
Code-Size Reduction for Embedded Systems using
Bytecode Translation Unit

Phanupan Nanthanavoot
Department of Computer Engineering,

 Faculty of Engineering, Chulalongkorn University
Phyathai Road, Pratumwan Bangkok 10331

phanupan.n@cp.eng.chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University,
Phyathai Road, Bangkok 10330, Thailand.

prabhas@chula.ac.th

ABTRACT
 This work introduces a technique which applies a
stack-based intermediate code, also called as bytecodes,
to reduce the size of programs in an embedded system. A
hardware interpreter known as the Translation Unit
translates bytecodes into native codes before execution.
Experiments show that a program written in bytecodes is
smaller than one written in native codes by 16%-38%.

Keyword: Code-size reduction, Code compression,
Embedded system, Bytecode.

1. INTRODUCTION
 Embedded microcontrollers are highly constrained in
cost, power and area. Therefore it is important to reduce
the microcontroller die area. This will increase the
amount of die per wafer and eventually increases the die
yield in the microcontroller production. In addition,
decreasing the size of program memory, a major part of
the embedded microcontroller, will also reduce the die
area for on-chip memory.
 This work introduces a way to run small-sized
programs in an embedded system using a combination of
interpreter and stack-based intermediate codes, or also
called bytecodes, which will reduce the program size.
 This paper is sectioned into 5 parts. Section 2, the
fundamentals of code size reduction and its efficiency
metrics are explained. The next section discusses the
proposed technique. In Section 4, the experiments to
measure the compression ratio and the result are shown.
After the research summary in Section 5, the last section
details the related work of code size reduction.

2. CODE-SIZE REDUCTION BACKGROUND
 Code size reduction is a technique to reduce code
size. There are two popular techniques: code compaction
and code compression.
 The first technique, code compression, uses data
compression algorithms on machine codes. On the other
hand, code compaction reduces the program size by using
compiler optimization to rearrange and eliminate
superfluous codes. This allows the compressed program
to be executed immediately without needing
decompression as in the code compression technique.
Decompression will show down the system operation in
code compression. However, using compression

algorithm in code compression will reduce the program
size more than using code compaction.
 The efficiency of the code size reduction technique is
measured through the compression ratio as in equation (1)

 Compression Ratio =
Compressed size

Uncompressed size (1)

3. SYSTEM DESIGN

3.1 Overview
 This work introduces a way to reduce the program
size using the approach in [1, 2] which says that a
program in the form of the intermediate code of a stack-
based instruction set will be smaller than a program in the
form of the machine code of a register-based instruction
set. An example of a popular bytecode is the Class File
or Java bytecodes [3] of the Java language.
 The reason a program in the form of the bytecode is
smaller than one in the form of the machine code is as
follow:

• Bytecode instruction set has higher semantic
content than register instruction set.
Therefore, a bytecode instruction is equal to
many register machine instructions.

• Bytecode is a stack-based instruction set
which the location of an operand is implicit
in the stack pointer. On the other hand, the
operand of a register machine must be
declared explicitly, so bytecode instruction’s
size is smaller than register instruction’s
size.

 There are two alternatives to implement bytecodes in
an embedded system. The first alternative is to build a
machine that can execute bytecodes directly. The
machine of this type is called a stack machine.
 The second alternative is to run bytecodes on a
virtual machine. The virtual machine can be hosted on
any architecture. The popular choice is to host a virtual
machine on a register-based machine because of the
availability of high performance register-based processors
in the market.
 The virtual machine uses an interpreter to translate
the bytecode instruction into the register-based
instruction. One of the most time consuming operation in
interpreting a bytecode is the instruction dispatch. The
dispatcher in a high-level language implementation of a

virtual machine is composed of a switch-case construct
for each bytecode instruction. This causes the operation
to be slower than the operation of the native code.

3.2 Design
 To improve the speed of execution of bytecodes, a
hardware virtual machine is used. The hardware
interpreter is shown in Figure 1. A register-based
processor core is assumed. The translation unit is the
main contribution of this work. The details of this unit are
discussed next.

Bytecode

Instruction Memory Virtual Machine

CPU
Bytecode Translation

Unit
Native Code

Stack
Data

Data Memory
Fig. 1: Virtual machine with translation unit

Bytecode Address

Map
Sequence of
Native code

Bytecode
Native code
of Bytecode

Operand

Bytecode Decoder Native Code Memory

Operand
Multiplexer

Fig. 2: Translation unit component

 The components of the translation unit are shown in
Figure 2. They consist of the bytecode decoder, the native
code memory and the operand multiplexer. In each
operation of bytecode, the native code memory records
the sequence of native codes which achieve the correct
operation.
 The bytecode decoder is a look-up table that stores
the address and the number of native codes in the
sequence. It maps a bytecode into the sequence of native
codes in the native code memory.
 Some bytecode contains an operand such as a literal
(Figure 3), an instruction that pushes an immediate
operand into the stack. In the operation of a virtual
machine, the operand in the bytecode must be passed to
the operand field of the correct native code in the
sequence. The operand multiplexer in the translation unit
will send the operand to the first instruction of the native
code instruction which allows the CPU to read the
operand from the bytecode.
 For embedded system applications, one major
consideration is the circuit size of the translation unit.
The size of the translation unit depends on the size of the
look-up table in the decoder and the size of the native
code memory in the translation unit. The size of the look-
up table depends on the amount of entry or the number of
bytecode instructions in the table. For the native code
memory, its size depends on the length of the sequence of
native codes corresponded to a bytecode. This is affected

by the difference of the bytecode instruction and the
architecture of the CPU.
 Consequently, the bytecode instruction set should not
include too many instructions. This work employs 27
simple bytecode instructions from [4]. A small size CPU,
suitable for an embedded system in [5, 6], is used. The
CPU consists of 4 registers:

• Stack Pointer (SP) which points to the data on
the top of stack,

• Frame Pointer (FP) which manages subroutine
calls,

• Top of Stack (TOS) which caches the topmost
value of the stack in the register, and

• Buffer (BUFF) which keeps intermediate values.
 The translation unit fetches bytecodes from the
instruction memory and feeds CPU with native codes.
Because the addresses of bytecode are different from the
addresses of native code, the control flow instructions
such as jumps and calls require special attention. The
translation unit feeds the native jump instruction to the
CPU so that the program counter points to the appropriate
bytecode. For the call instruction, the CPU performs
save/restore the program counter to the stack segment.
The translation unit must feed the correct sequence of
native codes to achieve this effect.
 An example of translating a bytecode to the native
code is the translation of the Literal instruction that
pushes a constant into the top of stack and the Add
instruction that adds 2 top values in the stack and keeps
the result in the top of stack are shown in Figure 3.

Bytecode Native code

Literal #constant

movi buff, #constant
stw tos, 0(sp)
mov tos, buff
subi sp, 1

Add

ldw buff, 1(sp)
add buff, tos
mov tos, buff
addi sp, 1

Fig. 3: Example of bytecode translation : Literal and Add
instructions

 The system is developed in the form of RTL
(Register Transfer Level) using Verilog HDL. It is
verified by simulation method through the program
ModelSim version 5.6e, Xilinx.

4. EXPERIMENT
 The purpose of the experiment is to measure the
efficiency of code size reduction. The compression ratio
is measured using the integer benchmark Stanford
(Hennessy and Nye). The description of each program in
the benchmark is shown in the following Table 1.
 The size of the program compiled in the bytecode
compared with a program in the native code. A special
compiler is used to compile high-level programs into
bytecodes. A simple instruction specialization is applied
to the bytecode programs. The frequently used sequences

of bytecodes in the program are replaced with a special
instruction to reduce the size. The lists of the special
instructions are shown in table2.

Table. 1: Stanford benchmark
Benchmark Description
Bubble Sort 20 numbers by bubble sort algorith
Quick Sort 20 numbers by quick sort algorithm

Hanoi Find a solution to move 3 disks in
problem - tower of hanoi

Sieve Find all prime numbers less than 100
8-Queen Find all solutions of 8-queen problem
Matmul Multiply matrix 5×5
Perm Permute 4 digits of 0, 1, 2, 3

 A special compiler is used to compile high-level
programs into bytecodes. The size of a program compiled
into bytecodes is compared with the program in the native
code. A simple instruction specialization is applied to the
bytecode programs. The frequently used sequences of
bytecodes in the program are replaced with a special
instruction to reduce the size. The lists of the special
instructions are shown in Table2.

Table. 2: Special bytecode instructions which are added
into the bytecode instruction set
Bytecode instruction Function
INC #local Increment the local variable
DEC #local Decrement the local variable
Lit0 Push literal 0 to the top of stack
Lit1 Push literal 1 to the top of stack
Rval1, Rval2, Rval3,
Rval4

Get local variable 1, 2, 3 or 4
and push it into the top of stack

JLt #address Jump if the top of stack is less
than the second

JEq #address Jump if the top of stack equals
the second

Table. 3: Size’s comparison between bytecode and native
code program (in bytes)
Program Bytecode

size
Native

code size
Compression

Ratio
Bubble 128 158 0.81
Quick 253 306 0.82
Hanoi 128 178 0.71
Sieve 154 196 0.79
8-Queen 125 168 0.74
Matmul 253 298 0.84
Perm 221 356 0.62

 The programs in native code are written in an
assembly code. They are directly translated from the
high-level code. Register allocation is not applied in the
translation as there are only 4 registers. The size of the
program in bytecode and native code are shown in Table
3.

5. CONCLUSION
 The result in the experiments shows that the
compression ratio is ranged from 0.60 to 0.84 with an
average 0.76. It still can be reduced further through
sequence analysis of the common bytecode and
substituting those redundant sequences with a special
instruction.
 Presently, the system has been tested on a simulator.
The next step is to develop the system to operate on a real
chip using the FPGA (Field Programmable Gate Array)
technology. The circuit size of the translation unit can be
assessed.

6. RELATED WORK
 Thumb [7] and MIPS16 [8] are designed to decrease
program size by redesigning instruction set of the
processor ARM and MIPS which are 32-bit RISC
processors to 16-bit instruction sets. These new
instruction sets are able to work compatibly with the
original processor cores. Compression ratios of both
works are 0.70 and 0.60 respectively.
 Code compression for RISC Processor (CCRP) [9]
introduces a method to compress a program using
Huffman algorithm to compress code and cache memory.
The cache memory stores an instruction before it is used
by the processor unit. The compression ratio of this work
is 0.73.
 Lefurgy [10] observed the compiler’s method of
translation and found that some sequences of instructions
are redundant. Therefore those repetitions are replaced
with codewords which used fewer bits. These codeword
are stored in a dictionary. When the processor executes a
codeword, the decompressor will retrieve the sequence
from the dictionary. The experiments are performed on 3
types of processors: PowerPC, ARM and i386. The
compression ratios of each processor are 0.61, 0.66 and
0.74 respectively.
 IBM uses the technique, called “CodePack” [11, 12],
to compress the program in PowerPC. It applied two
compression concepts: dictionary compression in [10]
and decompression on the cache in [9]. Compression ratio
of this work is 0.60. However in [13] the reported
performance of the CodePack system is that it is slowing
down the operation by 0.14-0.18 times.
 Ernst [14] introduced BRISC based on two concepts
operand specialization and opcode combination. BRISC
is implemented as an interpreter. The result of the
experiment showed 0.53-0.69 compression ratio.
However, the interpreter slowed down the system by 9.6-
15.4 times compared to the execution of the
uncompressed code.
 These works demonstrate the effectiveness of code-
size reduction using various schemes of code
compression and compiler optimizations. The down side
is the run-time overhead associated with the interpreter.
The translation unit proposed in this paper should prove
to be effective in terms of small run-time overhead. The
compressed ratio achieved by the proposed method is
comparable to the existing methods.

REFERENCE
[1] Chongstitvatana, P. The art of instruction set design.

In Conference of Electrical Engineering, Thailand,
2003.

[2] Koopman, P. STACK COMPUTER, the new wave.
Ellis Horwood, 1989

[3] Joy, B., Staddle, G., Gosling, J. and Bracha, G.
JAVATM Language Specification (2nd edition),
Addison Wesley Pub, 2000

[4] Chongstitvatana, P. Final Report : A multi-tasking
environment for real-time control [online]. 1998.
Available from:
http://www.cp.eng.chula.ac.th/~piak/r1/final.pdf
[November 2003].

[5] Piromsopa, K. Development of A Reconfigurable
Embedded Web Server. Master Thesis,
Chulalongkorn University, 2000.

[6] Bavonparadon, P. and Chongstitvatana, P. RTL
formal verification of embedded processors. In IEEE
International Conference on Industrial Technology,
pp. 667-672. 2002.

[7] Advanced RISC Machines Ltd. An Introduction to
Thumb. March 1995.

[8] Kissell, K. D. MIPS16: High-density MIPS for the
Embedded Market. In Proceedings of Real Time
Systems '97 (RTS97), 1997.

[9] Kozuch, M. and Wolfe, A. Compression of
embedded system programs. In Proceedings of the
International Conference on Computer Design: VLSI
in Computers & Processors. IEEE Computer Society
Press, Los Alamitos, Calif. 1994

[10] Lefurgy, C., Bird, P., Chen, I., and Mudge, T.
Improving code density using compression
techniques. In International Symposium on
Microarchitecture 30 (1997).

[11] IBM. CodePack PowerPC Code Compression Utility
User’s Manual Version 3.0. IBM, 1998.

[12] Game, M. and Booker, A., CodePack: Code
Compression for PowerPC Processors. MicroNews 5
(1) , IBM, 1999.

[13] Lefurgy, C., Piccininni, E., and Mudge, T.
Evaluation of a high performance code compression
method.Proceedings Annual International
Symposium on Microarchitecture 32nd (1999) : 93-
102

[14] Ernst, I., Evans, W., Fraser, C. W., Lucco, S. and
Proebsting, T. A. Code compression. Proceedings of
the ACM SIGPLAN'97 Conference on Programming
Languages Design and Implementation 32 (15 – 18
June 1997) : 358 - 365

http://www.cp.eng.chula.ac.th/~piak/r1/final.pdf

