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Abstract

This paper proposed an online image Jacobian estimation 
technique for visual servo system. The technique estimate the 
Jacobian of the current robot position rather than use the 
estimated Jacobian of the last position for executing robot at the 
current position. Taylor polynomial is used to approximate 
image Jacobian function. Evolutionary strategy issue to find its 
coefficients. A task by a three–degree-of-freedom robot 
manipulator with visual feedback from stereo cameras is 
exemplified. The experiment is carried out by comparing with 
one offline method and the other two online methods under 
extensive simulations. The result shows that the proposed 
method when applied to adapt Jacobian performs the visual 
servoing task with smaller trajectory error than the other 
methods.

 I. Introduction

Visual servo systems have been studied for several 
years. They have found limited use outside laboratories, 
partly because these systems require the complete information 
of the system model and the geometry of the robot 
workspace. This information is not precisely available in 
many applications. This is the motivation for investigating 
visual servo technique that requires less or no prior 
knowledge.

Most previous works on uncalibrated visual servoing 
focus on the image Jacobian-based scheme. The relationship 
given by image Jacobian describes how image feature 
parameters change with respect to changing manipulator pose. 
The image Jacobian was first introduced by Weiss et. al. [1], 
who referred to it as the feature sensitivity matrix. It is also 
referred to as the interaction matrix [2] and the B matrix [3], 
[4]. Other applications of the image Jacobian include [5], [6], 
[7], [8].

Researches on the estimation of the image Jacobian 
have been extensively studied. Some estimation methods 
depend on system configurations and tasks to be 
accomplished, e.g., in [9], [3]. Some methods use offline 
estimation which is correct only in a small region, e.g., in 
[10], [11], [12]. Some methods are online estimation but they 
use the estimated Jacobian of the last position for executing 
robot at the current position, e.g., in [13], [14].

In this paper, we propose a novel online method to 
estimate the image Jacobian matrix. This method does not 
need a prior knowledge of the kinematics structure or system 
parameters. It also estimates the Jacobian of the current robot 
position rather than uses the estimated Jacobian of the last 
position for executing robot at the current position.

This paper is organized as follows. The next section 
presents the proposed method in details. Section III describes 
the experiments. Section IV discusses the results. Finally we 
conclude the work in Section V.

 II. Image Jacobian estimation

The image Jacobian relates the change of image feature 
parameters (e.g., the position of the robot’s end effector in an 
image coordinate) ∆f to the change of manipulator pose 
from a particular controller command ∆r with the following 
relation:

∆rJ(r)∆f = (1)
In most visual servoing work, a Jacobian has been 

either:

A. Derived analytically.

These techniques need prior knowledge of the kinematics 
structure or system parameters. They are used to calculate the 
Jacobian.

B. Derived partially analytically and partially estimated. 
(e.g., [9], [3])

These techniques still needs some prior knowledge of the 
kinematics structure or system parameters. They are used 
with some physical estimation to estimate the Jacobian.

C. Determined experimentally by physically executing a set 
of orthogonal calibration movements. (e.g., [10], [11], 
[12])

An initial estimation of the image Jacobian can be done 
by performing calibration motions as in [10]. They get the 
Jacobian estimation by test movements along the basis of the 



control variables. This constant Jacobian turns out to be 
accurate enough for subsequent control in their experiments.

However this Jacobian is correct only in a small region 
near the calibrated position of the robot.

D. Online estimated. (e.g., [13], [14])

Jagersand, Fuentes, and Nelson [13] used an online 
method, which estimates the Jacobian by just observing the 
process, without a priori models or introducing any extra 
calibration movements. In observing the last movement they 
obtain the changes in visual appearance )1(∆f

+→ ll

corresponding to a particular controller command )1(∆r
+→ ll . 

They want to update the Jacobian in such a way as to satisfy 
the most recent observation (Jacobian of the last position) 
which is the secant condition:
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The above condition is under-determined, and a family of 
Broyden updating formulas can be defined [17]. They choose 
the following asymmetric correction formula:
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Subsequently, Praditwong and Chongstitvatana [14] 
tried to adjust the Jacobian to satisfy (2) by using 
evolutionary strategy. They used evolutionary strategy to 
generate a number of variants of the Jacobian and used the 
observed changes in the last movement to select the best 
estimate among these variants. In other words, the best 
estimate is the one that, if it is used previously, the motion 
will be closer to the actual motion that is already known.

Note that the estimated Jacobian that fits the last 
movement (Jacobian of the last position) is used as the 
Jacobian for the current position. This is our motivation for 
developing the new method.

Our idea bases on the fact that image Jacobian is the 
function of the position. If we want to predict the Jacobian at 
the current position 1+l , we can approximate the Jacobian 
functions by its Taylor polynomials around the position l  and 
use them to find the Jacobian at 1+l .We choose first-order 
Taylor polynomial. The Taylor polynomial is as follow:

( ) ( )

( ) ( )∑
=

∂

∂
−

+=

n

k
n

k
kk

nn21

aaaf
x

ax

aaaf,...,x,xxf

1
21

21

,...,,

,...,,
(4)

Where ( )nxxxf ,...,, 21  is the function of ( )nxxx ,...,, 21

around point ( )naaa ,...,, 21  and ( )n
k

aaaf
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,...,, 21
∂

∂
 is 

Taylor’s coefficient around point ( )naaa ,...,, 21 .

To have Taylor polynomial around the position l , 
we must find Taylor’s coefficient around point l . Consider 
the following Taylor polynomial approximating j , an 

element of the Jacobian J at ( )nxxx ,...,, 21  around the 

position l  :
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If we use (5) to evaluate j at 1−l  , we get

( )∑
=

−

∂

∂
−−+=

n

k
l

k
kkll x

ll
1

1 j)1(jj (6)

or

( )∑
=

−

∂

∂
−−−=

n

k
l

k
kkll x

ll
1

1 j)1(jj (7)

Evolutionary strategy is used to generate a number 

of variants of the Taylor’s coefficient l
kx

j
∂

∂
 and we select 

the variant which produce lj   that make lJ  best fit the last 
movement datas. Once we have the Taylor’s coefficient 

l
kx

j
∂

∂
 , we can use (5) to find j  at 1+l  and then we obtain 

1J
+l .

The lJ  that best fits the last movement is the one 
that, if it is used previously, the motion will be closer to the 
actual motion that is already known. In other words, it is lJ
that satisfied (2). Thus, we choose the following fitness 
function for the evolutionary strategy:
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Now, the evolutionary strategy used to find Taylor’s 
coefficients will be discussed. Evolutionary strategy was 
developed by Rechenberg [15] and Schwefel [16] as an 
experimental optimization technique. ES−+ )11(  is 
adapted in our optimization. It works on the basis of two 
individuals only, i.e., one parent and one descendant per 
generation. The descendant is created by applying normally 
distributed variations with expectation zero and standard 
deviation σ  to the parent (called mutation), and either the 
descendant becomes parent of the next generation, if it is 
better than its parent, or the parent “survives”. The standard 
deviation σ  is adjusted according to the 1/5-success rule 
[17]. This rule updates the standard deviation σ  at each n-th 
generation, based on the measured relative frequency p  of 
successful mutations:
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A choice of c=0.817 derived by Schwefel [18] is used.



 III. Experiment

In our simulation, we use MATLAB as the technical 
computing environment. The toolbox used to model robot is 
Robotics toolbox developed by Corke [19].

A three–degree-of-freedom robot manipulator is used 
with visual feedback from stereo cameras. We assume that the 
end effector and the target are visible in both cameras all the 
time.

We compare the trajectory error between: the method 1 
where the Jacobian is determined experimentally by 
physically executing a set of orthogonal calibration moves 
[10], the method 2 -- online estimation method [14], the 
method 3 -- another online estimation method [13], and the 
method 4 -- the proposed method.

The metrics are 1) the number of moves to reach the 
target, and 2) the trajectory error, which is measured as 
deviation from the straight-line between the initial position of 
the end effector to the target. Because evolutionary strategy is 
non-deterministic algorithm, e.g., every run of the algorithm 
will give slightly difference results, we repeat the experiment 
1000 times and the data is averaged from all runs. For 
deterministic method, one run is sufficient.

Six targets are randomly chosen. The step size used is 
1/4. For evolutionary strategy parameters, we adjust σ  every 
20 generations and the maximum generation is 500. The 
initial value of σ  is determined from the initial distance 
between the end effector and the target. The number of 
variances generated by evolutionary strategy is 100.

 IV. Results

From Table 1, the numbers of moves of Method 1 are rather
high. The other methods have similar numbers of moves.
Table 2 shows the trajectory error. The trajectory error of
Method 1 is highest because it uses constant Jacobian for
every point in the path. The trajectory error of Method 2 and
Method 3 are similar because of the same principle (Online
estimation that Jacobian of the last position is used as the
Jacobian for the current position). Our method (Method 4) has
the lowest trajectory error since it tries to estimate the
Jacobian of the current robot position rather than uses the
estimated Jacobian of the last position for executing robot at
the current position. This fact can be explained as follows.
By solving (7) using evolutionary strategy, the Taylor's
coefficient around the last position (the position l ) is
obtained.  This coefficient is substituted into (5) to obtain the
Jacobian of the current position.  Hence our method obtains a
more accurate Jacobian and uses it to calculate the motion to
the next position.  Fig. 1 shows typical trajectories of the
compared methods in reaching a target.

 V. Conclusion

We have shown that the proposed technique which 
uses Taylor polynomial with evolutionary strategy to 

approximate image Jacobian  function performed better than 
the compared methods for the visual servoing task. The 
experiment demonstrates that this method can work very well. 
We are investigating higher-order Taylor polynomial and the 
other evolutionary strategies for coping with the higher-
dimensional manipulation problem.
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Fig. 1 The trajectories between the compared methods.  Method 1: Determining experimentally by physically executing a set of orthogonal
calibration method [10].  Method 2: Online estimation method that adjusts the Jacobian to satisfy the last movement condition by using

evolutionary strategy [14]. Method 3: Online estimation method that uses Broyden updating formula to update the Jacobian in such a way as
to satisfy the most recent observation condition [13].  Method 4: The proposed method  -- Online estimation method that estimates the

Jacobian of the current robot position.

TABLE 1
The number of moves

Path No. 1 2 3 4 5 6
Method 1 22 17 21 21 31 23
Method 2 17 16 19 19 21 20
Method 3 17 16 19 19 21 20
Method 4 17 16 19 19 20 20

TABLE 2
The trajectory error

Path No. 1 2 3 4 5 6
Method 1 4.84 2.87 7.85 5.21 17.00 20.59
Method 2 1.65 0.78 1.74 1.54 5.21 7.31
Method 3 1.44 0.75 2.40 1.14 5.61 6.37
Method 4 0.86 0.45 1.03 0.72 4.39 4.29


