
The AES Encryption Circuit on a Reconfigurable 
Hardware 

 
 

J. Sripornprasert, P. Chongstitvatana 
Department of Computer Engineering 

Chulalongkorn University 
Phayathai road, Bangkok 10330, Bangkok, THAILAND 

g49jsr@cp.eng.chula.ac.th, prabhas@chula.ac.th 
 

 
 Abstract-This work presents an AES encryption circuit 
implemented by a special type of machine called “Hardware 
Multiplexing” (HWMX). Hardware Multiplexing is a kind of 
reconfigurable embedded processor. By using dynamic 
reconfiguration concept, HWMX operates AES Algorithm 
correctly with efficient resources. HWMX consists of two cores 1) 
Register Bank and 2) Reconfigurable Core. The first part stores 
temporal results for next round computation. The second part, 
an important core of HWMX, processes as a reconfigurable 
system. This approach allows HWMX to pursue AES encryption 
application by splitting AES circuit into four segments and 
execute one segment per round, putting the temporal result of 
each segment into Register Bank. By using time-multiplexing 
hardware the resource consumed is less than a conventional 
circuit. 
 

I.  INTRODUCTION 
 
 Presently, the embedded system plays critical role of 
computation in everyday life. At the same time, application is 
becoming more complex. Therefore, circuit area must be 
enlarged to provide more complex functionality. As a result, 
the circuit size could not match for budgetary environment. 
Hardware Multiplexing (HWMX) is a good solution for 
embedded systems with limited resources. 
 HWMX does have contribution to economic resources and 
its flexibility makes it suitable for embedded systems. 
Moreover, AES encryption is an instance of problem that we 
are interested in. This work demonstrates how to apply the 
concept of Hardware Multiplexing to implement an AES 
encryption circuit efficiently. 
 

II.  RELATED WORKS 
 

 The paper [1] describes the fundamental concept of 
Hardware Multiplexing which it provided the simulation 
result. This work also provides the simulation result. The 
simulation compares between HWMX and a general processor 
which illustrates HWMX‘s advantages. 
 In [2], a reconfigurable AES core using FPGA is 
represented. Their work presents a reconfigurable component 
for saving resources, S-Box. The S-Box is an important part of 
ByteSub process. It uses large area because of ByteSub look-
up table (Encryption/Decryption). To reduce ByteSub look-up 
table area, a reconfigurable S-Box would be used ByteSub 
value stored in S-Box counts on whether it is Encryption or 

Decryption. This concept saves 50% of overall resource area. 
However, the reconfiguration of entire data path (not only S-
Box) which relies upon current function is the core concept of 
HWMX. 
 Another work [3], proposed a design of Reconfigurable 
AES Encryption/Decryption for mobile terminals. It made up 
of Reconfigurable Crypto-Unit (RCU) and Reconfiguration 
Control Logic (RCL). The RCU has the multiplier which 
supports encryption, decryption, error correction and error 
detection. The RCU obtain control signals from the RCL. The 
RCL is reconfigured by Control Unit. Consequently, the RCU 
and the RCL give overall system more flexibility. 
 When a computation task is larger than the available area, it 
is needed to be partitioned. The work [4] proposed methods to 
partition a design into reconfigurable blocks. This work states 
two partition methodologies, Level-Based partition and 
Clustering-Based partition. If Level-Based partition is applied 
to a task, the independent subtasks will be put into 
reconfigurable area. On the other hand, The Clustering-Based 
partition will put dependent subtasks into reconfigurable area. 
As a result, Level-Based partition spends a little time of 
execution delay but it has expensive communication time and 
vice versa for Clustering-Based partition. 
 

III. OPENCORE AES IP-CORE 
 

 We compare our work with an Opencore AES engine. The 
work [6] meets Rijndael’s specification and has publicly 
available information (Fig. 1). 
 

 
 

Figure 1. Opencore AES architecture which finishes its task by 12 cycles. It 
starts when completely load 128-bits key and 128-bits data into machine. 
 
 Opencore AES IP-Core has five modules integrated into a 
structure. There are four modules that are connected to each 
other. A group of modules does transformation and computes 
a RoundKey per each round. The Opencore Encryption cipher 



consumes chip area about 40,000 equivalent gates. This 
synthesized result comes from FPGA Xilinx spartan3 xcv200. 
 

IV.  OVERVIEW OF AES ENCRYPTION AND HARDWARE 
MULTIPLEXING 

 
 This section describes a basic background of AES 
Encryption. Moreover, some fundamental concept of how to 
apply HWMX to the AES core would be described. 
 
A.  AES Encryption Background 
 AES encryption [5] is an iterated block cipher with a 
variable block length and a variable key length. The block 
length can be independently specified to 128, 192 or 256 bits. 
The round transformation is composed of four different 
transformations. From Rijndael’s proposal we obtain Table I. 

 
TABLE I 

FOR 1ST -TO 9TH OF AES ENCRYPTION USES LEFT SIDE TABLE, BUT FINAL ROUND 
USES RIGHT SIDE. 

Round(State, RoundKey){ FinalRound(State,RoundKey){ 
 ByteSub(State);  ByteSub(State); 
 ShiftRow(State);  ShiftRow(State); 
 MixColumn(State);  AddRoundKey(State); 
 AddRoundKey(State); } 
}  
* The intermediate cipher result is called State. 
 
B.  Hardware Multiplexing Architecture 
 HWMX contains two essential components, Register Bank 
(RB) and Reconfigurable Data Path (RDP), as show in Fig. 2. 
 

 
 

Figure 2. RB and RDP work together by sharing input, output and temporal 
result. 
 
 From Fig. 2, HWMX manages process cycles around RB 
and RDP. RB keeps three types of data, input, output and 
temporal results. These data comes from RDP’s unit, which 
links with Control Unit. The Control Unit outputs fix sequence 
of control signal to RB and the Control Unit issues commands 
to the sequence ROM as a pointer to the desired sequence. 
(See Fig. 3) 
 

 
 

Figure 3. Control Unit send pointer to sequence ROM for RB signal and RDP 
signal. 

 
 The RDP realized the AES circuit by dividing it into four 
modules, Transposer, KeyExpansion, cipherSB and 
cipherMX. At any time, the RDP will be configured as one of 
these modules (Fig.4). 
 As you see in Fig. 4, there are two types of execution that is 
Initial Round and Others Round (1st-10th Round). Initial 

Round is a round which provides data ready to be executed in 
next round. In 1st-10th Round, all of processes will change. 
These rounds calculate the final result when they reach 10th 
round. Execution sequence is discussed in detail again in 
EXECUTION section.  
 

 
 

Figure 4. AES Encryption instance has two types of loop that has to be 
executed along the encryption. 
 

V. IMPLEMENTATION 
 

 This section presents briefly the details of HWMX 
architecture and then shows the AES Encryption. HWMX has 
two main cores. There are Double Register Banks and 
Reconfigurable Data Path, called RDP. 
Double Register Banks: Each bank contains sixteen 32-bit 
registers. These cores are designed to store any temporal 
results that come from RDP and then RDP will fetch these 
temporal results to compute next results. 
Reconfigurable Data Path (RDP): RDP has a self-
reconfigurable capability. It changes its circuit to maximize 
utilization and minimize resource usage. The idea to achieve 
this encryption by minimum resources consumption is to 
break an entire circuit into smaller fragments. If a fragment is 
too large that means circuit spends expensive resource but if a 
fragment is too small that means circuit wastes time. In this 
paper, AES Encryption circuit is divided into four modules, a 
Transposer, a CipherSB, a CipherMixColumn and a 
KeyExpansion. We assume method of reconfiguration by 
using Multiplexer. Reconfiguration happens when Multiplexer 
swaps itself to connect to other modules. By this assumption, 
the reconfiguration time is zero. Because there is no known 
practical and fast reconfiguration method at present, this 
assumption is amounted to a best case scenario. 
 

VI.  EXPERIMENT 
 

 We illustrate how an AES circuit based on HWMX work by 
comparing it to two conventional designs, one in based on a 
general purpose processor and the second one is an AES 
engine. 
Traditional CPU: the CPU fetches instructions, and then 
decodes them. After that, The CPU executes instructions. All 
of these steps run on the same data path, no matter what 
operations are. 
The AES engine: the special purpose AES engine has its 
circuit designed specific for the task. It has fast data-flow style 
execution which can be parallelized. It can be much faster 
than a general purpose processor trade in by the size of the 
circuit. 



The AES based on HWMX: a HWMX circuit changes its 
data path (the reconfigurable unit) from time to time to share 
resource among different part of computation. It can trade off 
the speed with the size of the circuit. Table II shows the 
sequence of multiplexing the reconfigurable units. This is a 
sequence of data paths that it uses to find the result. (See 
Table II) 
 

TABLE II 
TABLE II SHOWS THE SEQUENCE HWMX OF EXECUTION. INITIAL ROUND PREPARES 
DATA INPUT READY TO PROCESS NEXT ROUND. 1st-10th ROUND DOES ENCRYPTION 

TO FIND OUTPUT. 

Initial Round 1st-10th Round 
Transposer KeyExpansion 
cipherSB cipherSB 
 cipherMX* 
*cipherMX in final round would not do mix column operation. 
 
 First of all, RDP selects the Transposer module (Fig. 5) to 
be used. It fetches input data and input key from RB. After it 
finishes matrices transpose operation ,it stores the results into 
RB. The cipherSB module (Fig. 6) replaces the Transposer 
module. To prepare encryption, the cipherSB does 
addRoundKey. When it gets the end of addRoundKey process, 
RDP begins encryption. The AES encryption iterates the 
intermediate results for 10 rounds (see Table II). Each round 
has the same sequence. Firstly, the KeyExpansion module 
(Fig. 7) is the first module which RDP selects. The 
KeyExpansion module causes a new Round Key that other 
modules need to manipulate the Round Cipher. The 
KeyExpansion module finds a Round Key, and then it places 
them into RB. Thereafter, the cipherSB would replace the 
KeyExpansion module. Instead of doing addRoundKey 
process again, the cipherSB does ByteSub. The intermediate 
results from the cipherSB would be stored to RB. Finally, the 
cipherSB transforms itself to the cipherMX module (Fig. 8). 
At the beginning, the cipherMX module fetches data, and then 
executes shiftRow, mixColumn and addRoundKey. These set 
of operation which consist of the KeyExpansion, the cipherSB 
and the cipherMX module would be executed that sequence 
until they reach 10th round encryption. Furthermore, the final 
result is store into RB. Fig. 5-8 illustrate each component. 
 

VII.  CONCLUSION 
 

 The following paragraphs compare among HWMX, 
Traditional CPU and AES engine. Any advantages and 
disadvantages would be discussed.  
 

 
 

Figure 5. Inside the Transposer module, matrix transpose module transforms 
input to ready-to-use form. 
 
Traditional CPU: a general purpose processor has its 
performance disadvantage due to its generic data path. 

However, the processor can perform other general purpose 
task as well.  
The AES engine: an AES engine is built to be specific 
encryption hardware. Certainly, this approach has highest 
performance. On the other hand, it consumes the largest area 
when compares to others and can not do anything but AES 
Encryption. 

 

 
 

Figure 6. Inside cipherSB module, there are four S-Boxes and four XORs 
module to find ByteSub result. 

 
 

 
 

Figure 7. KeyExpansion module is the most complicated module, so this 
reason is why KeyExpansion is the largest part. 

 

 
 

Figure 8. The cipherMX module consists of three sub-modules to do three 
operations, ShiftRow, MixColumn and AdddRoundKey. 

 
The AES based on HWMX: HWMX does the AES 
encryption by RDP. RDP has the advantage of a flexible data 
path by reconfigurable ability. The ability of partition 
hardware into a smaller fragment helps to overcome the 
resource problem. Although the speed of HWMX is traded off 
with the resource, it can be designed to be “in-between” the 
performance of the general purpose processor and the special 
engine. This flexibility is shown in Table III. 
 This paper demonstrates a design of AES circuit based on 
HWMX concept. The comparison is made between the 
proposed design, AES engine, and a general purpose 
processor, Intel 8051 [8], which has a published performance 
figure. From Table III, HWMX spend around 10 thousand 
gates less than AES engine three times and two times for Intel 
8051 [5]. The reason that HWMX is smaller than any other 
because its core, RDP. However, its speed is still slower than 
the specific AES Encryption engine. The Bottleneck 



Communication is a major problem according to nature of 
Level-Based partition. Each module that RDP change operates 
on 128-bits bus but HWMX bus is Double 32-bits bus. 
Therefore, it wastes 2 cycles to load data into each module. 
Nevertheless, if HWMX has 128-bits bus instead, it will be 
much faster. Anyway, that is not the sole purpose of HWMX. 
HWMX idea is more general than a circuit that does only AES 
encryption. 

 
TABLE III 

RESOURCES AND CYCLES USAGE SUMMARY SHOW THAT HWMX TAKE AN 
ADVANTAGE ON EQUIVALENT GATES. 

 Equivalent 
gates 

128-bit 
Encryption 

Cycles 
 

Freq 
(MHz). 

HWMX 10830 202 75.644 
AES engine 40621 12 137.299 
Intel 8051 38203* 

37902** 
48780* 
4878** 

12.00* 
18.906** 

* original 8051 [5], ** Oregano 8051 [8] 
 

VIII.  FUTURE WORKS 
 

 In this paper, HWMX never do the physical dynamic self-
reconfigurable circuit. The technology of hardware has not 
reaches the actual self-reconfigurable yet. Presently, we are 
working on a study of integrating two Xilinx spartan3 boards, 

one is master and other is slave. Master board consists of 
Double Register Banks and Microblaze. Slave board is 
reserved only for RDP. Master board handles storing temporal 
results and request to Microblaze for reconfiguration. 
Microblaze, then, put bitstream that store in it memory into 
slave board via JTAG. 
 

REFERENCES 
 
[1]  K. Piromsopa, P Bavonparadon and P Chongstitvatana, “Hardware 

multiplexing: towards a resource efficient reconfigurable processor.” 3rd 
International Symposium on Communications and Information 
Technologies, Songkhla, Thailand, 2003 

[2]  X. Jian, L.Yuan-Feng, D. Zi-Bin and S. Yi, “Design and 
Implementation of AES IP-Core Using FPGA,” ASIC, 2005. ASICON 
2005. 6th International Conference On, Shanghai, China, 2005, pp.765- 
768. 

[3]  T. Pionteck, T. Staake, T. Steifmeir, L.D. Kabulepa and M. Glesner, 
“Design of Reconfigurable AES Encryption/Decryption Engine for 
Mobile Terminals,” Circuits and Systems, 2004. ISCAS '04. 
Proceedings of the 2004 International Symposium on, Vancouver, BC, 
Canada, 2004, II- pp.545-8. 

[4]  K.M.G. Purna and D. Bhatia, “Temporal and Scheduling Data Flow 
Graphs for Reconfigurable Computers,” Computers, IEEE Transactions 
on, 1999, pp.579-590. 

[5]  National Institute of Standards and Technology (NIST), FIPS 
Publication 197, “Advanced Encryption Standard (AES),” November 
2001. 

[6]  R. Usselmann, AES IP-Core, www.opencore.org, 2002. 
[7]  K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of 

System and Software,” ACM Computing Survey, NY, USA, 2002, 171-
210. 

[8]  http://www.oregano.at/ip/ip01.htm. 


