First Asian Symposium on Industrial Automation and Robotics

BITEC, Bangkok, Thailand
May 6-7,1999

ANALYSIS OF ROBUSTNESS OF ROBOT PROGRAMS
GENERATED BY GENETIC PROGRAMMING

Roongroj Nopsuwanchai and Prabhas Chongstitvatana
Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330, Thailand
Tel: (662)218-6982 Fax: (662)218-6955
prabhas@chula.ac.th

Abstract: The robot programs generated by Genetic
Programming (GP) are found to be 'brittle’, i.e. they fail to
work when the environment is changed. Perturbation has been
used to improve robustness. By introducing perturbation
during the evolution of robot programs, the robustness of robot
programs can be improved. This paper analyses the cause of
the difference of robustness between robot programs using the
case of robot navigation problems. The analysis is based on
the notion of 'trace' of execution. The result of the analysis
shows that the robustness of robot programs depends on the
reuse of the 'experience’ that a robot program acquired during
evolution. To improve robustness, the size of the set of
‘experience’ should be increased and/or the amount of reusing
the 'experience’ should be increased.

Key words: Automatic Robot Programming, Genetic
Programming, Robustness

1. INTRODUCTION

Our main interest is in the automatic generation of robot
programs: given a task description and a particular environ-
ment, generate a robot program to perform the task. Genetic
Programming (GP) can be used to solve this problem. GP can
be regarded as a population based search technique which
represents candidate solutions as robot programs. The candidate
solutions are said to be evolved until the solution is found. GP
uses natural-inspired operators such as selection, reproduction,
crossover and mutation operated on candidate solutions to
perform the search. It searches a large space before it can find a
solution. Therefore, for practical reason, the search is
performed in a simulation in which the speed of the robot is not
a limiting factor.

Even in the simulated world, the robot programs work
successfully only in a particular environment which they were
evolved on. They may not work even in that environment if it is
slightly changed. It can be seen that the robot programs
generated by GP are found to be ‘brittle’ or lack of robustness.
This can be a problem when we transfer robot programs from
simulated world to the real world because simulation cannot
model the real world exactly. Improving the robustness of robot
programs is essential.

In our previous work, Chongstitvatana(1998), GP is used
to generated the robot programs that control a mobile robot
from a starting point to a target point in a cluttered environ-
ment. This is a kind of obstacle avoidance problem. In that
work, the robustness of the robot programs is improved by the
use of perturbation. The evolutionary process is carried out

such that each individual is evaluated under several
environments that are the variant of the original one. The result
shows that robot programs evolved under such scheme are
found to be more robust.

In this work, we investigate the cause of robustness
improvement by using the same case as Chongstitvatana
(1998). We repeat the experiment with a large number of runs
and collect statistical data of robot behavior. Our analysis is
based on the notion of ‘trace’. A trace is a record of sequence of
robot’s primitive actions during the execution in an
environment. A set of trace in which the robot meets in the
training period is called robot’s ‘experience’. We found that the
more robust robot program can reuse its experience during
execution in the unseen environment.

he rest of this paper is organized as follows. Section 2
reviews previous work. Section 3 introduces the problems and
the experimental set-up. Section 4 elaborates how to improve
robustness. The analysis is done in Section 5. Section 6
concludes the paper and discusses future work.

2. RELATED WORK

In this section we discuss some of previous works to
demonstrate the use of GP to generate robot programs, the
robustness of those programs and the attempt to promote the
robustness.

In Chongstitvatana and Polvichai (1996), GP was used to
generate robot programs that control a real robot arm avoiding
the obstacles to reach the target by visual feedback from the
real world . They used the simulation in order to be the learning
environment for GP to search for the solutions. Then they
transferred the robot programs to perform a task in the real
robot arm. The result shows when there are small changes such
as an obstacle is moved from its position or the robot misses a
step due to random noise in the real world, the robot fails to
work even though that robot program performs well and
successfully in the simulation. In most cases, the evolutionary
process capitalizes on the deterministic, repeatable nature of
fitness tests. The individual is repeatedly evaluated in a certain

environment. The solution only captures particular
characteristics of the environment.
Many researchers propose approaches to increase

robustness of the evolved program. Reynolds(1994a) used noise
to promote robustness in the obstacle avoidance problem. The
robot has to move along the corridor environment without
crashing the wall. The noise consists of an error in the robot’s
input sensor and the output actuator. In this work, Reynolds
could not evolve robust controller programs. Later, Reynolds
(1994b) changed from using a variable sensor approach to a

fixed sensor approach (while maintaining noise). Interestingly,
it was this modification that produced more robust solutions.
He concludes that GP is capable of evolving robust solutions,
and that noise discourages brittle solutions. Another approach
to cope with changes is coevolution. Browne (1996) used
coevolution technique to coevolve vision-based obstacle
avoidance agents. Ito, Iba and Kimura (1996) found that the
redundancy of program was effective for generating robust
robot program in a box moving problem. Prateeptongkum and
Chongstitvatana (1999) examined robustness improvement of
robot programs using function set tuning.

Our previous work, Chongstitvatana(1998), in the
obstacle avoidance problem, the robustness of robot programs
is improved by the use of perturbation. The idea is to perturb
the simulated environment during evolution of the solution.
Each individual is evaluated under several environments that
are perturbed from the original one. We use the same approach
in this experiment and analyse its result.

3.THE EXPERIMENTS

This section describes the experiment for generating a robot
program by GP under the normal simulation without
perturbation. Then we introduce the perturbation to improve the
robustness.

3.1 Experimental Set-up

Our problem is to find a robot program that control a robot in a
particular cluttered environment from the starting point to the
target. The size of the environment as shown in figure 1 is 500x
750 unit. There are many obstacles distributed in this
environment. The obstacles have several geometrical shapes,
each has the average size of 15x20 unit. The total area of all
obstacles is about 20% of the environment whole area. The
starting point and the target are fixed in the position as shown.
The mobile robot has round shape with its radius 5 unit. It has
capability to move forward in the direction of its head, turn left
and right. There are sensors for detection the collision with the
obstacle, and target determined sensors in both left and right
side of its body. Figure 2 show the robot detail.

The terminal set in our experiment is {forward,
turnLeft, turnRight, smellleft, smellRight}. Each of them
activates the robot’s primitive action. All of terminals have to
return the value after execution. The forward moves the robot
in the direction of its head by 1 unit, return 1 if it can move
successfully and return 0 when it crashes some obstacles or
wall. The turnreft and turnrignt change the robot direction
by 22.5° of its previous direction in both left or right orientation

L
L]
-L' ‘L
e lgi-'
r‘- ‘-‘V‘ .
(] 4 ",:“ \

Figure 1. The environment in our experiment

Robot Head
Target Sensor

Bump Sensor

Robot

SmellLeft Sensor Area SmellRight Sensor Area

Figure 2. The mobile robot in our experiment

while maintain the previous position, both of these return 1.
The smellreft and smellRight activate target determined
sensor in each side. It determines whether or not there is the
target in each sensor area (see figure 2). The return value is 1 if
there is the target in that area and is 0 otherwise. The function
set we use here is {1F-anD, 1F-0R, TF-NOT} with the arity 4, 4
and 3 respectively. It is the basic control flow function that can
be used in any problems.

The fitness measurement is based on the distance of the
robot’s final position and the number of its primitive actions. It
is measured after the termination of each individual; when the
robot reach the target or it executes more than 5,000 terminals.
The fitness function is

f=10,000 x finalDist. + numTermPass. . .. (1)

which finalDist. is Euclidean distance of the final position and
the target point, numTermPass. is the number of executed
terminals. The smaller value of fitness is better. The parameters
for GP run are shown in table 1. Note that we do not use
mutation operator in this experiment. Our crossover operator
does not limit the height of the offspring.

3.2 Robustness testing

The robustness of the robot program is defined as an ability of
the robot program to perform successfully in the environment
that it never meets. In order to measure the robustness of robot
program, we create a number of testing environments by
perturbing the original environment. From the original
environment, we randomly select the obstacle and move it from
the original position for 5 units in a random direction. The
number of obstacles that is moved is called the percent of
disturbance, d.

d = number of obstacles that are moved x 100% ... (2)

total number of obstacles

Table 1. Parameters of GP in the experiment

Population 1,000 programs
initial size of an individual 110 symbols
Maximum generation 125
Reproduction rate 10%

Crossover rate 90%

Mutation rate 0% (do not use)
number of repeated run 20 runs

We create 10,000 testing environments and divide them
into 10 groups, each has different of d, call dy,, , that varies
from 10% to 100% (each group has 1,000 environments). We
then select the solution of the experiment as the best individual
from the maximum generation, and evaluate it under these
groups of environment. The robustness is measured in each
group of environment as the percent of number of environment
that the robot program can control robot to the target
successfully, denoted as R(dz,,).

4. ROBUSTNESS IMPROVEMENT

In the evolutionary process, the individual is evaluated in one
static environment. To improve robustness we introduce
perturbation during evolution of the solutions. Each
individual is evaluated in a number of environments. A number
of training environments are created from one original
environment using perturbation similar to the way the tested
environments are created. The experiments were performed by
varying perturbation in two ways: 1) varying the number of
environment during training, keeping the percent of disturbance
constant, 2) varying the percent of disturbance dy;,, during
training, keeping the number of environment constant. ~ The
individual that works successfully in more environments will
have the higher chance to breed the next-generation offspring.
An initial environment FE is perturbed to produce E’. We
produce 49 new environments by perturb the original one E,’,
to become E,’to E5’.

4.1 Varying the number of environment

We use percent of disturbance equal to 10% to create these new
environment, dy.;,, = 10%. We set up 7 different experiments
that differ in the number of training environments orn (n=1, 5,
10, 15, 20, 30 and 50).

4.2 Varying the percent of disturbance

The number of environment is 10. The percent of disturbance
dyy4i 18 varied 10%, 30% and 50%.

In each experiment, the evolution is performed by evaluating
each individual under a number of environments, says F, to £, .
Note that, in the experiment where n = 1, it is the normal
simulation without perturbation. The fitness of each individual
is evaluated by totaling all the fitness value f, , where f, is the
fitness under the environment n.

‘ —*— Train 1 == Train5 —*— Train10 —¢ Train15 —*— Train20 —*— Train30 —— Train50

00

30
20
10

0

. 90
I\

% 70 N e
= 60 e —
550

§40 -\:\>\ .4
5

F

&

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent Disturbance (d r,q)

Figure 3. The robustness of robot programs, varying the
number of environments

‘ T i, =10% ™ dr,=30% dr,=50%
100
90
NI\
o N,

0 \‘\A\‘w
50 \
40 \'\

Robustness (R{ ro«t) } %

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percent Disturbance (d 7.,)

Figure 4. The robustness of robot programs, varying the percent
of disturbance

4.3 Result

We run each experiment repeatedly for 20 runs with the
different initial population in each run. The robustness of each
experiment is compute by average the robustness of the
solution from every run. Figure 3 shows the robustness result of
the experiment of 4.1 and figure 4 shows the result of the
experiment of 4.2. Note that at point dy,;, = 0%, the robustness
of all experiment is 100% because of testing in the original
environment. From this result, it is clear that introducing
perturbation during the evolution of the solutions can improve
the robustness of the solutions.

5. ANALYSIS OF ROBUSTNESS

In this section, we investigate the cause of improvement of
robustness by using the result from the experiments. Our
analysis is based on the notion of ‘trace’.

4.1 Trace

The individual or robot program can be represented in tree form
(figure 5). A robot program is evaluated starting from the root
through the leaf node. This process is repeated until the
termination criteria is met. The execution of a robot program
produces a number of sequences of actions. We define this
sequence as a ‘trace’.

4.2 Analysis of traces
The traces of solution for all runs in both training and testing

phases were collected. We define a set L as a collection traces
of robot programs that have been evolved under a number of

IF-AND

A

smellLeft forward turnLeft IF-NOT

7

smellRight forward turnrRight

Figure 5. The sample of robot program

A Q@

Figure 6. Relationship of set of traces

environments, says n, during training phase. A set L can be
regarded as a robot’s ‘experience’ or the response to the
different situation that robot has learned. Set L is the subset of
all possible traces of that robot program, denoted as Y.

We define a set A4;, a collection of traces when the robot
program is executed in testing environments. Figure 6 shows
the relation between L and each of 4, When executing a robot
program in an unseen environment, the robot uses its acquired
experience. This notion can be captured with the intersection
between L and 4; The amount of the use of the experience of a
robot program when executing in i th environment, S; is defined
as

LA
S =S 100%
L 3)

where | | is denoted as the cardinality
of the set or the number of element in the set.

The value which we’re interested in is the average size of L .
We compute the average of S; for all testing environments. S for
the individual that performed successfully is denoted by Sg,c., S
for the individual that failed is denoted by Sp;. Table 2 shows
the result of the experiment 4.1. Table 3 shows the result of the
experiment 4.2. Figure 7 shows the relationship between
robustness R(dp) and Sy, Figure 8 shows the relationship
between Sy, and | L |. It can be seen that S,; and | L | are larger
after increasing the perturbation level during training. The
robustness is improved as a result. A robust solution has a
larger set of ‘experience’ and also reuses them more. From
Table 2 and 3, the successful individual has a higher S than the

unsuccessful individual (Sg,.. > Sg,; in all setting). The linear
correlation coefficient, r, of each curve is shown in the graphs.
The conclusion can be made that Robustness oc S .

Test

100 r=0.7962 4 i
o 7—/*?27'4/"/(
80 .
570 *—/-4' r =0.8255
<60 3

‘ o d, =10% = d, =30% ‘

0 20 40 60 100 120 140 160 180

80
| L|(Number)

Figure 7. Relationship of robustness and S, of all experiments

o d,. =10% =g, =30% ‘

Test

100

% r=0.9719 Ef
80
: i

60
¥ u//r =0.9721 |

30
20
10

Robustness (R(d res)) %

O 10 20 3 40 5 60 70 8 9 100
SA//(%)

Figure 8. Relationship of | L | and Sy, of all experiments

Table 2. Analysis of robustness result in each experiment when varies number of training environments

Experiment at dyey =10% at dy. =30% L

Result R(dyeq) San % Ssucc?6 Srair % | R(dyeq) San% Ssucc? Srair %
Trainl 65.19 72.23 83.17 52.61 42.90 55.35 64.19 48.71 24
Train5 65.11 74.77 87.42 52.99 42.15 58.57 69.09 50.88 26
Trainl0 74.41 82.06 90.77 59.00 49.45 67.75 78.16 57.76 36
Trainl5 80.17 88.86 93.64 71.26 60.25 80.09 86.29 70.80 38
Train20 82.84 89.89 93.71 72.35 65.85 81.22 85.44 74.21 50
Train30 89.24 95.37 97.09 82.18 75.86 90.86 93.72 82.17 63
Train50 92.52 97.51 98.20 89.59 80.95 94.27 95.85 87.77 96

Table 3. Analysis of robustness result of Train10 experiment when varies dy;,;, 10% 30% and 50%

Experiment at dy. =10%

at dTeSI =30%

Trainl0 R(dy.s) San % Ssucc?® | Spa% | R(dpey) San% Ssuce?® | Srai % I
A1rain=10% 74.41 82.06 90.77 59.00 49.45 67.75 78.16 57.76 36
A1rain=30% 80.37 92.63 94.98 83.81 66.31 87.70 90.33 82.55 103
A1rain=50% 83.58 93.40 95.59 82.93 70.22 88.86 91.69 82.37 90

6. CONCLUSION

From our analysis, the robustness of robot program is improved
by using perturbation during evolution. Perturbation can be
introduced by using a number of training environments and by
increasing the perturbation level in each training environment.
Robustness is increased because of the larger size of robot’s
experience and the ability of reusing the experience in the
unseen environment.

The analysis of robustness gives many insights on the
behavior of GP generated robot programs and on finding more
robustness improvement techniques. Our current activity is
concentrated on validating this scheme with the real robot
performing in the real world.

7. REFERENCES

Browne, D. (1996). “Vision-Based Obstacle Avoidance: A
Coevolutionary Approach™ Bachelor Degree Thesis in
Department of Softiware Development, Monash University,
Australia.

Chongstitvatana, P. and J. Polvichai (1996). “Learning a Visual
Task by Genetic Programming”. In Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and System, Osaka.

Chongstitvatana, P. (1998). “Improve Robustness of Robot
Programs Generated by Genetic Programming for Dynamic
Environments”. In Proc. of Asia-Pasific Conference on
Circuits and Systems (APCCAS98), Chiangmai, Thailand.

Ito, T., H.Iba, and M.Kimura (1996). “Robustness of Robot
Programs generated by Genetic Programming”. In Genetic
Programming: Proceedings of the First Annual
Conference. MIT Press.

Prateeptongkum, M. and P.Chongstitvatana (1999,March).
“Improving the Robustness of a Genetic Programming
Learning Method by Function Set Tuning”. In Proc. of
Third Annual National Symposium on Computational
Science and Engineering (ANSCSE99), pp.301-305,
Bangkok, Thailand.

Reynolds, C. W. (1994a). “Evolution of Obstacle Avoidance
Behavior:Using Noise to Promote Robust Solutions”. In K.
E. Kinear,Jr. (Ed.), Advances in Genetic Programming,
Chapter 10, pp.221-241. MIT Press.

Reynolds, C. W. (1994b). “Evolution of Corridor Following
Behavior in a Noisy World ™. In Simulation of Adaptative
Behavior (SAB-94).

Acknowledgements
The first author is supported by the grant from the National

Science and Technology Development Agency of Thailand
(NSTDA).

