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Abstract— Multiple-objective problems are a challenge for
evolutionary algorithms. The requirement to improve the
quality of the solution and at the same time maintain good
candidates which may have different and conflicting objectives is
a difficult one. This work proposes to apply the concept of
Building Blocks to improve evolutionary algorithms to tackle
such problems. Building Block Identification algorithm is used to
guide the crossover operator in order to maintain good Building
Blocks and mix them effectively. The proposed method is
evaluated by using Building Block Identification guided
crossover in a well-known genetic algorithm to solve multiple-
objective problems. The result shows that the proposed method
is effective. Moreover, it obtains a good spread of solutions even
when the building blocks are loosely encoded.

I INTRODUCTION

Real world problems usually contain multiple possibly
conflict objectives. Solving problems gives rise to a set of
solutions which can be regarded as Pareto-optimal. This set
of solutions is a trade-off between many objectives. Solving
multiple-objective problems is an important challenge in
optimisation. Genetic Algorithm has been applied with good
success to solve this class of problems.

In [1], Goldberg gives description that Building Blocks
(BBs) are short, low order and highly fit schemata and that
these BBs play important role in action of GA because they
are sampled, recombined, and resampled to form strings of
potentially high fitness. The class of problems called GA-
deceptive are designed to mislead a Simple Genetic Algorithm
or any hill-climber algorithm. For this class of problems,

Building Block Identification [2] is shown to be a good solver.

Building Blocks are important for the success of Genetic
Algorithm, not only for single objective problems but also for
multiple-objective problems.

For multiple-objective deceptive problems, applying
Genetic Algorithm with single point crossover has limited
success due to the disruptive effect of the crossover operator
on the building blocks. Building Block Identification
algorithm as its name implied partitions bit-positions into
groups. These groups are regarded as building blocks (BBs).
The knowledge of BBs can be used to prevent disruption of
highly fit solutions from crossover operators.  When
performing crossover, group of bits in the same BB should
not be divided.
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Evolutionary algorithms are popular methods to solve
multiple-objective problems. There are two approaches to
Building Blocks finding: either it is explicit method [3] or
implicit. Messy genetic algorithm (mGA) and Linkage
Learning GA (LLGA) [4] are some examples of works that
are explicit BBs finding. In these algorithms each bit is
tagged with the position numbers so that they can be moved
around without losing the meaning. The messy GA is later
developed to fast messy genetic algorithm (FMGA) [5] and
gene messy genetic algorithm (GEMGA) [6]. The latter is an
early work that can find the optimal solution for mxk trap
function. Bayesian optimization algorithm (BOA) using
Bayesian network to model a population proposed by Pelikan
[7] is another one of explicit BBs finding. In a later version of
BOA called hierarchical BOA (hBOA) [8], the /-vertex
network is represented by / decision trees/graphs in order to
avoid the exponentially growth of the number of conditional
probabilities in the network. As the result, the latter models
are more compact and applicable for problems having higher
order of variable interaction.

In the context of multiple-objective problems, the Multiple-
objective Bayesian Optimization Algorithm (mBOA) [9] is
identical to BOA, except that the selection procedure which is
replaced by the non-dominated sorting and selection
mechanism of NSGA-II [10]. The NSGA-II is well known in
Multiple-objective Evolutionary Algorithm (MOEA) group
and there have been much interest in improving its quality, for
example, in [11] and [12]. NSGA-II is considered to be a
leader of MOEA. NSGA-II is an implicit BB builder rather
than an explicit one.

This work proposed the application of Building Block
Identification algorithm to solve multiple-objective problems.
We focus on finding good building blocks in the context of
multiple-objective problems. The multiple-objective problems
are solved with evolutionary algorithms. The Building Block
Identification algorithm is used to guide the crossover
operator which will mix building blocks. The aim of this
work is to find out whether the claim that Building Blocks are
important to multiple-objective problems can be substantiated
[3].

The approach taken in this work is to modify a standard
MOEA to use Building Block Identification in place of its
original crossover operator. NSGA-II is chosen to be the
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evolutionary algorithm in our work. For the test problems, we
employ the mxk-trap function [13], which is a problem with
clearly defined BBs. There exist many works that use the trap
function as the test problem, e.g. [14] [15] [16] and [17].

The structure of this paper is as follows. The next section
gives the background on NSGA-II algorithm and the test
problems, the multiple-objective deceptive function. Section
III explained the proposed algorithm in details.  The
description of Building Block Identification algorithm and its
application to modify the crossover operator are given.
Section IV gives the detail of the experiments and discusses
the results. Finally, the conclusion is offered in section V.

II. BACKGROUND

A.  NSGA-II

Non-dominated sorting genetic algorithm II (NSGA-II) first
published in [10] is one of the most popular genetic algorithm
in many recent years. NSGA-II is a second generation of a
genetic algorithm designed especially for multiple-objective
optimisation (NSGA [18]). It has the ability to find multiple
Pareto-optimal solutions in one single run. In NSGA-II, the
population is sorted according to the level of non-domination.
The diversity among non-dominated solutions is maintained
using a measure of density of solutions in the neighbourhood.
NSGA-II is able to find much better widespread solutions and
better convergence near the true Pareto-optimal front in most
problems.

B.  Multi-Objective Deceptive Function

To test the proposed method, Trap functions are used.
They are difficult problems for Genetic Algorithms.
Moreover they are problems which building blocks are
obviously defined. The deceptive trap functions are modified
to be multiple-objective style in [13]. To make it harder, a
modified version called Shuffle trap function is created. This
function creates non-compact building blocks (bit positions
are not contiguous) which renders a simple crossover operator
ineffective. These problems are defined in this section.

m X k-trap function

This problem has 2 objectives: m X k deceptive trap, and
m X k deceptive inverse trap. String positions are first
divided into disjoint subsets or partitions of k bits each.

The k-bit trap and inverse trap are defined as follows:

.
k Jifu=k,
trap(u) =<
(k-d) [1 _ L} ; otherwise (1)
L k-1
_
k ;ifu=0,
invtrapy(u) =<
(k—d) [ﬂ } ; otherwise ©)
L k-1

Where u is the number of 1s in the input string of k bits,
and d is the signal difference. Here, we use k=5, and d = 1.
The mXk-trap conflicts with the inverse trap by its objective.
A solution that sets the bits in its partition either to Os or 1s is
Pareto optimal and there are a total of 2" solutions in the
Pareto-optimal front.

m X k-trap function is defined as follows.

F,.:B— R;BE By..B, | ,Bi€ {0,1}*,
R e [0, mxk] (€)
m=1
mek(B!)-"Bmfl): ZFk(Bi) (4)

i=0
Where Fy is trapy or invtrap, function. The m and k are
varied to produce many test functions. These functions are
often referred to as additively decomposable functions
(ADFs). In this experiment, this function is modified to be
multi-objective.

Shuffle m X k-trap function

The shuffle trap function is constructed by separating the
bit position of the same building blocks in order to deceive
the algorithm. For instance, normal 4X5-trap function have
building blocks as shown.

In shuffle trap, the modulo method is used to construct one
building block. The same building block is repeated in every
m bit.

The function in the experiment uses 2-objective 10X 5-trap
function.

III. ALGORITHM

Building Blocks can be identified by computing Chi-square
Matrices then perform partitioning of bit positions using
Partition Algorithm proposed in [19]. Each element of Chi-
square matrices represents the degree of relation between each
bit of selected population. Partition Algorithm groups bits
which are highly related into BBs. This knowledge of BBs is
used in the design of crossover operator. When performing
crossover, all bits in the same partition will be moved together.

A.  Chi-square Matrix

To identify highly-related-group of bits, it is noted that
their quantities are inversely related to randomness. The Chi-
square Matrix [19] is chosen for measuring randomness
because computing the matrix is simple and fast.

Let M = (m;;) be an X/ symmetric matrix of numbers. Let
S be a population or a set of /-bit binary strings. The Chi-
square matrix is defined as follows.

ChiSquare(ij) ;ifi # j
mi =
0 ; otherwise 5)
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The ChiSquare(i,j) is defined as follows.

Xy o\ 2
Z(Counts GD=D” e 00,01, 10,117 (6)
> nl4

Where the observe frequency Count § (i,j) denotes the

number of solutions in which bit i is identical to x and bit j is
identical to y. The expected frequencies of observing
“00,701,” “10,” “11” are n/4 where n is the number of
solutions. The common structures (or building-blocks) appear
more often than the expected frequency. Consequently, the
Chi-square of bit variables that are in the same BB is high.
The time complexity of computing the matrix is O(n).

B.  Partitioning (PAR) Algorithm

Partitioning (PAR) Algorithm will partition each input bit
into suitable blocks. When performing crossover, bits in the
same partition must not be separated. The PAR input is
an / X / matrix and its outputs the partition:

|PI=1
Bt s | )B, = {0,113,
i=0

BNB=2 foralli #j. (7)

P={Bo, ..

The B; is called partition subset. There are several definitions
of the desired partition. Algorithm PAR must have some
preconditions.

1. Pis a partition.
The members of P are disjoint set.
The union of all members of Pis {0, ..., [—1}.

2. P# {{0,...,1-1}}.

3. Forall Be Psuchthat|B|>1,
For all i € B, the largest | B | —1 matrix elements in
row I are founded in columns of B\ {i}.

4. Forall B€ Psuchthat|B|>1,
Hinax = Hinin < @( Hypax — Linin) where 0 < o <1,
Hmax:max({mij‘(i’j)e BXB’i i]}),
Huin = min({m;; | (i,j) € BxB,i #j}),and
Liin = min({m;j| i € B,j€ {0,..... -1} \B }).

5. There are no partition Py such that for some B € P,
for some By € Py
P and P; satisfy the first, second, third and fourth
conditions, B C B,.

All partition subsets can be expanded until they are
unsatisfied one of the preconditions. The motivation for the
expansion is to put i and ;j into the same partition subset if m;
is high. The time complexity of computing PAR is O(/*). The
partition algorithm is shown as follow.
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M= (m;) denotes / X / Chi-Square matrix. 0 < i,j < -l

T; and Ry denote arrays of numbers indexed by 0 < i,j < -l
A and B are partition subsets. P denotes a partition.

Algorithm PAR(M, O )
Pe—o
fori=0to/—1do
ifi  Bforall B € Pthen
T « {matrix elements in row i sorted in descending order};
forj=0tol—1do
Rij=x where m;;=Tj
endfor
A {i};
B {i;
forj=0to/—3 do
A—A U {Ry;
if A4 satisfies the third and the fourth conditions then
B4,
endif
endfor
P—P U{B};
endif
endfor

return P;

C. Crossover Method

The crossover operator can exploit the knowledge of BBs
by choosing appropriate cut points. The cut point should not
separate bits in the same BB (see Fig.1). To achieve this, a
crossover mask is created for each partition. When parents
exchange bits to create offspring, all bits in the same partition
will be moved together.

The mask bit is generated for each partition. All bits in each
partition can be either exchange (with other individual) or
remained the same. Flip coin method is used to choose
whether a partition will be moved or remain unchanged. For
instance, if the partition number 1 is assigned to be exchanged
(mask value 0), all bit-positions in that partition will be
assigned 0 in the mask. After all partitions have been assigned,
the partitions which are assigned to 0 will be swapped with
their mates. Otherwise, they remain the same. See the
following example:

If the Chi-square matrix be partitioned like this one,

{ {1,5.9,13,17}, {2,6,10,14,18}, {3,7,11,15,19}, {4,8,12,16,20} }.

Partition <1234 1234 1234 1234 1234>
Mask Bits <0011 0011 0011 0011 0011>
EO b D Lo b o LR e e o |
Parentl
Iy Iy lylylylylylyl . Tylylyly]
Parent2

After crossover, the two parents produce two children.

Iy Iy IxTx]y[ylx[x] .. Jy[y[x]x]
Child1
xTxTyly[x[x]ylyl .. IxTx]y[y]
Child2
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Fig. 1. Mixing and maintaining BBs

cut point cut point
T Pt

Fig. 2. Mixing and losing BBs

Fig. 1 and 2 illustrates the difference between the Building
Block Identification crossover and a single point crossover
employed in a Simple Genetic Algorithm. The crossover
using BBI will choose the crossover point “between” BBs.
The crossover in SGA is a single point crossover with random
crossover point. The former will not break the partitions
while the latter will random the cut point without considering
the building block.

IV. RESULT AND DISCUSSION

The experiment is set to find out the effectiveness of the
application of Building Block Identification to the multiple-
objective trap problems. This class of functions usually leads
the GA away from the global optimum. NSGA-II is used as
the evolutionary algorithm. Its crossover operator is replaced
by the crossover operator with Building Block Identification.
The experiment is set to compare the result of the proposed
method (named BB-NSGA-II) with the original NSGA-IL
Any difference in the results should arise mainly from the use
of Building Block Identification.

The function in the first experiment is 2-objective 10X 5-
trap function. To find solutions to the problems, the
parameters are set as follows: Population size = 2000,
Generation = 1000, Crossover rate = 0.9, Mutation rate is 0.1
and Threshold (o) of PAR is set to 0.95 where it is the
appropriate value that generates high quality building blocks.
The data in the experiments are the average from 30
independent runs. The evaluation criterion is the number of
solutions found in the Pareto front. The number of function
evaluations is the same for both methods.

Fig. 3 illustrates that at the first 320 generations, NSGA-II
population appears in Pareto front more than BB-NSGA-II.
This is because BB-NSGA-II must spend effort in identifying
building blocks, hence the progress is slower. After
generation 350, BB-NSGA-II population is found in Pareto
front more than NSGA-IL
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Fig. 3. The result for 2-objective 10x5-trap function.

Number of Solutions in Pareto front

The function in the second experiment is 2-objective
shuffle 10X5 - trap function. The parameters setting are the
same as in the former experiment. In Fig. 4, BB-NSGA-II
population appears in Pareto front much greater than NSGA-
II from the generation 200 until the end of run. The shuffle
trap function is designed to create an impossible situation for
an ordinary crossover. The crossover will always disrupt the
solution. However, with Building Block Identification, the
correct crossover will be obtained, hence produces a good
progress. The performance of BB-NSGA-II does not differ
much between the ordinary and shuffle version of problems,
while the performance of NSGA-II drops dramatically in the
shuffle problems.
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Fig. 4. The result for 2-objective shuffle 10x5-trap function

Number of Solutions in Pareto front

Pareto front of this problem have 1024 distinct solutions
from all (2% = 1125899906842624) possible solutions. When
plot the Pareto-optimal set, there are 11 distinct points in
objective space. Fig.5 shows number of candidate solutions of
those points. Both left-most and right-most point has only one
solution, whereas the middle zone has more than two-hundred
candidate solutions. Fig. 6 illustrates spreading of solutions in
Pareto front taken from the result of the experiments. Each
row is a result from a run. All results are collected from
30 independent runs and they are displayed in 30 rows. There
are 11 dots of white or black in each row. The black dot
means the solution is found in Pareto front, while the white
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dot means that solution is not found. This figure shows the
“simplified view” of the spreading of solution in Pareto front.
In Fig.7, the results are shown in more quantitative terms.
The number of solutions in Pareto front is portrait by gray
scale. The darker color means higher number of solutions.

Fig. 6 and 7 shows that in 2-objective 10X 5-trap problems
NSGA-II give better spread of solutions in Pareto front than
BB-NSGA-II. In contrast, the spread of solutions given by
NSGA-II is significantly reduced for 2-objective shuffle
10 X 5-trap problems. BB-NSGA-II is much better. In
addition, Fig. 7 (c) shows that almost all solutions from
NSGA-II are at the same point in Pareto front.
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Fig. 5. Density of solution of each Pareto optimal
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Fig. 6. Spread of solutions in Pareto front

(a) NSGA-II

(b) BB-NSGA-II

(c) NSGA-II (shuffle trap)

(d) BB-NSGA-II (shuffle trap)
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V.  CONCLUSION

Building Block Identification method is effective in solving
the Multi-Objective trap functions. From the experiment, the
proposed method performs more effectively than NSGA-II,
even though NSGA-II is designed for Multi-Objective
problems. The experiment with the shuffle trap function
demonstrates clearly that composing building blocks is highly
effective.

Several interesting topics regarding the Building Block
Identification require further exploration. We would apply our
algorithm to other multi-objective problems. Some interesting
problems such as multi-objective traveling salesperson
problems [20] and multi-objective knapsack problems [21].
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