
3rd International Symposium on Communications and Information Technologies,  3-5 September 2003, Thailand

Hardware multiplexing: towards a resource efficient
reconfigurable processor

K. Piromsopa, P. Bavonparadon, P. Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Phayathai road, Bangkok, 10330, THAILAND

E-mail: prabhas@chula.ac.th

ABSTRACT
This work proposes an architecture that achieves efficient and
flexible use of resource.  This architecture is based on
reconfigurable capability.  The hardware-multiplexing scheme
makes use of limited resource and achieve performance by fine
grain parallelism using data flow approach.  It is suitable for the
future mobile devices, which require both low power and high
performance.  The preliminary experiment shows that there exists
a design space in which the proposed architecture is 3-4 times
faster than a fully pipeline processor with a comparable resource.
The constraint of the speed of reconfiguration is reported.

1. INTRODUCTION

Hand held devices are becoming prevalent in today society.
Mobile phone, PDA and the like are increasingly more powerful,
they will play media rich data: songs, movies and will be the center
of communication for everyday life.  They require powerful
processors to perform their function at the same time the power
consumption is most stringent constraint.  The research into low
power electronics, at every level: system level, architectural level,
circuit level and electronic level are crucial.[1].  At architectural
level, the media rich application has driven the design into a new
direction [2] that is suitable for fine grain parallelism.

One of the new technology that emerges recently and develops
rapidly to become highly competitive with ASIC (Application
Specific IC) technology in realizing computational task is the field
programmable gate array (FPGA).  Initially the FPGA has been
used for a rapid turn around time low volume implementation of a
digital design.  However as the speed and the density of FPGA
devices increase, it is possible to realize complex design such as an
advanced processor in one chip.  Custom Computing Engine
becomes possible and has been explored in many applications [3].

The motivation in exploring the possible design space of FPGA
technology for the future hand-held applications arises from the
need to meet both criteria of low power and high performance.
Although these two requirements seem to be in the opposite
direction, we believe that some possible design exists with the
reconfigurable capability of the future FPGA devices.  This work
explores the hardware multiplexing as a new architecture in this
design space.  For fine grain parallelism, an application program is
compiled into a data flow graph.  A hardware that realizes this
computation can be synthesized.  To implement this circuit with
the constraint on resource, the data flow graph is partitioned and is
configured into a FPGA device to be executed step by step.  Hence,
the hardware is time-multiplexed on the FPGA device according to
the partitioning of the data flow graph.  This scheme of "hardware

multiplexing" enables a reconfigurable device to realize a full
computation of data flow graph with limited resource.

The paper is organized as follows. The next section describes the
related work. In Section 3, we look at the scheme of hardware
multiplexing in more details. The experiment comparing this
architecture with the conventional architecture is demonstrated in
Section 4.  Finally, in Section 5 we discuss the result of the
experiment and its implication on the future FPGA devices.

2.  Related Work

There are tremendous amounts of work done on reconfigurable
processors.  Many of which are the extensions of traditional
processors to handle multimedia applications [4, 5, 6].  The
reconfigurable part becomes a co-processor to accelerate
multimedia operations.

In [4], the paper presents a relatively simple processor with a
dynamically reconfigurable data path acting as an accelerating co-
processor. This data path consists of hardwired function units and
reconfigurable interconnect. The FPGA is configured as a co-
processor only in the initiation phase. Furthermore, the hardwired
function unit is fixed during the execution phase, and the
reconfigurable interconnections are controlled by the controller in
the co-processor for changing the interconnection inside This work
reconfigures both the function unit and the interconnection very
often during the execution. Therefore, our work is more flexible
than this. Moreover, our data flow machine should be faster than a
processor with a co-processor since there is no communication
overhead.

The [5] studies the performance of the reconfigurable co-processor
on multimedia applications. This work uses the similar approach as
in [4] that the system is composed of a processor and a
reconfigurable co-processor. It compares an FPGA based
reconfigurable co-processor with a reconfigurable array processor.
The results show that the FPGA co-processor needs more hardware
area to achieve the same performance improvement, as the
reconfigurable array processor needs. This research is a good
suggestion of the technology, which may be suitable in our work.

In [6], it proposes and evaluates a programmable loop engine
(PLE) that executes media codes and kernels efficiently by moving
most of the overhead associated with media program into
hardware. The PLE has a similar concept as the reconfigurable co-
processor of [4,5]. This work compares the PLE and the processor
with SIMD extension. The result shows that the PLE requires less
hardware resource than the SIMD extension, and the PLE is also
faster.



2

The [7] and [8] study the partitioning methodology for a
reconfigurable processor. The goal of the methodology is to
minimize the reconfiguration overhead. In [9], it presents a
synthesis methodology, which starts from high-level system
specifications and synthesizes run-time reconfigurable systems.
Furthermore, the [10] proposes a scheduling method to determine
static operation execution time and function unit allocation to
achieve fast signal processing by considering dynamic
reconfiguration of function units. These works provide the
algorithms and methodologies supporting the reconfigurable
systems.

The proposed architecture is different from the existing work as it
emphasises on the multiplexing of computational nodes subject to
a limited resource.  The whole computation is partitioned
according to the available resource with reconfiguration plays the
part of time multiplexing.  This allows trade off between resource
and performance at different dimension.

3. Hardware multiplexing
To describe an idea of a design it is easier to begin with a concrete
example. The illustrated program computed prime numbers using a
sieve of Eratosthenes method.  The array a[x] stored the flag 0,1
indicates whether x is prime, initially a[.] = 1.  This program
iterates to find all primes less than MAX.

void sieve() {
int p, j;

1 p = 2;
2 while ( p*p <= MAX ) {
3 j = p + p;
4 while ( j <= MAX ) {
5 a[j] = 0;
6 j = j + p;

}
7 p = p + 1;
8 while( a[p] == 0 )
9 p = p + 1;

}
}

The data flow graph of this program is shown in Figure 1 where
each node of the graph represents each line of the program (the last
while loop the line 7 and 9 are folded).

Figure 1  the data flow graph of the sieve program

Each node is realized by direct synthesis of operators, variables and
constants.  A variable is stored in a register.  The variables are p

and j.  The constants are the address of a[] and MAX.  The
computation nodes are shown in Figure 2.

Figure 2  the computation node of the sieve program

After initialization phase of line 1, the graph is "executed" step by
step until the computation is terminated.  This computation can be
implemented on a limited resource reconfigurable device by
partitioning this graph. Let us assume the graph is partitioned into
individual node, then the graph can be executed one node at each
step, the intermediate results are stored on persistent registers and
the computing unit is reconfigured to be the next node. This
enables the whole computation to be multiplexed into a limited
resource hardware.

The reconfigurable processor (RC) is composed of three parts:
registers, a control unit and a reconfigurable unit. The registers are
persistent and store the intermediate results among the different
configurations. The control unit is static, it holds the computation
states and activates the reconfiguration. The reconfigurable unit
realizes a partition of the data flow graph and is reconfigured
according to the state of computation.

4. Evaluating the architecture
The proposed architecture is evaluated by comparing the speed and
the required resources with a simple 32-bit load/store processor
without pipeline implementing on the same technology (FPGA).
The S2 processor is used for teaching purpose in our department
[12].  Figure 3 shows S2 architecture.

IR

Register
File

ALU

C Z

PC DecoderPC

Sign
Extension

opcode

mem_sel1

d_data_out

op_sel

pc_load
pc_sel pc_sel1

mem_sel

opcode

ir_load

reg_load

ld_sel

reg_sel

offset

Data
Bus

Address Bus

Instruction
Address

Instruction CodeData Bus

immediate

16

16

16

16

11

8a_out

b_out

16

16

Figure 3  the architecture of S2 processor



3

The questions we want to ask are

1) Given a fixed amount of resource how does RC perform
against S2?

2) How fast and how often RC needs to be reconfigured to
achieve a level of performance?

The preliminary study evaluates only the integer arithmetic and
uses the small benchmark suite [11]. The benchmark programs
consist of seven programs (Table 1):

Prog. Description
Sieve Find prime number <= 100 by the method

of Erathothenes
Hanoi Move 6 disks from peg 1 to peg 3
Matmul Multiply 4x4 matrix
Bubble Bubble sort, input 20..1
Qsort Quick sort, input 20..1
Perm Permutation generator,  permute 4

numbers:  0 1 2 3
Queen Find all solutions of 8-queen problem

encoding the solution as column position
{0,1,2,3,4,5,6,7}

Table 1  the benchmark suite and input

In term of performance, the measurements are the dynamic
instruction count of S2, the number of time step required by the
proposed architecture (RC) and the number of reconfiguration of
RC.  We are not interested in the absolute speed as it does not
contribute to our understanding about the reconfiguration
constraint.  The amount of resource required by both processors are
compared.  The resource for S2 is constant.  The resource for RC is
variable as it depends on the size of reconfigurable unit.  For this
experiment, it is fixed to the amount necessary to realize about 3
nodes of the data flow graph.  The partitioning of the data flow
graph is done manually aiming to minimize the amount of
reconfiguration.  To make a reasonable comparison, we further
assume that each instruction of S2 takes the same amount of time.
Table 2 shows the statistics of both processors running the
benchmark suite.  “RC step” is the number of time step required by
RC to execute the benchmark.  “RC con” is the number of
reconfiguration of RC.  “S2 inst” is the number of instruction
executed by S2.  “Step/Con” indicates how often the
reconfiguration is required compared to the computation.
“Inst/Con” is similar but compares the reconfiguration of RC to the
computation of S2.  “Inst/Step” is the speed up of RC over S2 if it
is assumed that one step of RC is equal to the time for one
instruction of S2 (this is an underestimate for RC).  The discussion
of these results is in Section 5.

To measure the resource for both processors, both processors are
synthesized using Xilinx web pack targeting XC2s100 (a 100,000
gates Spartan II device).  The resources required by S2 are shown
in Table 3  in terms of the equivalent gate.

Prog. RC
Step

RC
con

S2 inst Step/
con

Inst/
con

Inst/
step

Sieve 380 13 1607 29.23 123.62 4.23
Hanoi 1494 187 3637 7.99 19.45 2.43
Matmul 621 249 2229 2.49 8.95 3.59
Bubble 2912 951 14549 3.06 15.30 5.00
Qsort 1227 302 4640 4.06 15.36 3.78
Perm 1878 715 6264 2.63 8.76 3.34
Perm5 1878 130 6264 14.45 48.18 3.34
Queen 115599 54669 855001 2.11 15.64 7.40

Table 2  Performance comparison of RC and S2

Unit of S2 Equivalent. Gate
MUX 2:1 384
ADDER 378
ALU* 3189
IR 256
PC 256
Registers 32x32 16,678
Control unit 4,000
Total S2 25,141
Total RC 18,978

Table 3  the resource required by S2 and RC

Please note that the multiply and divide instructions of S2 are not
implemented, similarly for the RC processor.  For the RC
processor, the control unit is variable and the required resource is
approximately 50 gates per state.  The largest program in the
benchmark suite is 8-queen and it has 16 states.  The register file is
the same as S2.  The reconfigurable unit is fixed at 1,500 gates.
The total amount of resource for RC to run all the benchmark is
50*16 + 16,678 + 1,500 = 18,978 gates. (control + registers +
reconfigurable gates)  The following table shows an example of the
amount of resource required for the sieve program for RC.  For the
partition of {1,{2,3},{4,5,6},{7,8}}  the reconfigurable unit
required to hold the largest partition {4,5,6} is 1,020.

Nodes of RC Equivalent. gate
Registers 2 1024
state 1 118
state 2* 378
state 3 118
state 4 310
state 5 214
state 6 496
state 7 310
state 8 198
control unit 366

Table 4  The resource for each node of the sieve program



4

(Please note that the multiplier is not implemented in state 2 and an
adder is reported instead)

Each state of RC does not have to run on the same clock. Thus,
clock frequency may differ in each step. The control unit issues
start command to reconfigurable unit and wait for stop signal. This
schema allows system to be implemented as either synchronous or
asynchronous sequential circuit.

5. Discussion

First, we will discuss the resource comparison.  Looking at Table
3, the comparison of the resource is not quite differentiable as the
number is overshadowed by the amount of resource used by the
register file.  However, it can be said that RC is not larger than S2.
To illustrate the possible advantage of the reconfigurable unit, let
us compare S2 with the sieve program of RC with two registers and
S2 with four registers.

S2 runs sieve with (4 registers) = 384+378+3189+256+256+
(2084)+4000 = 10,547

RC runs sieve with (2 registers) = 1024+366+1020 = 2,410
(register + control + reconfigurable)

In this comparison, RC uses about 5 times less resource than S2 (or
it uses only 20% of the resource of S2).

To answer the performance question, if the resource is assumed to
be similar as in Table 3 and the reconfiguration time is ignored,
then the speedup of RC over S2 is ranging from 2.43 to 7.4 (Table
3 Inst/Step).  This is the amount of speedup or the gain of RC over
S2 when they are clocked at the same rate.

Lastly, we will discuss the constraint on reconfiguration. The
frequency of reconfiguration varies depended on the partitioning.
In the worst case, it is about 2 steps per reconfiguration.  In the
best case, it is 29 steps per reconfiguration.  The best case is
achieved by putting the whole loop in the same partition ({4,5,6}
in the sieve program).  To illustrate this point, another example of
different partition is shown in Table 2 for perm5. The partition in
perm required 715 reconfigurations but perm5 which partition into
2 big partitions (larger than our limit of 1,500 gates per partition
but this is for illustrative purpose) can reduce the amount of
reconfiguration to only 130 and the step/con are increased from
2.63 to 14.45.  This shows that partitioning is critical. The amount
of reconfiguration is the loss of performance of RC over S2.  The
gain is 3-4 instructions per step because of fine grain parallelism
and the loss is the time required for reconfiguration.  The
frequency of reconfiguration depends on the partition, which in
turns depends on the resource available on the reconfigurable unit
and the data flow graph.  How fast the reconfiguration should be is
constraint by the balance of these gain/loss factors. The preliminary
data shows that the reconfiguration is very frequent possibly every
two steps of data flow execution.

6. Conclusion

This work explores a new design space created by the capability of
reconfigurable devices.  The aim is to create an architecture that is

suitable for future mobile devices, which require both low power
and high performance. The proposed architecture has flexibility in
terms of resource and performance.  By using the scheme of
hardware multiplexing, the resource can be used efficiently (in
terms of area), and at the same time the performance is achieved
using fine grain parallelism. The preliminary experiment reported
here shows that this is possible.  The proposed architecture can
achieve 3-4 times speedup over an ordinary processor with a cycle
per instruction equals 1.0 (a typical fully pipelined processor).
There is a clear indication that the resource is used efficiently.  Our
future work is to probe further into the kind of reconfiguration
technology and to find out more about the high performance
reconfiguration necessary to make it possible to use hardware
multiplexing.

7. REFERENCES
[1] S. Devadas, S. Malik, A survey of optimization techniques

targeting low power VLSI circuits, in Proc. of the 32nd
ACM/IEEE conference on Design automation conference,
1995 , San Francisco, California, United States, pp. 242 - 247

[2] C. E. Kozyrakis and D. A. Patterson, “A New Direction for
Computer Architecture Research,” IEEE Computer, pp. 24-
32, Nov. 1998

[3] R. Gonzalez, “Xtensa: A Configurable and Extensible
Processor,” IEEE Micro, 20(2), March/April 2000.

[4] Z. Huang and S. Malik, “Applications of reconfigurable
computing: Exploiting operation level parallelism through
dynamically reconfigurable datapaths”, Proceedings of the
39th Design Automation Conference, USA, 2002.

[5] T. Miyamori and K. Olukotun, “A Quantitative Analysis of
Reconfigurable Coprocessors for Multimedia Applications”,
Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, 1998.

[6] D. Talla, L. K. John and D. Burger, “Hardware Support to
Reduce Overhead in Fine-Grain Media Codes”, Technical
Report LCA-TR-011101, Laboratory for Computer
Architecture, The University of Texas, Austin, 2001.

[7] J. Noguera and R. Badia, “A HW/SW partitioning algorithm
for dynamically reconfigurable architectures”, Proceedings of
the conference on Design, Automation and Test in Europe ,
2001.

[8] S. Ganesan and R. Vemuri, “An integrated temporal
partioning and partial reconfiguration technique for design
latency improvement”, Proceedings of the conference on
Design, Automation and Test in Europe, 2000.

[9] K. Rath and J. Li , “Synthesizing Reconfigurable Sequential
Machines Using Tabular Models”, Proceedings of the 5th
Reconfigurable Architectures Workshop (RAW-98), Orlando,
Florida, 1998.

[10] K. Ito, “A scheduling and allocation method to reduce data
transfer time by dynamic reconfiguration”, Proceedings on the
2000 conference on Asia and South Pacific design
automation, 2000.

[11] J. Hennessy and P. Nye, "Stanford Integer Benchmarks",
Stanford University.

[12] P. Chongstitvatana, “S2 processor and its opcode format,”
http://www.cp.eng.chula.ac.th/faculty/pjw/teaching/ads/


