
1-4244-0023-6/06/$20.00 ©2006 IEEE CIS 2006

Updating Strategy in Compact Genetic Algorithm
Using Moving Average Approach

Sunisa Rimcharoen, Daricha Sutivong and Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Bangkok Thailand

suni16@hotmail.com, daricha.s@chula.ac.th, prabhas@chula.ac.th

Abstract— The Compact Genetic Algorithm (cGA) has a

distinct characteristic that it requires almost minimal memory to
store candidate solutions. It represents a population structure as
a probability distribution over the set of solutions. Although cGA
offers many advantages, it has a limitation that hinges on an
assumption of the independency between each individual bit. For
example, cGA fails to solve a deceptive function or the so called
trap function, which is a standard difficult test problem for
genetic algorithm. This paper proposes applying a moving
average technique to update a probability vector in the compact
genetic algorithm. This method requires fewer evaluations and
achieves a higher solution quality. The results are compared with
the original cGA, sGA, persistent elitist cGA (pe-cGA) and
nonpersistent elitist cGA (ne-cGA). The compared results
illustrate that the proposed methodology can successfully
improve the solution quality by modifying the updating strategy
of cGA.

Keywords—compact genetic algorithm, moving average,
updating strategy

I. INTRODUCTION
The genetic algorithm (GA) [1, 2] is an optimization

algorithm inspired by natural evolution [3]. The GA is
performed by creating a population of solutions and uses
genetic operators, e.g. reproduction, crossover and mutation to
produce offsprings. The solutions are gradually improved by a
selection scheme which selects the survivors by their fitness
values defined by users. Contrary to the GA, the compact
genetic algorithm (cGA) proposed by Harik, Lobo and
Goldberg [4] represents the population as a probability
distribution over the set of solutions; thus, the whole population
needs not to be stored. At each generation, cGA samples
individuals according to the probabilities specified in the
probability vector. The individuals are evaluated and the
probability vector is updated towards the better individual. The
cGA mimics the order-one behavior of simple genetic
algorithm (sGA) with uniform crossover using a small amount
of memory and achieves comparable quality with
approximately the same number of fitness evaluations as the
sGA. The cGA reduces the size and power requirements of the
system by representing the population as a probability vector
rather than a collection of bitstrings. Thus, these advantages
translate into a flexible hardware implementation. There are
several research works that apply cGA to hardware
implementation [5-7] because it is easy to implement cGA

using common VLSI techniques. Although it has many
advantages, the cGA does not provide acceptable solutions to
difficult problems such as a deceptive problem or so called trap
function, which is a standard difficult test problem for GA. To
improve the cGA, Zhou, Meng and Qiu [8] presented an
improved cGA using mutation, named mutated by bit compact
genetic algorithm (MBBCGA). At each generation, MBBCGA
generates only one individual and then mutates this individual
bit by bit. Ahn and Ramakrishna [9] proposed persistent elitist
compact genetic algorithm (pe-cGA) and nonpersistent elitist
compact genetic algorithm (ne-cGA) for solving difficult
optimization problems. The pe-cGA keeps the current best
solution until a better solution is found. The ne-cGA relaxes
selection pressure of the pe-cGA by restricting the length of
elite chromosome’s inheritance, thereby mitigating the
possibility of premature convergence. The ne-cGA further
improves the performance of the pe-cGA by avoiding strong
elitism that may lead to premature convergence.

In order to improve the ability of cGA, we propose using a
moving average technique to modify the updating strategy of
cGA. This technique is simple to understand and implement.
The concept behind this method is to wait for more information
in order to reduce of incorrect decision. The moving average
approach can help slowing down the increasing or decreasing
of the probability vector. The algorithm implicitly waits to see
the trend, which could lead to a better decision strategy.

The paper is organized as follows: Section II reviews the
compact genetic algorithm. Section III describes the solution
technique using a moving average approach. Section IV
contains the test problem and the experiment setup. Experiment
results and analysis are provided in Section V. A conclusion is
drawn in Section VI.

II. THE COMPACT GENETIC ALGORITHM
The Compact Genetic Algorithm (cGA), proposed by

Harik, Lobo and Goldberg [4], is a special class of genetic
algorithms. It represents the population as a probability
distribution over the set of solutions; thus, the whole population
needs not to be stored. At each generation, cGA samples
individuals according to the probabilities specified in the
probability vector. The individuals are evaluated and the
probability vector is updated towards the better individual.
Hence, its limitation hinges on the assumption of the
independency between each individual bit.

690

The cGA has an advantage of using a small amount of
memory and achieves comparable quality with approximately
the same number of fitness evaluations as sGA. The
pseudocode of cGA is shown in Fig. 1. The parameters are a
population size(n) and a chromosome length(l).

1) initialize probability vector
 for i := 1 to l do p[i] := 0.5;

2) generate two individuals from the vector
 a := generate(p);
 b := generate(p);

3) let them compete
 winner, loser := compete(a, b);

4) update the probability vector towards
the better one

 for i := 1 to l do
 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then p[i] := p[i] + 1/n
 else p[i] := p[i] – 1/n;

5) check if the vector has converged
 for i := 1 to l do
 if p[i] > 0 and p[i] < 1 then
 return to step 2;

Figure 1. Pseudocode of the cGA

First, the probability vector p is initialized to 0.5. Next, the

individuals a and b are generated from p. The fitness values are
then assigned to a and b. The probability vector is updated
towards the better individual. In the population of size n, the
updating step size is 1/n; the probability vector is increased or
decreased by this size. The loop is repeated until the vector
converges.

Harik, Lobo and Goldberg [4] also propose a modification
of the compact genetic algorithm with a higher selection
pressure. It simulates a tournament size s. Fig. 2 shows the
modification of cGA.

1) generate s individuals from the vector
and store them in S

 for i := 1 to s do S[i] := generate(p);

2) rearrange S so that S[1] is the individual
with the highest fitness

3) Compare S[1] with the other individuals
 for i := 2 to s do
 begin
 winner, loser := compete(S[1], S[i]);

 update probability vector
 (step 4 of cGA code)

 end

Figure 2. Pseudocode of a tournament cGA

III. MODIFYING UPDATING METHOD

This paper proposes applying a moving average technique
to update the probability vector in compact genetic algorithm.

A moving average approach is one of the oldest and most
popular technical analysis tools for trend identification in
financial application. A simple moving average is calculated by
adding together the closing prices of a financial instrument
over a certain number of days and then dividing the sum by the
number of days involved. For example, the five-day average
for a stock price would be calculated by taking five days’ worth
of data, adding them together, and dividing by five. Assume
that the following table is the closing prices for the last seven
days of market.

TABLE I. EXAMPLE OF STOCK PRICES

day1 day2 day3 day4 day5 day6 day7

1311 1284 1271 1307 1388 1304 1368

To calculate the moving average: take the first five days

worth of data and calculate the average value. Then add the
prices for day 2-6 together and divide by five. Continue doing
this for day 3-7 and so on. From table I, the moving average for
day 1-5 is (1311 + 1284 + 1271 + 1307 + 1388) / 5 and the
moving average for day 2-6 is (1284 + 1271 + 1307 + 1388 +
1304) / 5 respectively.

We apply the moving average approach to update the
probability vector by adding the circular array size M that is a
window size of the moving average. This modification replaces
a step 4) of the standard cGA shown in Fig. 1. The new step 4)
is described in the following pseudocode.

 4.1) calculate the updating rate (q[i])
 for i := 1 to l do
 if winner[i] ≠ loser[i] then
 if winner[i] = 1 then q[i] := q[i] + 1/n
 else q[i] := q[i] – 1/n;

4.2) calculate the moving average (movavg)

for i := 1 to l do
 for m := 1 to M do
 movavg = movavg + q[i][m]

 movavg = movavg / M;
 p[i] = movavg;

Figure 3. Pseudocode of modification of cGA

IV. TESTING PROBLEMS

In the experiments, we test the algorithms using two test
problems: 100 bit one-max problem and 3x10-bit trap problem.

691

The data are averaged over 50 runs. All runs end when the
vector fully converges, that is all positions are zero or one.

One-max problem is a simple test problem for GA. This
problem finds a maximum value in which all bits are one. The
fitness value is assigned according to the number of bits that
are one in the chromosome. Thus, the maximum value is equal
to the chromosome length.

The trap function [10] is a difficult test problem for GA.
The general k-bit trap function is defined as:

()






−
−

=
=− otherwise

1

if

;

;
... ow

ow

high

10

k
fuf

kuf
bbF l

l
kk

 (1)

where bi ∈ {0, 1}, u = ∑ −

=

1

0

k

i ib , and fhigh > flow. Usually, fhigh

is set at k and flow is set at k-1. The test function Fk × m is
defined as:

() () { }k
i

m

i
ikmmk BBFBBF 1,0,...

1

0
10 ∈=∑

−

=
−× (2)

This function fools gradient-based optimizers to favor

zeroes, but the optimal solution is composed of all ones. The k
and m may vary to produce a number of test functions. For
example, 3x5 bit trap function is shown in table II.

We test the algorithm on these two problems using a
moving average window size of 2, 3, 4, 5, 10 and 15. The
results are compared with the original cGA, sGA, pe-cGA and
ne-cGA.

TABLE II. EXAMPLE OF 3X5 BIT TRAP FUNCTION

Ind. b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fit.

1 111 111 000 111 000 13.0
2 000 000 111 000 111 12.0
3 111 111 011 111 111 12.0
4 111 000 000 111 000 12.0
5 111 001 010 111 111 11.0
6 000 000 000 000 111 11.0
7 111 001 110 111 111 10.0
8 000 000 000 000 000 10.0

V. EXPERIMENT RESULTS AND ANALYSIS

In the experiments, we test the algorithms using two
problems: one-max and trap problems. This section presents
the experiment results and compares the proposed technique
with the cGA, sGA, pe-cGA and ne-cGA in terms of the
solution quality and the number of function evaluations. The

results of cGA and sGA are from the original paper of cGA
[4], and the pe-cGA and ne-cGA results are from [9].

First, the results from the one-max problem are shown. Fig.
4 shows the solution quality, and Fig. 5 shows the number of
function evaluations needed to converge. The results from the
moving-average cGA (mcGA) are comparable to sGA and
cGA in terms of performance and solution quality. From Fig. 4
and Fig. 5, it can be seen that using the same number of
function evaluations, the moving-average cGA obtains higher
solution quality than the cGA and sGA.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 20 40 60 80 100

S
ol

ut
io

n
Q

ua
lit

y
(th

e
nu

m
be

r o
f c

or
re

ct
 b

its
)

Population size

sGA
cGA

mcGA

Figure 4. Comparison of solution quality on one-max problem.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100

Fu
nc

tio
n

ev
al

ua
tio

ns

Population size

sGA
cGA

mcGA

Figure 5. Comparison of the number of function evaluations on one-max
problem.

Second, the results from the trap problem are illustrated.
Fig. 6 shows the comparison of sGA, cGA, pe-cGA, ne-cGA
and cGA with a moving average (mcGA). The graphs illustrate
that the moving average cGA outperforms the original cGA in
all cases in terms of solution quality and the number of
function evaluations. Table III shows the details of window
size variations versus the average number of correct building
blocks and the average number of function evaluations taken
to converge.

692

TABLE III . PERFORMANCE COMPARISON AT VARIOUS WINDOW SIZES

Window Population Tournament Size 2 Tournament Size 4 Tournament Size 8

Size Size BBs Evaluation BBs Evaluation BBs Evaluation

2 8 3.84 141.20 3.42 70.88 3.00 44.96
 500 4.68 17699.68 6.88 10531.76 7.98 7875.52
 1000 4.22 38320.96 7.16 22483.84 8.16 16952.48
 1500 4.00 56551.88 7.72 32065.92 8.38 23490.56
 2000 3.36 76136.00 8.54 43296.88 9.40 30356.16
 2500 3.80 96455.92 8.28 54014.88 8.88 37940.00
 3000 3.56 118202.44 8.56 62631.84 8.92 46039.68

3 8 3.68 150.36 3.46 69.92 3.26 44.48
 500 4.60 18163.12 7.48 10437.36 7.90 7874.08
 1000 3.90 37549.80 7.48 22438.00 8.02 17321.60
 1500 3.50 56066.40 8.40 32198.48 9.28 22958.08
 2000 3.26 76706.76 8.76 42448.08 9.52 30449.76
 2500 3.72 95621.80 8.98 54092.80 9.58 38102.40
 3000 3.84 116655.84 8.52 63708.40 8.92 44619.68

4 8 3.46 147.48 3.68 73.12 2.92 44.00
 500 4.62 18006.48 7.30 10377.04 8.00 7973.76
 1000 4.34 38481.28 7.26 22858.16 8.06 16927.36
 1500 3.88 57742.28 8.24 32326.72 9.02 23488.16
 2000 4.00 77834.80 8.84 42976.80 9.34 30811.04
 2500 3.80 96903.68 8.88 53437.20 9.68 38340.96
 3000 3.54 116630.28 8.50 64264.80 8.96 44970.56

5 8 3.88 159.00 3.98 76.08 3.34 44.00
 500 4.42 18210.36 7.12 10329.12 7.60 7868.32
 1000 3.84 38444.56 7.42 22876.32 8.14 16613.76
 1500 3.70 56212.72 8.04 32073.76 9.00 23500.96
 2000 3.56 76595.96 8.56 42433.44 9.48 30300.00
 2500 3.60 96629.32 8.98 53151.68 9.74 37524.32
 3000 3.24 113416.52 8.56 64491.20 8.94 45147.84

10 8 3.72 199.84 4.34 97.36 3.50 66.40
 500 4.38 17622.40 7.18 10512.56 7.50 8039.36
 1000 3.80 37699.12 7.58 22382.56 7.98 16888.32
 1500 4.10 57466.28 8.18 32280.96 8.92 23189.12
 2000 3.88 78326.04 8.48 42414.80 9.26 31106.88
 2500 3.64 95888.12 8.84 51769.04 9.70 37622.24
 3000 3.80 119054.36 9.18 63173.76 9.72 44631.84

15 8 4.30 253.76 4.08 125.20 4.06 85.12
 500 4.50 17724.96 6.76 10398.24 7.70 7800.64
 1000 3.82 38106.60 7.30 22432.40 7.94 16826.88
 1500 3.62 57436.36 8.34 32679.28 8.96 23796.32
 2000 3.66 77055.96 8.72 43499.44 9.42 31139.36
 2500 3.94 99288.96 8.86 53999.28 9.80 37801.76
 3000 3.30 117041.40 9.12 63836.88 9.68 45330.24

693

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

 B
B

s

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGa

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

 B
B

s

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGA

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

C
or

re
ct

 B
B

s

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000

Fu
nc

tio
n

E
va

lu
at

io
ns

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000

Fu
nc

tio
n

E
va

lu
at

io
ns

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 500 1000 1500 2000 2500 3000

Fu
nc

tio
n

E
va

lu
at

io
ns

Population size

sGA
cGA

mcGA
pe-cGA
ne-cGA

Figure 6. The plots illustrate the comparison of sGA, cGA, pe-cGA, ne-cGA and mcGA. The test problem is ten copies of 3-bit trap function, using selection rate
of two (top), four (middle) and eight (bottom). The algorithms were run for population sizes of 8, 500, 1000, 1500, 2000, 2500 and 3000. On the left side, the
graphs show the number of correct building blocks (Correct BBs). On the right side, the graphs show the number of function evaluations taken to converge.

We also compare the results with the pe-cGA and ne-cGA.
From Fig. 6, the pe-cGA and ne-cGA outperform the others
methods in terms of the number of function evaluations (the
right side of Fig. 6). Considering the solution quality (the left
side of Fig. 6), pe-cGA and ne-cGA also achieve a higher
solution quality than the others in case of the tournament size

of two (the top left). For more selection pressure, when
tournament size are four and eight, (the middle and the bottom
graphs on the left side of Fig. 6), the proposed method achieves
a higher solution quality than the pe-cGA and ne-cGA,
although it requires a higher number of function evaluations.

694

Finally, we analyze the results form the two test problems.
In the one-max problem, the moving average method obtains
the result that is comparable to the sGA and the original cGA in
terms of solution quality and the number of function
evaluations. In the trap problem, the moving average method
outperforms the original cGA in all cases. The results
emphasize the merit of updating the probability vector at a
slower pace, namely using a moving average which normally
produces a more moderate update than the original cGA. A
minor adjustment to vector updating technique allows the
algorithm to achieve a higher solution quality.

The moving average window size (M) has minimal effect
on the solution quality and the number of function evaluations.
Nonetheless, we observe that a larger window size generally
leads to a slightly higher solution quality, except when the
population size is large. Overall, the performance will not be
improved significantly by varying the window size. However,
choosing a suitable window size can lead to a smooth increase
in solution quality, as the probability vector is updated with a
smooth sequence of values. From the experiments, it can be
observed that a suitable moving average window size for the
3x10 trap problem is 10. As may be expected, the solution
quality increases when the tournament size increases. We also
notice that the number of function evaluations needed to
converge decreases as the tournament size increases regardless
of the window size.

VI. CONCLUSIONS

This paper proposes using a moving average approach to
modify the updating strategy of cGA. The technique is simple
to understand and implement. A minor adjustment to the vector
updating process allows the algorithm to achieve a higher
solution quality. The experiment results show that the proposed
method can improve the solution quality with a smaller number
of function evaluations than the original cGA. The study yields
an insight that waiting for more information in order to better
capture the probability trend can help the algorithm make a
better decision. For future extension, we will model the look-
ahead decision strategy that can assist the algorithm in deciding
whether to increase or decrease the probability vector under the
uncertainty of possible trap.

REFERENCES

[1] D. E. Goldberg, Genetic algorithms in search, optimization and machine
learning, Addison-Wesley, 1989.

[2] J. H. Holland, Adaptation in natural and artificial systems, University of
Michigan Press, 1975.

[3] C. Darwin, On the Origin of Species by means of Natural Selection,
John Murray, 1859.

[4] G. R. Harik, F. G. Lobo and D. E. Goldberg, The compact genetic
algorithm, in IEEE Transactions on Evolutionary Computation, 1999,
Vol. 3, No. 4, 287-297.

[5] C. Aporntewan and P. Chongstitvatana, A hardware implementation of
the compact genetic algorithm, in Proceedings of the 2001 IEEE
Congress on Evolutionary Computation, 2001.

[6] J. Gallagher and S. Vigraham, A modified compact genetic algorithm for
the intrinsic evolution of continuous time recurrent neural networks, in
Proceeding of the 2002 Genetic and Evolutionary Computation
Conference, 2002.

[7] J. Gallagher, S. Vigraham and G. Kramer, A family of compact genetic
algorithms for intrinsic evolvable hardware, in IEEE Transactions on
Evolutionary Computation, 2004.

[8] C. Zhou, K. Meng and Z. Qiu, Compact genetic algorithm mutated by
bit, in Proceeding of 4th World Congress on Intelligent Control and
Automation, 2002.

[9] C. W. Ahn and R. S. Ramakrishna, Elitism-based compact genetic
algorithms, in IEEE Transactions on Evolutionary Computation, 2003.

[10] D. H. Ackley, A connectionist machine for genetic hillclimbing, Kluwer
Academic Publishers, Boston, MA, 1987.

695

