Reduction of Computational Effort in Genetic Programming
by Subroutines

Chaiwat Jassadapakorn and Prabhas Chongstitvatana
Department of Computer Engineering
Chulalongkorn University
Phayathai Road, Bangkok 10330, Thailand
prabhas@chula.ac.th

Abstract

There are many methods to reduce computational effort when using Genetic Programming to solve problems.
The Automatic Defined Function (ADF) is a well known method. In ADF, an individual is composed of a main
routine and subroutines. The number of subroutines is determined before the run. The efficiency depends on
choosing a suitable number of subroutine for the problem. This work proposed an extension of ADF, called
ADFX, where the number of subroutines is determined as a range. ADFX is easier to use. The result of the
experiment shows that ADFX reduces the computational effort and compares favourably with ADF.

1. Introduction

Genetic Programming (GP) is a technique for machine learning which is developed from Genetic Algorithm [1].
It is inspired by natural selection and genetic operations in biology. GP technique is suitable for solving a wide
variety of problems but the requirement of computational effort is high. There are many works which try to
increase the efficiency of GP.

Module acquisition (MA) [2] and Automatically Defined Function (ADF) [3] are two well known techniques to
increase the efficiency of GP. MA uses the concept of modular programs, an individual can refer to subroutines
in the library which are acquired from parts of randomly selected individuals. A subroutine will remain in the
library until there is no individual call it. The chance of being called is increased according to its usefulness
measured by its fitness value.

An individual in ADF has a structure that composed of a main routine and subroutines. In contrast to MA,
subroutines in ADF will no be shared amongst individuals. In order to use ADF, some parameters have to be
determined : the number of subroutines and the number of arguments of each subroutine. When there are more
than one subroutine, the hierarchy of subroutine calls has to be established. Choosing these parameters is an
important part of ADF technique. It depends on the problem being solved. The incorrect choice of parameters
will decrease the efficiency of GP.

This work describes an extension of ADF technique, called ADFX. The aim is to improve the flexibility in
choosing the number of subroutines while retains the good efficiency of ADF. The next section explains and
defines the computation effort. The section 3 details the ADFX technique and the section 4 describes a case
study of using ADFX to solve the problem of controlling a robot arm. In the section 5, the process of GP to
solve this problem is explained. The section 6 discusses the result of the experiment, the related work is
presented in the section 7 and the resultant conclusion is given in the section 8.

2. Computational Effort

The measurement of efficiency of GP process is done using statistical approach because GP process employs
randomization. The result of the experiment varies from one run to another run. The computational effort is
calculated from the data gathered from many runs. Computational effort is defined as the minimum number of
individual that must be processed to get the answer. The definition of computational effort is proposed by Koza

[3].

Let P(M,i,z) be the probability of finding the answer within the generation i, M is the number of individual in the
population. P can be observed by repeating the experiment many times. R(M,i z) be the number of run required
to find an answer in the generation i with the confidence z. R(M,iz) = ceiling(log(1-z)/ log(1- P(M,i,z))). The
minimum number of individual that must be processed to find an answer with the confidence z is /(M,i,z) = M x
i x R(M,i,z). The minimum value of /(M,i,z) is defined as the computation effort. The confidence z in this work
is 99 %.

3. Extension of Automatic Defined Function

In using ADF, the number of subroutines is important. The knowledge about the problem is required to
determine the suitable number of subroutines to solve that problem efficiently. An extension of ADF, called
ADFX is proposed as follows :

1. Determine the number of subroutines as a range

This allows the flexibility in determining of the number of subroutines. Initial population is created with an
individual that has a number of subroutine within the determined range. This results in a population that each
individual has a different number of subroutines. The successful individual will be propagated to the next
generation. Therefore a suitable number of subroutines will be automatically emerged.

2. Allow the crossover operation between different subroutines

The crossover operation in ADF is between the same kind of subroutine, i.e. the ADF with the same numbering.
Because in ADFX each individual has different number of subroutines therefore it must be possible for different
subroutines to crossover. This increases the possibility of combining the good subroutines together. There are
problems when allowing crossingover of different subroutines. One is that of referencing to the non-exist
subroutine. Another is in breaking the hierarchy rule. These problems are solved by interpreting such erroneous
calls as no operation (NOP).

4. Case study : Controlling a manipulator

The problem of controlling a manipulator to reach a target is taken from [4,5]. GP is used to generate robot
programs to control a robot manipulator to reach a target while avoiding obstacles. In this paper we use to term
"individual" to mean "robot program" for this problem.

The robot system composed of a 3 DOF manipulator and a vision system mounted above and overlooking the
whole work space. The vision system monitors the positions of various objects : the manipulator, the obstacles
and the target. Data from the real world is sampling and uses in the simulated world in which GP is operated.
GP generates robot programs that can control the manipulator. The manipulator is a 3 links planar arm moving
on a plane. Movement of each joint is limited.

The environment for the experiment is shown in the figure below : (solid blocks is obstacles and a cross is the
target)

1+
o+

+
[“

| 1 L1 | 1 L1 | 1 L1

a) environment 1 b) environment 2 ¢) environment 3
Figure 1 Three environments used in the experiment
5. Genetic Programming Process

5.1 Parameters in ADF and ADFX

1 the number of arguments : It is set of zero to reduce the number of experiment. If we consider each
instantiation of arguments in a subroutine as a different subroutine, we can reason that subroutines with no
argument are similar to different subroutines with instantiation of arguments.

2 the number of subroutines : It is varied from 1-16 for ADF and for ADFX the range is varied from 0-1 to 0-
16 subroutines.

3 the reference between subroutines : Hierarchical rule is implemented. The main routine can call any
subroutine. The higher number subroutine can call the lower number subroutine.

5.2 Robot program structure
Each program is composed of main routine and subroutines. It has a tree structure composed of symbols from
the function set and the terminal set.

function set = { IF-AND, IF-OR, IF-NOT }
terminal set = { s+, s-, e+, e-, w+, w-, HIT?, SEE?, INC?, DEC?, OUT?, adf0...adf15 }

The function s+ (shoulder) drives the shoulder motor clockwise 1 step (5 degrees) and s- drives the shoulder
motor anticlockwise 1 step. The similar meaning applies for e+, e- (elbow) and w+, w- (wrist). All of these
functions always return true. The function HIT? checks whether each link of the robot arm hits the obstacle.
The function SEE? checks whether the path from the fingertip to the goal has any obstacle. The function INC?
checks whether the distance between the fingertip and the goal is increasing. The function DEC? checks the
opposite. The function OUT? checks if each joint of the robot arm moves out of bound. The bound is defined to
prevent the arm from going out of the view of the camera. The function IF-AND is a four-argument
comparative branching operator that executes its third argument if its first argument and its second argument are
true, or otherwise, executes the fourth argument. The function IF-OR is a four-argument operator that executes
its third argument if its first argument or its second argument is true, or otherwise, executes the fourth argument.
The function IF-NOT is a three-argument operator that executes its second argument if the negation of its first
argument is true, or otherwise, executes the third argument. The function adf0...adf15 is the call to subroutines.

IF-OR IF-AND IF-NOT
SEE? IF-AND adf0 w-— DEC? HIT" IF-NOT e+ SEE? e+ W+
INC?adfl s- s+ HIT? w- adfO
Main routine Subroutine ADF1 Subroutine ADFO0

Figure 2 Examples of robot programs

5.3 Genetic operations

We use four genetic operations : reproduction, crossover and two kinds of mutation. Addition is the mutation
by attaching a newly generated tree of height 1 at the root of a tree. Extension is similar but attached at the leaf
node (fig. 3).

- SS IF-0OR

N
7/
/ \\
/ \
! \
| 1

/ SEE? IF-AND adf0 w-

\ DEC? IF-OR S— W- 2 m‘
/7\ INC?adfl s-.~ IF-NOT ‘\
SEE? IF-AND adf0 w- / ™

1
ﬂ\ (\,
\ 1

INC? adfl s- s+ N Rl

~~ -

a) Addition b) Extension

Figure 3 Addition and Extension operations

5.4 Fitness evaluation
The fitness of individual program is evaluated with the following function :

- 2000 x finalDistance / initialDistance - 100 x finalDistance / sumDistance
- 1000 x notSee - 4000 x die

where initialDistance is the initial distance from the fingertip to the target, finalDistance is the distance from the
fingertip to the target after the program execution is terminated, sumDistance is the total of distance that the
fingertip travelled, notSee is a Boolean variable that indicate the path from the fingertip to the target is blocked
by an obstacle, and die is a Boolean variable that indicate the dead condition. For a full account of the
experimental setup please refer to the original papers [4, 5].

This function indicates that the better program has a higher fitness value by getting closer to the target, using
shorter path and at the end of the run the tip of the manipulator reaches an opening.

5.5 Parameters of GP run
Parameters are shown in the table 1.

Table 1 Parameters of the GP run

population 400 programs
initial size of an individual 80 symbols
maximum generation 10

number of repeated run 1000 runs
reproduction rate 10 %
crossover rate 40 %
addition rate 25 %
extension rate 25 %

6. Results

We compare the computational effort between the run without ADF, with ADF and with ADFX. The results of
three experiments are shown in the table 2 and figure 4. The best result from ADF has lower computational
effort than without ADF in the environment 1 and 2 and has significantly lower computational effort in the
environment 3 (which is the most difficult problem). This shows that ADF can increase the efficiency of GP for
the robot problems. The more difficult problem shows the higher benefit. The number of subroutines has
impact on the efficiency. The suitable number for this problem is 1-3 subroutines. When the number of
subroutines is increase beyond 3 the efficiency is declined. The worst case is the maximum number of
subroutines (16) in which the computational effort is much higher than the run without ADF.

In comparing ADFX to ADF, the best result of ADFX for each environment has slightly higher computational
effort than the best result of ADF. But in the worst case, ADFX has a much better behaviour than ADF when
the number of subroutines varies from 0-16. We conclude that ADFX is similar in efficiency to ADF when ADF
has a suitable number of subroutines. Although the best case of ADFX is slightly worse than the best case of
ADF, ADFX performs well without having to determine a priori the number of subroutines. A more detail of
the experiment with different environments can be found in the master degree thesis [6].

Table 2 Computational effort of the experiment

Environment | without ADF with ADF with ADFX
Best Case Worst Case Best Case Worst Case
1 14,400 12,800 43,200 12,800 24,000
2 18,000 12,800 43,200 14,000 19,600
3 220,800 99,200 834,000 104,000 201,600

7. Related work

The method of ADFX proposed here is similar to another extension of ADF, called ADF with evolution of
architecture (EADF) by Koza [3]. In EADF the number of subroutines and the number of arguments is
randomly chosen for each individual. The crossover in EADF uses "point typing" to solve the problem of
crossing between different subroutines whereas ADFX has no such restriction. Point typing preserves the
structure of subroutines and restricts hierarchy of subroutine calls. ADFX is different from EADF in the
crossover operation where ADFX allows any subroutine to cross with any subroutine without restriction. We
have compared EADF with ADFX for the robot problem. The result is shown in fig. 5. Our conclusion is that
ADFX and EADF have similar efficiency.

8. Conclusion

This paper describes ADFX which is an extension of ADF with two improvements : the number of subroutines
is determined as a range and allows crossover between different subroutines. The result of experiment shows
that ADFX reduces computational effort significantly compared to a method without ADF. ADFX has an
advantage over ADF that the exact number of subroutines, which affects the computational effort, is not
required a priori. For the problem which the suitable number of subroutines in not known, ADFX is a good
choice for reducing computational effort.

References

[1]1 Holland, J., Adaptation in Natural and Artificial System, Ann Arbor, Michigan : University of Michigan
Press, 1975.

[2] Angeline, P., "Genetic Programming and Emergent Intelligence", In K. E. Kinnear, Jr. (ed.), Advances in
Genetic Programming, pp. 75-98, MIT Press, 1994.

[3] Koza,). Genetic Programming II: Automatic Discovery of Reuseable Programs, MIT Press, 1994.

[4] Polvichai, J., "Robot Learning by Genetic Programming", Master's Thesis, Department of Computer
Engineering, Chulalongkorn University, 1996. (In Thai)

[5] Chongstitvatana, P. and Polvichai, J., "Learning a Visual Task by Genetic Programming", Proc. of the 1996
IEEE/RSJ Int. Conf. on Intelligent Robots and System, Osaka, Japan, pp. 534-540, 1996.

[6] Jassadapakorn, C., "Reduction of Computational Effort in Genetic Programming Learning Method",
Master's Thesis, Department of Computer Engineering, Chulalongkorn University, 1997. (In Thai)

= 50,000
(=]
= 40,000 —];é
S 30,000 auat
<
E 20,000 o (
=1 - ‘ !.,wci \ g
g 10,000
(=]
© 0

0 2 4 6 8 10 12 14 16

n
a) environment 1

= 50,000 JJJ
£ 40,000
m ’ /D/[:H:(
S 30,000 .
g ol
& 20,000 =
z Fotaava¥eets
£ 10,000
© 0

0 2 4 6 8 10 12 14 16

n
b) environment 2

. 1,000,000
£ 800,000
g 600,000 fj
g 400,000 }I}D
g 200,000
S ’ T 20

0 T T T

0 2 4 6 8 1012 14 16
n

¢) environment 3

—0— ADF n function(s)
—+— ADFX 0-n function(s)

Figure 4 Comparing computational effort of
ADF and ADFX

24,000 »
22,000
20,000
18,000 »
16,000
14,000
12,000 +——+——

0 2 4 6 8 10 12 14 16

n

Computational Effort

a) environment 1

20,000
18,000 X
16,000

14,000 \4 .

L 2

Computational Effort

12,000 —

0 2 4 6 8 10 12 14 16
n

b) environment 2

240,000 k
200,000 \\
160,000 A

120,000 %

Computational Effort

80,000 —

0 2 4 6 8 10 12 14 16
n

¢) environment 3

—%— EADF n function(s)
—*— ADFX 0-n function(s)

Figure 5 Comparing computational effort of
ADFX and EADF

