p is probability of observing |1〉 according to
our probability vector. The quantum circuit for state
initialization is depicted in Fig. 2.

Fig.2: A circuit to initial the quantum state of the
system based on the probability distribution which en-
coding problem with 4 qubits.

4.5 Oracle construction

The role of the oracle in Grover’s search is to
distinguish the solution states from the non-solution
states in the search problem. The key idea for our
subroutine here is to define a function f(x) = 1 if x

Fig.3: Bloch sphere representation of a qubit in the
state |+〉. In this case, θ = π

2 and φ = 0.

is a feasible string obeying the constraints in Eqs. (5),
(6), and f(x) = 0 otherwise.

To check a feasible solution on the quantum state,
we simply need to create a function on a quantum
circuit to check along both columns and rows with
“1” appearing only once in each axis. This is be-
cause every city can only appear once in the cycle,
and for each time a city has to occur. We compiled
this set of comparisons into a list of clauses and check
these clauses computationally using the XOR gate.
In quantum computers, the job of the XOR gate is
done by the controlled-NOT gate or CNOT. In circuit
diagrams, it is drawn as in Fig. 4.

Fig.4: A circuit of the controlled-NOT (CNOT)
gate.

The CNOT gate is applied to a pair of qubits. The
one with the little dot acts as the control qubit and
the other acts as the target qubit. The target be-
comes 1 if they are different, and 0 if they are the
same. For instance, the oracle to verify a solution of
TSP 3 cities is shown in Fig. 5. The TSP 3 cities is
encoded with 4 qubits. Each qubit represents Xi,p,
where i represents the city and p represents its or-
der in a cycle. We consider from the second city and
the second order onwards because we always start in
the first city. There are X2,2, X2,3, X3,2, and X3,3.
As part of computing clauses, we complete a check-
ing circuit to provide a single qubit to be “1” of each
clause, i.e. (X2,2 , X2,3), (X2,2 , X3,2), (X2,3 , X3,3),
and (X3,2 , X3,3), to check that each city is only vis-
ited once, and for each time a city has to occur. Then
we repeat the XOR gate for each pairing in the list
of clauses. The output qubit is flipped when all the
clauses are satisfied. Finally, all clause qubits are re-
set by repeating the part of the circuit that computes
the clauses.
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4.6 Diffusion operator construction

The conventional Grover diffusion operator (the
inverse around the average operator) was made that
way due to the initial state being uniform superpo-
sition. Since we prepare our initial state from the
probability vector, we adopt the geometry preserv-
ing diffusion operator as mentioned in [43]. This way
we can make a reflection around the initial state in-
stead and that allows us to enforce the feasibility to
quantum state even when the probability vector is
near its convergence point. As a result, the diffusion
operator we used can be written as 2|w〉 〈w| − I or
w[|0n〉〈0n| − I]w†, where |w〉 is our initial state pre-
pared from the probability vector. A multi-controlled
phase gate can be used to build a reflection for the
specific state in the circuit model. The diffusion cir-
cuit is depicted in Fig. 6.

Fig.5: An feasibility check oracle circuit for TSP 3
cities.

Fig.6: A diffusion circuit which encoded a problem
with 4 qubits.

5. TESTING PROBLEMS AND EXPERI-
MENTAL SETUP

In the previous section, we illustrated how to en-
code the TSP as a quantum state and how the pro-
posed algorithm works. It can be seen that the pro-
posed algorithm uses a binary encoding as an Ising
formulation that requires (n − 1)2 qubits. On the
other hand, we use a different method to encode
TSP to our baseline cGA* which we will compare
the quantum-assisted version against.

5.1 Encoding traveling salesman problem on
a classical computer

By encoding the TSP to be addressed on a clas-
sical computer, we minimize the number of required
bits by adapting the path representation model which
represents a feasible tour as possible permutations of
the N cities. Thus, the total number of feasible edges
between cities is defined as:

Number of feasible edges =
(n− 1)

2
× n. (12)

The total number of feasible edges is a set of l -bit
binary strings, where l in the compact representation
is expressed by dlog2(n)e bits. This means that an
order O(n log n) bits is required to encode n cities
in the TSP, compared to the Ising representation of
order O(n2). The probability value of each bit (Pi,j)
represents the probability value of an edge between
city i and city j. In this experiment, we illustrated
examples of the traveling salesman problem by taking
3 and 4 cities, which are shown in Fig. 7 and Fig. 8,
respectively.

Fig.7: TSP 3 cities.

Fig.8: TSP 4 cities.

5.2 Experimental setup

We employed TSP 3 and 4 cities as test problems
in this study, as shown in Fig. 7 and Fig. 8, respec-
tively. The quantum computation phases were run
on the IBMQ QASM simulator. Since the number of
qubits supported by the simulator is limited, we can
only demonstrate a small-sized TSP. The cGA* and
quantum-assisted cGA* were compared in terms of
solution quality and the number of function evalua-
tions that were run. We used a population size of 50
for TSP 3 cities and a population size of 100 for TSP
4 cities with increments of 2. The number of func-
tion evaluations of each generation of the proposed
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method can be estimated by multiplying Number of
shots by Number of Grover iterations, plus one for
evaluation of its fitness. The number of shots is the
number of executions of a quantum circuit to sample
from quantum states. The number of Grover itera-
tions is the number of oracle operator applications in
each run of the quantum subroutine.

The data was averaged over 25 runs and we used
tournament selection with s = 2. The quantum com-
putation phases were run with the various numbers
of shots and Grover iterations. All runs end when
the vector fully converges. We used 1 shot for TSP 3
cities and used 1, 10, and 20 shots for TSP 4 cities.
The required number of Grover iterations for TSP 3
cities (encoded with 4 qubits) is approximately 2 it-
erations at maximum because there is a total size of
24 population and 2 target solutions that can provide
a feasible route. TSP 4 cities (encoded with 9 qubits)
requires approximately 7 Grover iterations at maxi-
mum since there is a total size of 29 population and 6
target solutions. In this experiment, various numbers
of Grover iterations and shots were used to see how
they affected solution quality and performance.

6. RESULTS

Experiments on TSP 3 cities are shown in Fig. 9
and Fig. 10. The results obtained show that the two
algorithms are equivalent in terms of solution quality,
but the classical cGA* uses a smaller number of func-
tion evaluations than the quantum-assisted cGA*.
Because there are only 4 qubits that represent all 16
quantum states, one Grover iteration is sufficient for
solving TSP 3 cities with 100% success. Fig. 11and
Fig. 12 show the experimental results on the TSP
4 cities. The cGA* obtains higher solution quality
than the proposed algorithm for the various number
of shots and Grover iterations with a smaller num-
ber of function evaluations. When compared to the
others, the classical cGA* can achieve the target so-
lution with 8 population sizes and approximately 22
function evaluations, whereas the quantum-assisted
cGA*, with 7 Grover iterations and 20 shots, gives
a solution quality close to the classic but it uses
more function evaluations. From Fig. 11, it can be
seen that increasing the number of Grover iterations
(green line) yields a higher solution quality than in-
creasing the number of shots (red line). Increasing
both the number of shots and Grover iterations (dark
green line) yields a higher solution quality than in-
creasing the number of Grover iterations alone. This
is because applying adequate Grover iterations results
in a higher probability of finding the target solution.
In addition, increasing the number of shots is the
same as increasing the tournament selection size. As
a result, the chance of finding better individuals in-
creases in each generation. However, the number of
function evaluations taken to converge, as shown in
Fig. 12 has quadratic growth according to the num-

ber of shots and Grover iterations. On a classical
cGA*, the TSP 4 cities uses 6 bits to represent all 26

solutions. On a quantum computer, the TSP 4 cities
uses 9 qubits to represent all 29 solutions. There-
fore, the classical one can achieve the target solution
using evolutionary selection with a small number of
function evaluations on small-sized problems.

7. QUANTUM COMPLEXITY ANALYSIS

For our proposed quantum-assisted cGA*, the
quantum complexity analysis can be divided into two
parts: analyzing the number of qubits and the num-
ber of ancilla qubits required, and the cost defined
by CNOT count and circuit depth. The number of
qubits required depends on the number of cities. The
CNOT cout and circuit depth depend on Grover it-
eration used in Grover’s search algorithm. In this
work, we only considered the number of CNOT gates
used because the CNOT gate is the most costly gate.
It requires a longer time to execute and is more
error-prone than single qubit gates. In the litera-
ture, CNOT count is also commonly used to com-
pare good circuit design for any quantum computers
in general [46]-[48]. In addition, we considered the
circuit cost from circuit depth complexity as well.
This metric matters because qubits have finite de-
coherence time. This decoherence time restricts the
depth of the circuit (the number of operations that
may be performed before qubits lose their quantum
mechanical properties), making long execution time
algorithms impossible to implement on existing NISQ
devices. Finally, we provided an analysis of the total
quantum complexity of the algorithm.

7.1 The number of qubits required

We approached the TSP by encoding it with
an Ising model with a polynomial number of
spins/qubits which scales as (n− 1)2, where n is the
number of cities. In general, we may require ancilla
qubits, which are required to be used during compu-
tation in addition to input and output qubits. They
speed up the computation process by reducing the
total of gates or circuit depth [49]. The number of
ancilla qubits used in our straightforward implemen-
tation explained in Section IV-E can be counted eas-
ily. We need 1 qubit for verifying that 1 appears once
in every row and every column of Xi,p. This means
that total number of ancilla qubits is 2(n− 1), which
is shown in Table 1.

7.2 Circuit cost

In this work, we assume the topology of the quan-
tum device to be all-to-all which means that CNOT
can be placed directly between any two qubits in the
quantum circuit. It should be noted that this is not
the case for most real devices. However, it is a good
benchmark to use, because after the circuit is tran-
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Table 1: Circuit cost summary classified as number
of qubits, number of ancilla qubits, CNOT gate count,
and circuit depth on TSP.

Number Number Number CNOT Circuit
of cities of qubits of anc. qubits count depth

3 (n− 1)2 2(n− 1) 57t 2 + 99t
4 (n− 1)2 2(n− 1) 315t 1 + 549t

n is the number of cities.
t is the number of Grover iterations.

spiled to a real device of any qubit topology, the in-
crease in CNOT is only polynomial. As shown in
Table 1, in the first Grover iteration for TSP 3 cities,
there are 57 CNOT gates and the depth of the circuit
is 101, which is the longest path in the circuit between
the data input and the output. For the TSP 3 cities,
applying more Grover iterations makes the number
of CNOT gates increase by 57t and the depth of the
circuit increases by 2 + 99t, where t is the number of
Grover iterations. The number of CNOT gates and
the depth of the circuit both increase by 315t and
1 + 549t, respectively, for the TSP 4 cities.

Table 1 shows that when the number of cities in-
creases, the number of qubits grows quadratically,
while the number of ancilla qubits grows linearly.
Furthermore, the circuit cost defined by the CNOT
count, and the circuit depth, grows linearly with the
number of Grover iterations. However, the entire
search space of the problem increases exponentially
as the number of qubits increases.

8. CONCLUSION

In this paper, we have explored the prospects of
using a quantum search algorithm as a means for im-
plementing a global search operator, a mutation oper-
ator, and enforcing a selection procedure to generate
feasible candidates with high probability to circum-
vent the local optima problem of the compact ge-
netic algorithm. Although the idea of using Grover’s
search to get around the local optima and to speedup
the convergence rate is not new, it has not previously
been shown directly in the compact genetic algorithm
model. We also took a step further than just outlin-
ing the theoretical method by showing a working cir-
cuit construction, and then simulating it via the IBM
Qiskit simulators.

In this work, we assume that our underlying quan-
tum operations are perfect. This would not be the
case if we were to realize this algorithm on real quan-
tum computers because current real devices are sub-
ject to noise from imperfect quantum operations [50]
and also noise from the environment [51]. It is hard
to completely isolate the quantum system from the
environment. It is well-known that amplitude ampli-
fication algorithms are very sensitive to noise, but it
would still be interesting to see how that would effect
our proposed quantum-assisted algorithm. We do not
require a perfect Grover’s algorithm execution to see

an improvement and only a few iterations would be
required for our task. We hope to answer this ques-
tion in future work.

One possible extension of this work would be to
include the fitness function evaluation in the oracle.
This would make the quantum subroutine produce
higher fitness offspring with high probability. On the
other hand, one might require more Grover iterations
with this extension. It would be interesting to see how
the two approaches fare against one another. Also,
in contrast to the usual evolutionary algorithm anal-
ysis where reasoning about bounds on convergence
time is often difficult, if not impossible, this would
make the whole process closer to the adaptive quan-
tum search [52]. That in turn would allow us to give
bounds and theoretical framework to compare against
other variational algorithms such as QAOA [34].

Finally, we suspect that in order to fully exploit
the quantum properties like entanglement in the com-
pact genetic algorithm, one would need to consider
the building block theory of genetic algorithms [53]
during circuit construction. Although the quantum
search subroutine already provides global search ca-
pability and feasibility enforcement in the compact
genetic algorithm, we should be able to further de-
crease the problem space to better represent the cor-
relation of the chromosome representation. It could
be done with the entangling operator, and could
speed up the rate of convergence of the probability
vector. We also leave such an extension as future
work.
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Fig.9: Comparison of the solution quality (number of correct bits in percentage at the end of the run) achieved
by the cGA* and the Grover-assisted cGA* on TSP 3 cities.

Fig.10: Comparison of the cGA* and the Grover-assisted cGA* in the number of function evaluations needed
to achieve convergence on TSP 3 cities.
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Fig.11: Comparison of the solution quality (number of correct bits in percentage at the end of the run)
achieved by the cGA* and the Grover-assisted cGA* on TSP 4 cities.

Fig.12: Comparison of the cGA* and the Grover-assisted cGA* in the number of function evaluations (are
plotted in logarithmic scale) needed to achieve convergence on TSP 4 cities.
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