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Abstract 
 

The existing robot learning methods required 
specifically defined goals.  We aim to produce a 
more plastic behavior.  We present our work which 
a human observer can influence the robot behavior.   
The robot learns from reward and punishment from 
a human in real-time. To examine the developed 
approach, we evolved a control system for a color-
following task as an example. A physical robot is 
used to perform the experiments. Experimental 
results show the emergence of learned behaviors.  
We discussed the factors that influence the learning 
process. 
 
1. Introduction 
 
In the field of Evolutionary Robotics, researchers 
have mainly tried to show the validity of their 
approaches by evolving some pre-specified 
behaviors. For example, the example-based 
approach is used for evolving robot controllers in 
the collision avoidance task [1]. The locally 
weighted learning (LWL) algorithms is applied on 
the learning of devil-sticking, pole-balancing of a 
humanoid robot arm, and inverse-dynamic learning 
for a seven degree-of-freedom robot [2]. The task 
primitives in robot learning from observation are 
employed to play a virtual and an actual air hockey 
game [3]. Genetic programming is also utilized to 
evolve the behavior primitives and behavior 
arbitrators for box-pushing task [4, 5]. A perceptron 
is required in evolving the exploration and homing 
behavior [6]. In these works, the desired task of 
robot must be clearly defined.  
 

In contrast, this paper proposes a different 
approach: the desired behavior of robot is not 
obtained from prior knowledge but from knowledge 
that is given after learning process begins. Such 
knowledge is directly acquired from a human 

observer using reward and punishment. We aim to 
realize a robot controller that make robot perform 
the behavior that will receive reward and avoid the 
behavior that will receive punishment. Therefore, 
no prior knowledge about the desired task is 
needed. This approach is very advantageous to the 
learning problems since it is realized that building a 
robot behavior by iteratively dealing with the robot-
environment interactions is a tough and tedious job. 
Especially when the complexity increases, it would 
go beyond a designer’s capability to construct all 
the behaviors. Our work is similar to "robot 
shaping" [7, 8] that we use learning to translate 
feedback from an external observer into a control 
strategy.  The strategy that we used is comparable 
to a simple case of reinforcement learning [9]. 
 

The robot used in this work is illustrated in Figure 
1. The robot is capable of detecting color of the 
floor and able to receive reward and punishment 
signal from a remote transmitter. Furthermore, as 
another important feature, the robot must move 
around the designated area without colliding walls. 
This is accomplished by using front and rear 
infrared sensor. 
 

  
Figure 1: The mobile robot used in this work 

 
A Finite-State Machine (FSM) is used as robot 
controller, which determines the behavior of robot. 



A method for synthesizing a FSM from sequences 
of partial input/output is based on Genetic 
Algorithms (GA) [10, 11]. GA is a search and 
optimization algorithm that simulates the natural 
evolution. GA performs search in a population, a 
set of individuals that represents points in the 
search space. At each generation, a sequence of 
genetic operations called selection, reproduction, 
crossover, and mutation transforms the existing 
individuals into a new set of solutions. The quality 
of solution is evaluated in terms of fitness in which 
fitness function must be defined for each problem. 
The individuals are probabilistically selected to the 
next generation proportional to their fitness. 
Examples of using GA to synthesize FSM can be 
found in [12, 13]. 
 

Learning using a physical robot takes a long time 
because of its limit on mechanical speed.  To help 
speed up parameter tuning process we wrote a 
simulator and use this simulator to find out the 
appropriate parameters for GA.  The physical robot 
is used online in real time to study the learning 
characteristics and the robot behaviors with 
feedback from a human trainer. 
 

Moreover, we study a number of factors that are 
relevant to the quality of learning. The relevant 
factors are: no reward/punishment, start position, 
maximum number of reward/punishment, size of 
population, and the person that give 
reward/punishment signals. All details will be 
described later. 
 
2. The Experiments 
 
2.1 Tasks 
 

The environment experienced by the robot is a plain 
rectangular floor, size 1.5 × 2.2 m., surrounded by 
walls. The robot is able to detect walls and stays 
inside the designated floor all the time. The floor is 
painted with two colors: black and white; which is 
divided exactly at the middle of the floor. The goal 
of this experiment is that the robot will learn to stay 
in the color, which reward signals are presented, 
and also learn to move out of the color which 
punishment signals are given. For example, if the 
robot receives rewards when it is on a white floor, 
and receives punishments when it is on a black 
floor, the robot will eventually learn to stay in the 
white floor and move out of the black floor. 
 

2.2 Control programs 
 

The program used to control the robot has a single 
input, which is the color of the floor. Zero means 
the robot is on white floor and one means the robot 
is on black floor. Two-bit output is used to control 
motions of robot, as described in Table 1. 

 
Table 1: Outputs of program and their 

corresponding motions. 
 

Output Motions 
00 
01 
10 
11 

Move forward 
Turn left 

Turn right 
Move backward 

 
2.3 Genetic Algorithms 
 

The learning behaviors of robot are based on GA. 
The algorithm slightly adapted from [14] using 
combined rank to promote diversity. The rank 
constant is 0.6666.  Due to real time requirement 
we set the population size quite small (any smaller 
population causes GA to get stuck at local minima).  
The population size is 20.  We use elitism and 
recombine 6 individuals.  The mutation is 
performed on 13 individuals with the probability 
0.01. 
 
2.4 Encoding Scheme 
 

Each individual represents an FSM by its state 
transition diagram. The state transition diagram is 
represented by concatenating all of the outputs 
followed by the next states to form a fixed length 
binary string. Figure 2 shows an example. Since we 
assume no prior knowledge about the tasks, the 
number of internal states needed to produce a 
complete solution is unknown. Thus, we let the 
number of states of an individual to be larger than 
the minimum required by the task, as 8 states are 
used. The solution may contain redundant states 
and unreachable states. A conventional method can 
be used to optimize them. 
 
2.5 Fitness Function 
 

The fitness of an individual is evaluated by the 
following steps: 
 

fitness, ƒ = 0 
Reset individual (FSM) to start state 
Initialize time, τ = 1000 
While τ > 0 Do 



   If a reward detected, ƒ = ƒ + 1 
   If a punishment detected, ƒ = ƒ - 1 
   Move the robot according to current FSM 
   τ = τ -1 
End while 
 

Each state machine has about 30 seconds execution 
time in the real world during which the robot 
behavior is evaluated by a human trainer. The 
human observer who gives reward and punishment 
signals is directly control the fitness value. 
Therefore, that person must clearly understand the 
promising behaviors in order to teach the robot to 
accomplish the desired tasks. Some important 
reward and punishment giving techniques can be 
used to accelerate the learning tendency, such as 
• If robot is on a white floor and moving in the 

way that will not go to the black floor, give 
more rewards. 

• If robot is on a black floor and moving in the 
way that will go out of the black floor, also 
give some rewards. 
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Figure 2: An example FSM representing “01 11 11 

00 00 10 00 10 101101 101101 110100 001010 
110000 100110 011110 111110”. 

 
2.6 Details of the Experiments 
 

The experiments were carried out in order to study 
factors that are relevant to the quality of learning.   
The experiments are divided into 6 problems, that 
is, giving no reward/punishment, changing the start 

position, maximum number of reward/punishment, 
size of population, and the person who give reward/ 
punishment signals. Assume that we want the robot 
to stay in the white floor and move out of the black 
floor. 
 

For each problem, unless otherwise stated, 
experiments are performed a couple of times, 60 
minutes each. The measurement of how good the 
robot performed it task is the time that it stays in 
the designated color.  A result is logged every 5 
minutes, which is the time the robot stays in the 
white floor. Dividing this number by 5 results in a 
robot-on-white-floor ratio indicating the learning 
tendency in the last 5 minutes. Consequently, the 
learning behavior is illustrated by a graph, which x-
axis represents time and y-axis represents robot-on-
white-floor ratio. Full details of each problem are 
described along with its results. 
 
3. The Experimental Results 
 
3.1 Learning behavior when giving no 
reward/punishment 
 

The purpose of this experiment is to show that the 
learning behavior does not exist when giving no 
reward/punishment. Since GA use fitness function 
to determine the quality of each individuals, in this 
case, all individuals’ fitness are equal to zero. As a 
result, no learning occurs. Figure 3 indicates the 
result that was experimented 3 times, 40 minutes 
each. 
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Figure 3: The learning behavior when giving no 
reward/punishment. 

 
3.2 Learning behavior when start position is in 
white area 
 

Figure 4 shows the learning result when normally 
given reward/punishment, and the robot starts 



learning on the white floor. The average value of 3-
times experiments is also provided.  At first, the 
robot stayed mostly on the white floor, but for some 
later time (about 15 minutes), it moved and stayed 
mostly on the black floor. This behavior is caused 
by the initial randomness of FSM. When some 
more time had passed (about 25-30 minutes), the 
learning behavior was arisen. The learning process 
continued until about the minute 45 the robot 
completed its learning and stayed in the white floor 
almost all the time. 
 

During the experiments, we observed that some 
robot movements result in few displacements, such 
as moving forward and backward repeatedly. If 
such movements had appeared when the robot was 
on the black floor, it would not have tried to move 
out of the unwanted black floor, and, of course, 
decreased the robot-on-white-floor ratio (the minute 
15). Many punishments were given in this case; 
therefore, in some later time (the minute 30), the 
movement was altered in the way that more 
displacements were conducted, such as 
continuously moving forward. On the other hand, 
we want the robot to stay in the white floor, so we 
gave more rewards to individuals that tended to 
exhibit less displacement. The task was finally 
achieved when the robot’s displacement was 
approaching zero when it was on the white floor 
(the minute 45). 
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Figure 4: The learning behavior when start 
position is in white area. 

 
3.3 Learning behavior when start position is in 
black area 
 

Experiments were carried out 2 times, as depicted 
in Figure 5. In the first time, the learning behavior 
was rapidly come into view because of some 
random individuals in the initial population exhibit 
such behavior.  The second time was dissimilar. 

The learning still took place, but in slower manner 
than first run. The explanation is that the robot only 
learned to escape the black area in the former part 
of experiment, but not learned to stay in the white 
area. The learning progressed gradually in the latter 
part. 
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 Figure 5: The learning behavior when start 
position is in black area. 

 
3.4 Learning behavior when limiting maximum 
number of reward/punishment 
 

As stated above, the reward and punishment 
directly control fitness value, and thus, the learning 
behavior must be changed if the number of reward 
and punishment are changed. This experiment was 
performed twice, varying the maximum number 
that each individual will receive reward and 
punishment to 3 and 6 times compared with the 
average in problem B in which no limit is 
presented. If a individual received more than the 
indicated value, its fitness value is left unchanged. 
 

The results are explained in Figure 6, pointing out 
that the rate of learning is reduced when the 
maximum number of reward and punishment is 
decreased.  Consequently, when limit equals to six 
the quality of learning is better than when limit 
equals to three, but no better than when no limit 
defined.  
 
3.5 Learning behavior when varying size of 
population 
 

Size of population has an effect on the diversity of 
all individuals. The larger population increases the 
sample size of finding good solutions. This 
experiment is performed twice, varying the size of 
population to 5 and 10 individuals compared with 
the average in problem B that use 20 individuals. 
 



Figure 7 illustrated the results. In the case of 5 
individuals, the learning quality was low, but still 
can partially learned in the latter part of experiment. 
The size of population used here is too small, hence 
good solutions cannot be maintained even when 
GA can find ones. 
 

However, when the size of population is 10, the 
result was much better. The learning rate is better 
than the case of 20 individuals whereas the size is 
half of it. The reason is that when the size of 
population is appropriately reduced, time used for 
searching solutions in each generation is 
accordingly decreased. The appearance of good 
solutions and the disappearance of bad solutions are 
faster. For example, if the current solution makes 
the robot exhibits undesired behavior (receive many 
punishments), this solution will be wiped out in a 
short period of time. 
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 Figure 6: The learning behavior when limiting 
number of reward/punishment. 
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Figure 7: The learning behavior when varying size 

of population. 

3.6 Learning behavior when changing person 
who gives reward/punishment 
 

Since the knowledge of person who gives reward 
and punishment is an important factor for the 
quality of learning, this experiment suggests how 
the learning behavior is changed when the person 
who gives reward and punishment changed as 
illustrated in Figure 8. The experiment was 
performed 3 times by three different human 
teachers.  Comparing the result with the average in 
problem B. The result shows the promising learning 
behavior in the first and second runs, but not in the 
third run. 
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 Figure 8: The learning behavior when changing 
person who gives reward/punishment  
 
4. Conclusions 
 
This work proposes an empirical study of the 
learning behavior using reward and punishment. 
The goal of this work is that the robot must learn 
the behavior that will receive reward and avoid the 
behavior that will receive punishment. To verify the 
proposed approach, we evolved controllers for a 
color-following task and the preliminary results 
show the promise of our approach. Moreover, this 
work also presents the analysis of the quality of 
learning when some learning-relevant factors are 
changed. 
 

The experiments use genetic algorithms in order to 
find the controller in the form of a finite state 
machine. At first, we adjusted all GA-relevant 
parameters in a computer simulation, and used 
these parameters in a real mobile robot. Then, we 
studied the learning rate and motion characteristics 
of a robot for each problem. 
 



Our work presented here points to some prospects 
of future research. The most obvious way is to use 
the proposed approach to evolve controllers for 
more complicated tasks to further examine its 
generality. 
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