
Improving Correctness of Finite-State Machine Synthesis from Multiple Partial
Input/Output Sequences

Prabhas Chongstitvatana Chatchawit Aporntewan
Department of Computer Engineering, Faculty of Engineering

Chulalongkorn University, Bangkok 10330, Thailand
prabhas@chula.ac.th

Tel: (622)218-6982 Fax: (662)218-6955

Abstract

Our previous work focused on the synthesis of sequential
circuits based on a partial input/output sequence. As the
behavioural description of the target circuit is not known
the correctness of the result can not be verified. This paper
proposes a method which increases the correctness percent-
age of the finite-state machine (FSM) synthesis using multi-
ple partial input/output sequences. The synthesizer is based
on Genetic Algorithm. The experimental results show that
the correctness percentage can be increased to 100% by in-
creasing of the number of input/output sequences.

1. Introduction

A finite-state machine (FSM) can be constructed from
the understanding of its behavior. Each state must be iden-
tified to define the state transition function and the output
function. Given a behavioral description, the target FSM
can be synthesized by many conventional methods.

In contrast, this paper proposes a different approach: an
FSM is synthesized not from a behavioural description but
from partial input/output sequences. We aim to realize an
evolvable hardware that canmimic another sequential cir-
cuit by observing its partial input/output sequences. This
approach is very advantageous to the learning problems in
which the internal states are hidden; for example, the FSMs
which humans cannot understand their behaviors or FSMs
which exist but cannot be easily expressed in the traditional
forms (e.g., state diagrams). Today, those problems are be-
yond the conventional methods.

The FSM consists of state transition table and function
mapping input and current state to output. The FSM can
be constructed as a lookup table representing state transi-
tion and output function. Thus the hardware implementa-
tion can be a simple device such as Random Access Mem-

ory (RAM). Since the FSM can be directly translated into
RAM, it can be seen that the RAM content is evolved.

A method for solving FSM synthesis is based onGenetic
Algorithm (GA) [5]. GA is a search and optimization algo-
rithm inspired by natural evolution. GA performs search in
apopulation, a set ofindividualswhich represents points in
the search space. At eachgeneration, a sequence of genetic
operations calledcrossover, mutation, andselectiontrans-
forms the existing individuals into a new set of solutions.
The solution quality is evaluated in terms offitnessin which
fitness function must be defined for the problem. The indi-
viduals are probabilistically selected to the next generation
proportional to their fitness. One necessary condition to im-
prove the solution quality is that the search process does not
get stuck at local optima, otherwise all individuals converge
quickly to a point. Thus thediversityshould be maintained
in the selection process.

The goal of optimization is to find the fittest individual
(FSM) which produces the correct output sequences accord-
ing to the given input/output sequences. Our previous work
[11] shows that the result of synthesis is classified into two
categories:

1. Complete Solution: a complete solution is a solution
that operated correctly for all possible input/output se-
quences.

2. Incomplete Solution: an incomplete solution is a
solution that operated correctly for the partial in-
put/output sequences.

In the previous work, the experiment was conducted on
single input/output sequence. As the behavioural descrip-
tion of the target circuit is not known the correctness of the
solution can not be verified. The correctness percentage is
defined as the number of run yielding complete solutions
divided by the total number of run yielding solutions. The
correctness varied with the length of the input/output se-
quence. Figure 1 shows the result of a serial adder synthe-

sized from single input/output sequence. Each point on the
graph was calculated from 100 runs. The correctness im-
proved with thelengthof the sequence, however, it did not
improve further after the le ngth reaches theupperbound
length.

Figure 1. Correctness percentage and se-
quence length

To improve the correctness further this work proposes
using multiple sequences. The main idea is that the perfor-
mance of a learning system will get better with more ex-
amples. The multiple input/output sequences should yield
a higher correctness than a single input/output sequence of
the same length. The experiment was conducted to synthe-
sis a number of FSMs such as serial adder, modulo counter,
reversible counter and sequence detector.

The remaining sections are organized as follows. Sec-
tion 2 discusses the related works. Section 3 describes the
experiment in details. Section 4 presents the experimental
results. Section 5 concludes the paper.

2. Related Works

In the early 1960s, L. J. Fogel introducedEvolutionary
Programming (EP)to predict the next symbol based on a
sequence of symbols drawn from finite alphabets [4]. The
simulated evolution was performed by modifying a popula-
tion of FSMs. Five modes of mutation – change an output
symbol, change a state transition, add a state, delete a state,
or change the internal state – were used to produce new off-
spring. Typically,� offspring were produced by mutating
each parent [3]. Then, the selection was performed by dis-
carding� poorest from both parents and offspring. [5, pp.
106] claims that this method is insufficiently powerful due
to the lack of structured recombination. In this paper, we
prefers to encode FSM into binary string rather than per-
forming genetic operators on the structure of FSM.

The finite-state automata (FSA)have been used in the
field of grammatical inference (GI)which is an instance of
the more general problem ofinductive inference– the task
of effectively inferring general rules from examples. The
researchers have inferred the general rule by inducing the

FSA to accept regular languages [2] or to learn context-
free grammars directly from examples [16]. Recently, GA
was employed to infer push-down automata from positive
and negative samples of unknown languages [10].

The evolvable hardware research [7, 8] presents the syn-
thesis of sequential circuits from random input/output se-
quence. The GAL16Z8, which is a programmable logic
device, represents the sequential circuit. Given an in-
put/output sequence, the configuration bits, also calledar-
chitecture bits, were evolved by means of Genetic Algo-
rithm. It is notable that some solutions were partially cor-
rect.

Genetic Algorithm (GA) [5, 9] is used to search for
circuits that represent the desired state transition function.
The simulated evolution has been used to synthesize finite
state machine in [1, 3] where the resulting FSM can pre-
dict the output symbol based on the sequence of input sym-
bols observed. In contrast to representing circuits as FSMs,
[12] proposes the automated hardware design at the Hard-
ware Description Language level using GA. [6] describes
the evolution of hardware at function-level based on recon-
figurable logic devices. [13, 14] evolved circuits at the
lowest level, in the actual logic devices, using real-time
input/output. Our work is similar to [7, 8] in the use of
FSM but we use FSM as the model of the desired circuit
behaviour.

3 The Experiments

3.1 Genetic Algorithm

The synthesizer is based on GA. We use a small popu-
lation size and a large number of generation. Our previous
experience showed that the diversity of the population must
be maintained to prevent pre-mature convergence. Thus, the
diversity is maintained in the selection process. The algo-
rithm slightly adapted from [15] is presented as follows:

generation = 0;
Initialize P individuals;
While termination conditions not met Do

Produce Q individuals using crossover;
Produce R individuals using mutation;
Select P individuals from (P [Q [R);
generation = generation + 1;

End While

The maximum number of generations was set at 50,000.
The P, Q, and R were set at 100, 200, 100 respectively. The
genetic operators – crossover, mutation, and selection – are
defined as follows:

� Crossover: Select a pair of parents randomly from P
individuals to produce two offspring using single point
crossover.

2

� Mutation: Select a parent randomly from P individ-
uals. Then, mutate it to produce an offspring with
Pm = 0:01.

� Selection:Select best P individuals from(P [Q[R)
individuals to the next generation using combined rank
method (fitness rank + diversity rank).

3.2 Encoding Scheme

Each individual represents an FSM by its state transition
table. The state transition table is represented by concate-
nating the next states and the outputs to form a fixed length
binary string. Table 1 shows an example, the FSM is en-
coded by concatenating the next state and the output of all
rows together as “00111101”. The length of an individual
is determined by the number of state. For real world appli-
cations, the number of internal states needed to produced a
complete solution might be unknown. We let the number of
state of an individual to be larger than the number of state in
the target FSM. The solution may contain redundant states
and unreachable states. A conventional method can be used
to optimize them. The number of available internal states
for each circuit is presented in Table 2.

Table 1. Example FSM
State Input Next State Output

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 1

3.3 Input/Output Sequences

The input/output sequences, used in the fitness evalua-
tion, are generated by the following steps:

1. given an target FSM

2. reset the FSM to start state

3. produce a random input sequence

4. feed the input sequence to the FSM and collect the cor-
responding output sequence

5. repeat steps 2-4 for the next input/output sequences.

3.4 Fitness Function

The fitness of an individual is evaluated by the following
steps:

1. fitness,F , = 0

2. reset individual (FSM) to start state

3. feed a given input sequence to the individual to get the
corresponding output sequence

4. compare the corresponding output sequence with the
given output sequence,F = F + number of similar
output bits

5. repeat steps 2-4 for the remaining input/output se-
quences

The experiment was conducted on several circuits; serial
adder, 1010 detector, 0101 detector, modulo-4 counter, re-
versible 4-counter, and reversible 8-counter (See Figure 2,
3, 4, 5, 6, and 7 respectively). We ran each case 10 times to
produce the correctness percentage in Table 3.

Figure 2. Serial Adder

Figure 3. 1010 Detector

Figure 4. 0101 Detector

3

Table 2. The number of available internal states
Tested circuits Input Output The number The number

(bits) (bits) of of available
internal states internal states

Serial Adder 2 1 2 4
1010 Detector 1 1 4 8
0101 Detector 1 1 4 8

Modulo-4 Counter 1 1 4 8
Reversible 4-Counter 1 2 4 8
Reversible 8-Counter 1 3 8 32

Table 3. Correctness Percentage
Number Correctness Percentage (Sequence Length = 100)

of Serial 1010 0101 Modulo-4 Reversible Reversible
Sequences Adder Detector Detector Counter 4-Counter 8-Counter

1 60.0 0.0 10.0 42.8 20.0 0.00
5 70.0 40.0 10.0 83.6 100.0 57.1
10 80.0 90.0 80.0 100.0 100.0 71.4
25 100.0 55.5 90.0 100.0 100.0 100.0
50 100.0 90.0 100.0 100.0 100.0 100.0
75 100.0 100.0 100.0 100.0 100.0 100.0
100 100.0 100.0 100.0 100.0 100.0 100.0

Figure 5. Modulo-4 Counter

Figure 6. Reversible 4-Counter

4 The Experimental Results

The experimental results in Table 3 show that the cor-
rectness is increased with the number of input/output se-

Figure 7. Reversible 8-Counter

quence. The correctness can be raised to 100% using 100
input/output sequences. The result of synthesizing a serial
adder is analysed in order to understand this improvement.
A complete solution is shown is Figure 8. The FSM con-
sisted of a redundant state and an unreachable state; the
state “10” is equivalent to the state “11” and the state “01”
is unreachable. An incomplete solution produced by us-
ing single input/output sequence is shown in Figure 9. The

4

FSM consisted of 3 parts : the initial state “00”, the part
A and the part B. Part A produces incorrect outputs. Part
B produces correct outputs. The first few bits in the input
sequence determine which part the subsequent states will
belong to. Using a single sequence, the FSM that transits to
part B will be indistinguishable from a complete solution.
Using multiple sequences increase the possibility of excer-
cising part A and hence identify this FSM as an incomplete
solution. In other words, the multiple sequence has a better
discrimination between complete and incomplete solutions.

Figure 8. A complete solution (Serial Adder)

Figure 9. An incomplete solution (Serial
Adder)

5 Conclusions

In order to realize an evolvable hardware, we study how
to mimic another sequential circuit by observing its par-
tial input/output sequences. The evolutionary process has
been used to synthesize circuits that perform according to
the observed partial input/output sequence. Without the be-
havioural description of the target circuit, the correctness of
the resulting circuit can not be verified. However, the per-
cent of correctness can be increased. The experiment shows
that the correctness percentage is increased with the num-
ber of input/output sequences. Furthermore, the correctness

percentage can be raised to 100%. This has a strong impli-
cation on realizing an evolvable hardware in practice. Our
future work will concentrate on realizing this idea in the ac-
tual hardware.

References

[1] P. J. Angeline, D. B. Fogel, and L. J. Fogel. A compari-
son of self-adaptation methods for finite state machines in a
dynamic environment. InProc. of the Fifth Ann. Conf. on
Evolutionary Programming, pages 441–449, 1996.

[2] R. C. Berwick and S. Pilato. Learning syntax by automata
induction.Machine Learning, 2:39–74, 1987.

[3] L. J. Fogel. Autonomous automata.Industrial Research,
4:14-19, 1962.

[4] L. J. Fogel, A. J. Owens, and M. J. Walsh.Artificial Intel-
ligence through Simulated Evolution. John Wiley & Sons,
New York, 1966.

[5] D. E. Goldberg.Genetic Algorithm in search, optimization
and machine learning. Addison-Wesley, 1989.

[6] T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and
M. Salami. Evolvable hardware at function level. InProc.
of Int. Conf. on Evolutionary Computation (ICEC’97), pages
187–192, 1997.

[7] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and
T. Furuya. Evolving hardware with genetic learning: A first
step towards building a darwin machine. InProc. of Int.
Conf. on Simulation of Adaptive Behavior (SAB’92), 1992.

[8] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, and T. Furuya. A par-
allel architecture for genetic based evolvable hardware. In
Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI’93),
Workshop on Parallel Processing for Artificial Intelligence,
pages 46–52, 1993.

[9] J. H. Holland.Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor, Michigan,
1975.

[10] M. M. Lankhorst. A genetic algorithms for the induction of
pushdown automata. InProc. of Int. Conf. on Evolutionary
Computation (ICEC’95), pages Vol. 2, 741–746, 1995.

[11] C. Manovit, C. Aporntewan, and P. Chongstitvatana. Syn-
thesis of synchrounous sequential logic circuits from partial
input/output sequence. InProc. of Int. Conf. on Evolvable
Systems (ICES’98), pages 98–105, 1998.

[12] J. Mizoguchi, H. Hemmi, and K. Shimohara. Production ge-
netic algorithms for automated hardware design through an
evolutionary process. InProc. of Int. Conf. on Evolutionary
Computation (ICEC’94), pages 661–664, 1994.

[13] A. Thompson. An evolved circuit, intrinsic in silicon, en-
twined with physics. InProc. of Int. Conf. on Evolvable
Systems (ICES’96), pages 390–405, 1996.

[14] A. Thompson. The natural way to evolve hardware. InProc.
of IEEE International Symposium on Circuits and Systems
(ISCAS’96), pages Vol. 4, 37–40, 1996.

[15] P. H. Winston. Artificial Intelligence, pages 505–528.
Addison-Wesley, 1992.

[16] H. Zhou and J. J. Grefenstette. Induction of finite automata
by genetic algorithms. InProc. of Int. Conf. on Systems,
Man and Cybernetics, pages 170–174, 1986.

5

