
A compact code 16-bit processor for embedded applications

Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University

Bangkok 10330, Thailand
e-mail: prabhas@chula.ac.th

Abstract

This work proposed an instruction set that
achieved small executable codes for embedded
applications. The aim of the design is to reduce the
size of the executable code while maintaining the
execution speed. Rather than applying instruction
compression which required complex additional
circuits, the approach taken in this work is to design
the instruction set for the purpose of compact code.
The result from a small set of benchmark illustrated
that the static code size can be half of a conventional
instruction set while the execution speed is
maintained.

Key-Words: Compact code, instruction
compression, embedded processor.

1. Introduction

For small embedded applications, one chip
solution has been widely used due to its cost
advantage. The cost of this type of application
includes processor area, code segment area and data
segment area. The size of an executable code is a
major part of the total cost so reducing the size is an
important issue. There are many approaches to
reduce the size of executable code [1-10]. The
instruction compression applies data compression and
compiler optimization to the executable code.

There are two major approaches: code compression
and code compaction. The first approach, code
compression, uses data compression algorithms on
machine code. Decompression will slow down the
system operation in code compression. On the other
hand, code compaction reduces the program size by
using compiler optimization in rearranging and
eliminating superfluous code. This allows the
compressed program to be executed immediately
without needing decompression as in the code
compression. However, using compression
algorithms in code compression is more effective in
reducing the program size more using code
compaction.

This work takes a different approach. The design of
the instruction set is aimed to reduce the code size.
There are two possibilities to reduce the code size:

1) Designing the instruction set such that the total
number of instruction in an application is
minimised.

2) Designing each instruction to be small.

The next section exposes the main contribution of
this work, the instruction set design.

2. Instruction set

For a 16-bit processor, a 16-bit fixed length
instruction format will allow faster instruction fetch,
plus it is large enough to contain three small
arguments, so it is adopted as the choice of the
instruction size. The instruction set is divided into
three main groups: arithmetic/logic, load/store, and
control flow. The arithmetic and logic group, add sub
and or xor etc., has three arguments. The load and
store group has one register and one 9-bit address.
The control flow group, jmp, call, jt, jf, ret etc., has
one displacement, the relative displacement is 6 bits,
the absolute address is 14 bits. The instruction has 4
formats (Fig. 1):

xx abs:14 jump, call
xx op:2 r1:3 a:9 load, store direct
xx op:5 r1:3 r2:3 r3:3 arithmetic, logic
xx op:5 r1:3 d:6 control flow

Figure 1. The instruction set format

With these instruction formats, the processor has 14-
bit code address (16 Kwords), 9-bit address that
directly access data (512 words), 16-bit total data
address (64 Kwords). The direct access data space is
used to store the global data. The whole data space
can be accessed via index addressing. If a larger
code space is needed, a segment extension can be
implemented to extend to 64 Kwords (4 segments) as
the program counter is 16 bits. A part of instruction
set is shown in Fig. 2.

Instruction Meaning

jmp a jump to ads
call a call ads
ret s return
retv r1 s return r1
jt r1 d if r1 != 0 pc+=d
jf r1 d if r1 == 0 pc+=d
aop r1 r2 r3 ri = r2 aop r3
aop r1 r2 #n r1 = r2 aop n
ld r1 a r1 = M[a]
st r1 a M[a] = r1
ldx r1 r2 r3 r1 = M[r2+r3]
stx r1 r2 r3 M[r2+r3] = r1
mov r1 r2 r1 = r2
mvx r1 r2 pass r2 to next r1

where aop is add, sub, and, or, xor, not, shl, shr etc.

Figure 2. A part of the instruction set

As the argument is limited to 3 bits, the number of
direct-accessed variable is eight, they are denoted
r0..r7. r1..r7 are local variables. r0 is special, it is
global and it is used to return a value to the caller.
The following code (Fig. 3) shows an example of the
use of this instruction set. This assembly language
fragment shows a routine to swap two elements of the
array "data" and how the main function passed
parameters; i, j and call "swap":

fun swap a b [t tmp dp]
 ld dp data
 ldx t dp a ; t=data[a]
 ldx tmp dp b ; tmp=data[b]
 stx tmp dp a ; data[a]=tmp
 stx t dp b ; data[b]=t
 ret 0

fun main [i j]
 ...
 mvx r1 i
 mvx r2 j
 call swap
 ...

Figure 3. A fragment of an assembly program

3. Register Window
 A "frame pointer", FP, is a pointer to the base of a
current activation record. Accessing a register is
relative to FP.

rn = R[FP-n] (1)

where R[] is the buffer.

The structure of an activation record is as follows:

hi

old pc <- FP
r1
r2
...
r7

low

Figure 4. The structure of an activation record

The size of the current activation record is specified
in the "call" and "ret" instructions, so it is not
necessary to store that information in the activation
record.

To directly support the creation and deletion of an
activation record, a part of stack segment is cached
into the register set. The registers become a buffer
storing the most recent activation record. This buffer
is implemented as a circular buffer (Fig. 5).

When the buffer becomes overflow, such as the
creation of a new activation record, the oldest
elements will be "spill" to the memory. On returning
from a function call and deleting the current
activation record, an underflow may occurs. When
this happens, the buffer is restored by "pull" old
elements from the memory. The larger buffer will
reduce the number of spill/pull.

Figure 5. The circular register buffer

The maximum size of an activation record is eight.
The size of buffer should be at least twice the
maximum size of an activation record to prevent
"thrashing". Two pointers: back, front, are used to
keep track of the register window. FP is between
back and front. This constraint is always true:

 front - back + 1 ≤ W (2)

where W is the size of buffer.

front

 FP

back

Please note that, the arithmetic operations on these
pointers: front, back, FP, must be modulo W as the
buffer is circular of size W.

The spill/pull conditions can be described as follows:
when accessing a register x, if x is outside the
window and overflow/underflow is (front - back + 1
> W)

1) x > front move front up,

f' = front,
front = x,
if overflow then
 move back up
 b' = back,
 back = back + (front - f'),
 spill registers (b'.. back) to memory

2) x < back move back down,

b' = back,
back = x,
pull registers (b'.. back) from memory
if underflow then
 move front down
 front = front - (b' - back)

When underflow occurs, it is not necessary to pull
registers because it is not the current activation
record. In fact, the "forwarding" register, (registers
between FP and front), will be used only to pass
parameters. They will never be overflown into the
current activation record as the size of register
window is at least twice the size of maximum
activation record. There is no need to "spill" there
registers when the front is moved down.

4. Experimental results
 The following benchmark programs are used:

bubble sort 20 items
hanoi move 6 disks
matmul multiply 8x8 matrices
perm permuting 4 digits
quick sort 20 items
sieve find prime ≤ 500

Figure 6. The benchmark programs

To measure the effectiveness of the proposed
scheme, this instruction set is compared to its
predecessor, sm3 [11]. Sm3 is a stack-based 16-bit
processor, it is used as a reference. This processor has
byte-coded instructions, with the size one, two or
three bytes depending on the size of its argument.
This reference instruction set is typical for a byte-

coded instruction set. Table 1 compare the static code
size in byte. Table 2 compare the dynamic
instruction count (no. of instruction). Sizing the
buffer, Table 3 shows the number of spill/pull of all
tested programs.

Table 1. The static code size (byte), the proposed
ISA xs1, the reference sm3, average xs1/sm3 is 0.50

 sm3 xs1 xs1/sm3
bubble 282 142 0.50
hanoi 200 104 0.52
matmul 575 288 0.50
perm 249 102 0.41
quick 353 186 0.53
sieve 381 194 0.51

Table 2. The dynamic instruction count (no. of
instuctions), the proposed ISA xs1, the reference
sm3, average xs1/sm3 is 0.41

 sm3 xs1 xs1/sm3
bubble 11925 4379 0.37
hanoi 2317 1198 0.52
matmul 13886 6566 0.47
perm 5469 2083 0.38
quick 3972 1853 0.47
sieve 17151 4376 0.26

Table 3 Number of spill+pull of varying buffer size

no.of reg 16 24 32
bubble 0 0 0
hanoi 165 71 29
matmul 66 0 0
perm 548 212 52
quick 354 246 230
sieve 2 0 0

It is not possible to compare the number of clock
cycle as the implementation of xs1 has not been
completed. The cost of spill/pull depends on the
access time of the memory. Because of the register
buffer, accessing local variables, which is the most
frequent, is fast. The register buffer is the internal
fast register. From Table 1, the executable code size
is half of the size of the reference so the goal of
achieving a small executable is satisfied. Table 2
indicates the performance comparsion. The
performance of xs1 chip should be good as it
executed around 41% the number of instruction count
of the reference. The effect, together with the fast
instruction fetch, as xs1 has 16-bit fixed length
instruction format, will result in very good
performance compared to the reference. The average

speedup will be at least 60% (more than 2 times
faster), not taking into account the cost of spill/pull.
The number of spill/pull in Table 3 is reasonably
small compared to the number of executed
instruction. It should not have a huge impact on the
cost.

5. Related work
 A stack-based byte-coded instruction set is well-
known to be small, for example JVM [12]. However,
to reduce the number of instruction, a three-argument
register-based instruction set is more compact. A
proposal to combine the best of these two ideas is
introduced in [13], where the instruction set is three-
argument register-based but includes an automatic
register windowing to manage the activation record
during call/return.

One disadvantage of three-argument register-based
instruction set is the size of each instruction. There
are many fields for each instruction hence the size is
not small. The popular approach to reduce the size of
each instruction is to limit the range of argument,
such as the number of register, the size of literal
contained in the instruction. This approach is used in
two well-known products widely used in mobile
devices, ARM/Thumb [14] and MIPS/MIPS16 [15]
where the compact form of their instruction sets are
available.

The use of register windowing to manage parameter
passing was invented at the period of RISC concept
in RISC1[16] and still use in present in SPARC [17].
The caching of stack segment into an on-chip buffer
has been done in Picojava chip [18].

6. Conclusion
 This work proposed a design of a compact code
instruction set for a processor suitable for embedded
applications. The main goal is to achieve a small
executable code. Using a small set of benchmark, the
static of size is half of the reference. The number of
executed instruction is also greatly reduced to less
than half of the reference. To evaluate the
performance, the detailed design of microarchitecture
must be completed so that the cost of spill/pull of
register buffer can be evaluated.

7. References

[1] M. Kozuch, and A. Wolfe, "Compression of embedded

system programs", Proc. Int. Conf. on Computer
Design: VLSI in Computers & Processors. IEEE
Computer Society Press, Los Alamitos, Calif. 1994.

[2] C. Lefurgy, P. Bird, I. Chen, and T. Mudge,
"Improving code density using compression

techniques", Int. Symposium on Microarchitecture 30
(1997).

[3] I. Ernst, W. Evans, C. W. Fraser, S. Lucco, and T. A.
Proebsting, "Code compression", Proc. of the ACM
SIGPLAN'97 Conf. on Programming Languages
Design and Implementation 32 (15 – 18 June 1997) :
358 - 365

[4] M. Game, and A. Booker, "CodePack: Code
Compression for PowerPC Processors", MicroNews 5
(1) , IBM, 1999.

[5] C. Lefurgy, E. Piccininni, and T. Mudge, "Evaluation
of a high performance code compression method",
Proc. Annual Int. Symposium on Microarchitecture
32nd (1999) : 93-102

[6] K. Cooper and N. McIntosh, "Enhanced code
compression for embedded RISC processors", Proc.
ACM SIGPLAN '99 Conf. on Programming language
design and implementation, May 1-4, 1999, Atlanta,
GA, pp.139-149.

[7] H. Lekatsas, J. Henkel, W. Wolf, "Code Compression
for Low Power Embedded System Design", Proc. of
the 37th Conf. on Design automation, 2000.

[8] W. Evans and C. Fraser, "Bytecode Compression via
Profiled Grammar Rewriting", in ACM Sigplan
Conference on Programming Language Design and
Implementation, 2001, pp.148-155.

[9] V. Kotrajaras, P. Chongstitvatana, "Nibbling Java byte
code for resource-critical devices", National Conf. of
Computer Science and Engineering, Thailand, 2003.

[10] P. Nanthanavoot, P. Chongstitvatana, "Code-size
reduction for embedded systems using bytecode
translation unit", ECTI 2004.

[11] A. Burutarchanai, P. Nanthanavoot, C. Aporntewan, P.
Chongstitvatana, "A stack-based processor for
resource efficient embedded systems", Proc. of IEEE
TENCON 2004, 21-24 November 2004, Thailand.

[12] B. Joy (Ed), G. Steele, J. Gosling, G. Bracha,
Java(TM) Language Specification (2nd Ed), Addison
Wesley Pub., 2000.

[13] P. Chongstitvatana, "The art of instruction set design",
invited paper in Conf. of Electrical Engineering,
Thailand, 2003.

[14] Advanced RISC Machines Ltd. An Introduction to
Thumb. March 1995.

[15] K. D. Kissell. MIPS16: High-density MIPS for the
Embedded Market. In Proc. of Real Time Systems '97
(RTS97), 1997.

[16] D. Patterson, "Reduced instruction set computers",
Communications of the ACM, vol.28, no.1, 1985,
pp.8-21.

[17] http://www.sun.com/processors/
[18] H. McGhan and M. O'Conner, "PicoJava : a direct

execution engine for Java bytecode", IEEE Computer,
Vol.31 No. 10, 1998.

