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Abstract- The building blocks are common structures of
high-quality solutions. Genetic algorithms often assume
the building-block hypothesis. Itis hypothesized that the
high-quality solutions are composed of building blocks
and the solution quality can be improved by composing
building blocks. The studies of building blocks are lim-
ited to some artificial optimization functions in which it
is obvious that the building blocks exist. A large num-
ber of successful applications has been reported with-
out a strong evidence that proves the hypothesis. This
paper proposes a quantitative approach for validating
the building-block hypothesis. We define the quantity of
building blocks and the degree of discontinuity by us-
ing the chi-square matrix. We test the building-block
hypothesis with 15-bit onemax, 5x3-trap, parabola

1 — (22/10'9), and two-dimensional Euclidian traveling
salesman problem (TSP). The building-block hypothe-
sis holds for onemax,5x3-trap, and parabola. In the
case of parabola, Gray coding gives a higher quantity of
building blocks than that of binary coding. The hypoth-
esis is accepted for random instances of TSP with a low
confidence.
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solutions is drawn according to the distribution. Some good
solutions (winners) are selected, and the distribution is ad-
justed toward the winners (the winner-like solutions will be
drawn with a higher probability in the next iteration). These
steps are repeated until the optimal solution is found or
reaching a termination condition. Building a distribution of
solutions involves identifying dependency of solution bits.
It can be done by a statistical method, for example, Bayesian
network [12]. EDAs focus on the accuracy of building dis-
tribution (or identifying the dependency) which is essential
to improve solution quality. As mentioned earlier, execut-
ing EDAs and obtaining the optimum are not sufficient to
prove the building-block hypothesis. In contrast, testing the
building-block hypothesis requires measuring the quantity
of dependency of solution bits. It will be shown that testing
the hypothesis is simple and fast. If the building-block hy-
pothesis holds, one of the EDAs would be applied. Building
an accurate distribution needs a great deal of computational
time. It might be worth testing the building-block hypothe-
sis before executing EDAs.

This paper proposes a quantitative approach for validat-
ing the building-block hypothesis. We define the quantity of
building blocks and the degree of discontinuity by using the
chi-square matrix [1]. We test the building-block hypothe-
sis with 15-bit onemaxj x 3-trap, parabold — (x2/1019),

The building blocks are common structures of high-qualitgnd two-dimensional Euclidian traveling salesman problem
solutions [6, 3]. Genetic algorithms often assume thé€TSP). Onemax and trap functions are chosen for evaluation
building-block hypothesis. It is hypothesized that the highpurpose because the building-block information is known
guality solutions are composed of building blocks and thbeforehand. The quantity of building blocks depends on
solution quality can be improved by composing buildinghow the solutions are encoded. In some cases, the perfor-
blocks. The studies of building blocks are limited to somenance of genetic algorithms is enhanced by the use of Gray
artificial optimization functions in which it is obvious that coding [10]. The parabola is tested with binary coding and
the building blocks exist [7, 14]. A large number of suc-Gray coding. TSP represents real-world applications. We
cessful applications has been reported without a strong eshoose TSP because it is close to practical applications such
idence that proves the hypothesis. The genetic algorithmas vehicle routing, PCB design, X-ray crytallography, etc
enhanced with building-block identification give promis-[8, 2]. The hypothesis is tested for three different codings
ing solutions in real-world applications [11, 4]. Howeverthat are commonly used in the TSP literature.
it is not sufficient to prove the building-block hypothesis. This paper is organized as follows. Section 2 defines the
Reaching optimal solution results from a number of parame&uantity of building blocks and the chi-square matrix. Sec-
ters that interact with each other, for example, genetic opetion 3 describes a methodology for validating the building-
ator, selection method, diversity control, and local search. Block hypothesis. Section 4 tests the building-block hypoth-
fair building-block measurement must decouple itself fronesis with a number of functions. Section 5 concludes the
the unnecessary parameters that involve finding optimal spaper.
lutions.

Modern genetic algorithms are capable of identifyingp The Quantity of Building Blocks
and maintaining building blocks [5, 12, 4, 15]. Recent work
turns to build a distribution of solutions [13]. The basic conBuilding blocks are inferred from a set of solutions. An
cept of the estimated distribution algorithms (EDAS) startexample of fourl 5-bit solutions is shown below.
with a uniform distribution of solutions. Next, a number of



V1V2U3  V4UsVe  UrUgU9  V1oV11V12  V13V14V15  The set of four 4-bit solutions on the left represents the

#1 000 111 000 111 111 second-order interactions of andwsy, v3 andv,. There

# 111 000 111 000 000 is no dependency between andwvs, v; andvy, v, and

#3 111 000 111 000 111 44, v, anduvy because the observed frequencies are iden-
# 111 000 00O 111 000 tical to the expected frequencies. The quantity of build-

An inference might be that the above solutions are coming blocks isChiSquare(1,2) + ChiSquare(3,4) = 4
posed of aligned chunks of 000 and 111. The strong 4 — 8. The solutions on the right represent the higher-
dependency between variablgsandv;1 andv; ., where order interactions ofv;, v, vs, v4. The quantity of

i = 1,4,7,10,13 can be detected by a statistical methodpyilding blocks isChiSquare(1,2) + ChiSquare(1, 3) +
We do not give a precise definition of building blocks, butchiSquare(1,4) + ChiSquare(2, 3) + ChiSquare(2,4)
measuringhe quantity of building blockis possible. + ChiSquare(3,4) =4 +4+4+44+4+4=24. The so-

Given a set of solutions, the quantity of building blockgutions on the right give a higher quantity of building blocks
ranges betweemin andmaxz. min means no building because of the high-order interactions.
blocks. This implies that the solutions are random because
random bits do not have common structures.z indicates P A
that the solutions are absolutely not random. For instanc‘f')e’,A Methodology for Validating the Building

all solution bits are zero. The quantity of building blocks block Hypothesis

inver_sely relates t(_) randomness. We choose the chi_—squai!ﬁethe previous section, we have defined the quantity of
matrix _for_measurmg randomness because computing tlBﬁilding blocks that is a fundamental tool for validating
matrix s simple ancé)fast [1]. . i of the building-block hypothesis. The building-block hypoth-
b Let M :b (mi;) eI a|j1€><£ symmetfrlljc_: rS_atnx oFnuM- - agis are separated in two hypotheses. The first hypothesis
Tﬁrs' rl;etP € a popu "?‘“3”;” zsetfaﬁ I It binary strings. states that the high-quality solutions are composed of build-
e chi-square matrix s defined as follows. ing blocks. The second hypothesis states that the solution
Chis C . if i A quality can be improved by composing building blocks. We
mij = { iquare(i,j) M7 g (1)  begin with a methodology for validating the first hypothe-

0 ; otherwise.
’ sis. Then, a different methodology for validating the second

TheChiSquare(i, j) is defined as: hypothesis will be presented.
Ty 2 Let F : {0,1}Y — R be a fitness function. Let
Z (County (Z’i) n/4) , vy € {00,01,10,11} (2) Pi,...,P, bem sets ofn high-quality solutions. Let
Ty n/ Ti,...,T, bem fitness thresholds such that < ... <

T,,. Each sef?; is made by randomly choosingsolutions
Ty /. - m 2

Wherbe th? o?stgrveq freﬁ.uﬁnbﬁy.oqztpt(.z’ﬂ) cognbti _t.he of which their fitness is greater than or equal{o The sets
number of solutions In which bitls 1denticalz and bity 1S - solutionsP; to P,, simulate a sequence of evolving pop-

identical toy. The expected frequencies of observing “00,” | _.. C ;
ulations generated by an optimization algorithm. We do not
“01,” “10,” “11” are n/4 wheren is the number of solu- g y P g

. . .execute an actual optimization algorithm because we want
tions. If the solutions are random, the observed frequenci

| o th ted f . d therefore th 5decouple our methodology from unnecessary parameters
are close to the expected frequencies and Inerefore e Clig.p, 54 genetic operator, selection method, diversity con-

square is low. The quantity of building blocks is defined a% 0| and local search

the sum of all matrix elements. Since_ the matrix is_sym- The quantity of building blocks is computed for @

mgtrl_c, we sum (_)nly a half of Fhe ”?a”'xz The quantity 0fto P,,. The result is shown in Figure Inin andmazx are

building blocks given a populatiot, is defined as follows. the minimum and the maximum quantity of building blocks.

o min is the quantity of building blocks in a random popula-

@p = Z Mgy 1< ®) tion. max isqthe qgantity of bt?ilding blocks in a popﬂleﬂion

in which all bits are zero. We normalizein andmax to

The time complexity of computing the quantity of building0 and 1, respectively. The first hypothesis holds if and only

blocks isO(¢?n). if the quantity of building blocks does not fall within the

It is important to note that the chi-square matrix dealsejection area (being closer t@in means more random-

only with second-order interactions or marginal depemess). Drawing the plot in Figure 1 requires some parame-

dency. There exist also higher-order interactions that plagrs. Here is a guideline for parameter settings.

a crucial role in optimization. However, our goal is notto  Population size.If the population size is too small, the

build an accurate distribution of solutions. A sum of everyap betweemnin andmaz is narrowed. Subsequently, the

pairwise couplings is sufficient for measuring the quantityesolution is not enough for distinguishing between a ran-

of building blocks, because the sum counts the quantity efom population and a nonrandom population. T and

higher-order interactions. For examples: max should be calculated to make sure that the chosen pop-

ij

vl V2 U3 U4 U1 V2 U3z U4 ulation size gives a large resolution.
#1 0 0 O O/#1 0 O O O Fitness thresholds.T; should not be too small because
#2 0 0 1 1|#2 0 0 0 O it makesP; random (falling within the rejection area). The
#3 1 1 0 O|# 1 1 1 1 first hypothesis involves high-quality solution®; should
#4 1 1 1 1(#4 1 1 1 1



be set at a fitness value that indicates “high quality”. A rule Quantity of Building Blocks
of thumb is to setP; a little bit greater than the average  nax
fitness of a random populatiofd;,, can be at most the opti-

mum. Increasing the number of fithess thresholdslikes _.--©

zooming in the plot. Settingn to be too small makes loss of

visual information because of zooming out. It is difficult to /

make a good-looking plot at the first time without any prior Rejection Area

knowledge about the fitness function. However, the sweet min (0) 3 3 B P Population

spot for settingn is large for trial-and-error method.
Rejection area. The first hypothesis is rejected if the
quantity of building blocks is close tmin (falling within
the rejection area). It is difficult to draw a line that di-
vides building blocks and randomness because the qudintinuity between?, and P;,,. To validate the second
tity of building blocks is defined over the whole populationhypothesis, we define the degree of discontinuity between
However, we can test the randomness separately for evdWyo populations. The degree of discontinuity betwe&n
pairwise coupling. There a&/ — 1) /2 pairwise couplings andPx is defined as:
(the number of elements in the upper triangle of the chi-
square matrix) wheré is the number of solution bits. The Dp,.p,., = Z(mfj - mffl)zy i< 4)
chi-square test is a test procedure for studying random data ij
[9]. It is summarized as follows. We observe a solution . . . .
at bit ; and bitj. The number of observations is set at gvhere(mi;) is the chi-square matrix o, and (m;") is
fairly large number such that an expected frequency is fife chi-square matrix oP,...;. The degree of discontinu-

or more. An observation falls into four categories (thredY 'S Plotted in Figure 2.min andmaz are the minimum

degrees of freedom) that are “00.” “01," “10, “11" We and the maximum degree of discontinuityin is always

compute the chi-square value (an element of the chi-squaf€'°, ¢ @nd P11 are identical)maz is the degree of dis-

matrix). The selected percentage points of the chi—squa?gntmu'ty between a random population and a population

distribution is shown below: in which all bits are zero. We normalizeax to 1. The

Figure 1: Quantity of building blocks.

Chi-square value Percentage point second hypothesis holds if and only if the degree of discon-
11.345 99% tinuity does not fall within the rejection area (being close
7.815 95% to max means a drastic change of common structures be-
6.251 90% tween adjacent populations). The other parameter settings

If the chi-square value is greater than 99% entry, the otire similar to that of the first hypothesis.
served data is not sufficiently random. If the chi-square
value lies between the 95% and 99% entries, the observed
data is suspect. If the chi-square value lies between the 90% max (1)
and 95% entries, the observed data might be almost suspect. Rejection Area
Otherwise, the observed data passes the randomness test.
We also reject the building-block hypothesis if more than a
half of all pairwise couplings pass the randomnesstest. | ~  ® ©
The number of conducting tests. As testing the hy- min () e P p—p~ Population Pair

pothesis is probabilistic, the hypothesis is accepted by a ma- v #3 s m
jority vote or an average quantity of building blocks. The
number of conducting tests is up to your desired confidence
in accepting the hypothesis.

Generating solutiong?;, of which their fitness is greater . _— .
or equal to a constanfl};, is not obvious. Fortunately, 4 Testing the Building-block Hypothesis

we can Choose_ a small _problem size so that We can €Mlhis section tests the building-block hypothesis withbit
merate all possible solutions (for example, choosing 8-cit

TSP rather than 100-city TSP). Intuitively, if the hypothesi%nemaxbXg_trap' parabola, and two-dimensional Euclid-

i . 15
holds for 8-city TSP, the hypothesis would hold for 100-cityan TSI;’;:)}Ti:((ajleL’;i:étd erl?max Fonemax {0, 1} =
TSP. Enumerating all possible solutions may not be required’ "™’ '
if there is an effective method for generating a set of solu- 15
tions that is subject to a fithess constraint. Fonemax = Y _ b; (5)

The second hypothesis states that the solution quality can i=1
be improved by composing building blocks. In other wordsyhered; is the it" bit of the solution. Thesx3-bit trap
the common structures @t are similar to that of, ., be- . . . {0,1}'% — {0, ...,15} is defined as:
cause the populatioR 1 is produced by composing build-
ing blocks from the previous populatiof,. The second
hypothesis would be accepted if there exist a similarity or

Degree of Discontinuity

Figure 2: Degree of discontinuity.

Fsx3(B1B2BsByBs) = Y _ F3(By) (6)
i=1



whereB; € {0,1}3. F3 denotes 3-bit trag : {0,1}® —

{0,1,2,3) that is defined as: Table 1: Binary coding and Gray coding.

Solution Binary coding Gray coding

3 cifu=3 -4 100 110

F(bibabs) = { 2 —u ; otherwise, ) -3 101 111

-2 110 101

whereu = " b; andb; € {0,1}. The quantity of building -1 111 100
blocks and the degree of discontinuity are shown in Figure +0 000 000
3 (see also Table 2). The building-block hypothesis holds +1 001 001
for 15-bit onemax and x3-trap because of high quantity +2 010 011
of building blocks and low degree of discontinuity. In ad- +3 111 010

dition, the number of pairwise couplings that pass the ran-
domness test drops to zero. It is clear that the populations

are composed of building blocks and not random. It magoding is very similar to the second. If the salesman travels
seem counter-intuitive that onemax (first-order interactiorffom city i to j, the matrix element at rowand columry is

gives a higher quantity of building blocks than thatof3-  one. Otherwise, the matrix element is zero. The first coding
trap (third-order interaction). The high-quality solutions offesults in 24-bit solutions, but the second and the third cod-
onemax are composed of “1” more than “0.” The3-trap INg results in 56-bit solutions. We do not count the binary

solutions are aligned chunks of “000” and “111.” The oneStrings that are invalid tours. The expected frequencies of
max and5x3-trap solutions of which the fitness is 12 are®?Serving a pairwise coupling being *00,” “01,"*10,” *11
shown below. are not identical for TSP codings. Equation 2 assumes the

identical expected frequencies. In the case of TSP codings,

15-bi X 3- ) .
#1 Oogltiltlﬂirlnlalxll 0000500?65?{)11111 the ChiSquare(i, 7) is defined as follows.
#2 001011111111111 000000111000111 (Ooo — E00)®> (001 — E01)®>  (O10 — E10)®>  (O11 — E11)?
#3 001101111111111 000000111111000 Foo U Ba T Ee T EBEn
#4 001110111111111000001111111111 9)
#5 001111011111111 000010111111111 TheO,, andE,, are the observed frequencies and the ex-

By the chi-square definition, the onemax solutions are moggected frequencies, respectively. The expected frequencies,
dependent (less random). The quantity of building blocks i&.,, are computed by enumerating all possible solutions.
1143 and 720 for onemax arick 3-trap, respectively. The The quantity of building blocks and the degree of discon-

result is counter-intuitive. tinuity are shown separately in Figure 5 and 6 due to the
The parabold}arabola : {0, 1}3? — Tis defined as: different lengths in codings (see also Table 4 and 5). The
building-block hypothesis is rejected for the first and the
F (@) =1 Lz ®) second codings because the quantity of building blocks is

parabola 1010° obviously low. Plus more than a half of pairwise couplings

pass the randomness test. The solutions encoded by the first

There are two alternatives for encoding solutions, the binal ; ; .
coding and Gray coding. The 3-bit coding is shown in Tae_i’nd the second codings are likely random bits rather than

. . . . ._composing of some common structures. The third coding
ble 1 (actual codings are 3.2 b'ts).' T_he quantity of_bml@m ives a higher quantity of building blocks that distinguishes
blocks and the degree Of dlscqntmuny are shown n F|gu e third coding from the others. However, the quantity
4 (see also Table 3). Itis obvious that Gray coding giveg; 1, iiing plocks is a little bit lower than that dfx3-

a higher quantlt_y Of. bund!ng blocks. The h_|gh d'scqntmu'trap function. Thes x3-trap is invented to have a sufficient
ity of Gray _codlng is typical for the q_ua_mtlty of building amount of building blocks. In terms of quantity of build-
blocks that increases sharply. The building-block hypothelehg blocks, the hypothesis would be accepted but more than

sis is rejected for binary coding because of the low quantity S :
of building blocks and more than a half of pairwise cou—XO/0 of pairwise couplings pass the randomness test. For

. ; e third coding, we accept the hypothesis with a low confi-
plings passing the randornnes; test. Qn the other hand, tﬂeence. The m?;\in point mpight no¥%e accepting or rejecting
.hypOtheS'S is accepted with a high confidence for Gray co he hypothesis. Figure 5 and 6 suggest that the third coding
mg\'Ne randomize an instance of TSP (Figure 7). The nunE superior to the others. The third coding would be the best
ber of cities is fixed at eight. Each city is randomly placedn©Ice if we are going to solve TSP with an optimizer that
%n a10>|<10 ghrida_The cosbt of travelic? J f[rohm ?iw 07 ifS eX?Lmt;r;g{incrglorc]);:irrl:l(i:;;:iisr; problems, there are many
identical to the distance betweérandj. The fitness of a . : . ms, c are r
solution is 100 subtracted by tour length. There are threghoices for fitness function and coding. Designing fitness
codings that are commonly used. The first coding, each cifynction and coding is problematic because it is evaluated
is tag.ged with a 3-digit pinary number_ (000" to f‘lll”.). by the end result (the quality of a best-so-far solution). The
The first three bit of a binary solution is the starting citysolution quality is affected by many parameters that inter-
The next city the salesman visits is the next three bits. Thgst with each other. Therefore it is difficult to find out a
second coding represents a tour by a matrix. If the salesmafbper fitness function and a proper coding. Our method for

visits city: beforej, the matrix element at rowand column : - o
; ) - ) . testing the building-block hypothesis is separated from the
j is one. Otherwise, the matrix element is zero. The thlrde 9 9 yp P



Quantity of Building Blocks Degree of Discontinuity
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Figure 3: Quantity of building blocks (left) and degree of discontinuity (right). The fitness functions-hitonemax and

5x3-trap. The population size is set at 100. Each point is averaged from 10 independent runs. The fitness thresholds are 8,
9,10, 11, 12 (see also Table 2).
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Figure 4: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is parabaf/(01°)

with binary and Gray codings. The population size is set at 500. Each point is averaged from 10 independent runs. The
fitness thresholds af®—2, 107, 1074, 1072, 0 (see also Table 3).
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Figure 5: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is 100 subtracted by a
tour length (coding 1). The population size is set at 500. Each point is averaged from 10 independent runs (an instance of
TSP is randomized every run). The fitness thresholds are 45, 48, 51, 54, 57, 60, 63 (see also Table 4).
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Figure 6: Quantity of building blocks (left) and degree of discontinuity (right). The fitness function is 100 subtracted by
a tour length (codings 2 and 3). The population size is set at 500. Each point is averaged from 10 independent runs (an
instance of TSP is randomized every run). The fitness thresholds are 45, 48, 51, 54, 57, 60, 63 (see also Table 5).



Coding 1:

000 101 010 001 110 100 111 011
Coding 2: Coding 3:
01234567 01234567
ofx 1111111 0[X 0000100
1/0 X 011011 1/0 X0 00010
2/01 Xx11011 2/0 1 X00000
3/000 X0000 3/100X0000
4/0 001 X001 4/0 000 X001
5/01111X11 5/00100X00
6/0 00110 X1 6/0 00010 X0
7/00 01000 X 7/0001000 X

Figure 7: Three codings for TSP. A tour (left) is encoded to a binary string and matrices (right). The tour length is 28.58
and the fitness is 10028.58 = 71.42.

Table 2: Averaged number of pairwise couplings that pass the randomnessadest 105). The fithess functions are
15-bit onemax and x 3-trap. This table corresponds to the data in Figure 3.

Table 3: Averaged number of pairwise couplings that pass the randomness.tast( 496). The fitness functions is

Fitness | Averaged number of pairwise couplings that pass the randomness test
function P, P, P P, Ps
Onemax 26% 3% 0% 0% 0%
5x3-trap 72% 45% 21% 3% 0%

parabola { — 22 /10) with binary and Gray codings. This table corresponds to the data in Figure 4.

Table 4: Averaged number of pairwise couplings that pass the randomnesadest(276). The fitness functions is 100
subtracted by tour length (coding 1). This table corresponds to the data in Figure 5.

Coding | Averaged number of pairwise couplings that pass the randomness test
P Py P P, Ps
Binary 88% 86% 76% T7% 67%
Gray 80% 58% 41% 36% 22%

Coding Averaged number of pairwise couplings that pass the randomness test
Py Py P Py Ps Fs Pr
1 91% 90% 84% 80% 70% 67% 59%

Table 5: Averaged number of pairwise couplings that pass the randomnessdest(1540). The fitness functions is 100
subtracted by tour length (codings 2 and 3). This table corresponds to the data in Figure 6.

Coding Averaged number of pairwise couplings that pass the randomness test
P Py Ps P, P Ps P,
2 93% 92% 92% 92% 89% 86% 83%
3 88% 86% 81% 73% 65% 53% 40%

optimization. A large number of fitness functions and codwith the third coding, the hypothesis is accepted with a low
ings can be tested in a short time by setting a small probleconfidence. Future work will be to explore the quantity
size. of building blocks in a wide range of real-world applica-
tions. The final outcome is a number of problem domains
for which the building-block identification and composition
are applicable.

Two important measurements are defined, the quantity of

building blocks and the degree of discontinuity. We ShOVBiinography

that the building-block hypothesis can be tested for a small

problem size. The building-block hypothesis holds f6¢ [1] C. Aporntewan and P. Chongstitvatana. Chi-square
bit onemaxp x 3-trap, and parabola (Gray coding). For TSP matrix: An approach for building-block identification.

5 Conclusion
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