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A robot that 1s more flexible in
learning a new task.

Method

= A human trainer influences the robot
behavior.

= The robot learns from reward and
punishment from a human 1n real-
time.

= The factors that influence the
learning process.
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Mechanism

= A Finite-State Machine is used as
robot controller.

» Genetic Algorithms 1s used to
evolve FSM.

Method of experiment

" A simulator 1s used to find out the
appropriate parameters for GA.

* The physical robot 1s used online 1n
real time to study the learning
characteristics.
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Tasks

" A rectangular floor 1.5 x 2.2 m.
surrounded by walls.

" The robot 1s able to detect walls and
stays 1nside the designated floor.

* The floor 1s painted with two colors:
black and white.

* The goal : the robot will learn to
stay 1n one color.




%‘f—g Department of Computer Engineering
/O Chulalongkorn University

Figure 2: An example FSM encoding
as 01 11 11 00 00 10 00 10
101101 101101 110100
001010 110000 100110
011110 111110
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Problems

Factors that are relevant to the quality
of learning.

= effect of reward/punishment

" start position

" maximum number of rewrd/punish
" size of population

" the human trainer

Real-time experiment

* cach FSM runs 30 seconds

* the robot behavior 1s evaluated by a
human trainer

» experiments are performed a couple
of times, 60 minutes each



{Q Department of Computer Engineering
N Chulalongkorn University

A
)

Measurement
The time that it stays in the designated
color.

Results
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Figure 3: The learning behavior when
giving no reward/punishment.
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Figure 4: The learning behavior when
start position 1s 1n white area.
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Figure 5: The learning behavior when
start position 1s 1n black area.
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Figure 6: The learning behavior when
limiting number of rewrd/punishment.
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Figure 7: The learning behavior when
varying size of population.
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Figure 8: The learning behavior when
changing the trainer
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Conclusions

= an empirical study of the learning
behavior using reward and
punishment.

* the robot must learn the behavior

that will rece1ve reward and avoid

the behavior that will receive
punishment.

" Genetic algorithms evolves the
controller 1n the form of a finite
state machine.

= Robot 1s flexible, 1ts behavior can be
shaped 1n real-time and
continuously.

= |t 15 still too tedious to train a robot.
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