
Threaded Language As a Form of Partial Evaluator

Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University

Bangkok 10330, Thailand
Email: prabhas@chula.ac.th

Abstract

This work describes a class of language called
Threaded Language and its implementation. An
interpreter for this language allows it to be easily
extended. Higher order functions and local variables
are introduced into the language as extensions.
Exploiting the dynamic nature of an interpreter, it is
shown how to do a program transformation. Using
the "unfold" technique, a partial evaluation in this
language is demonstrated. The partial evaluation
generates a specialised version of the input program
that runs faster. Finally, the implication of using this
language to bootstrap a language on a new
environment is discussed.

Key Words: threaded language, partial evaluation

1. Introduction

Writing programs to generate another programs
are very useful. The examples for such programs are
a compiler and a code generator. A compiler
translates a source language into a target language. A
code generator translates parse trees or an
intermediate language into machine codes. The
process of compiling a program by a compiler
usually consisted of many stages. These stages work
in a batch-like manner. The final stage produces
executable codes. In contrast to a compiler, an
interpreter reads a source program and executes it
immediately.

There are two main distinctions that are of interest
between a compiler and an interpreter. Firstly, the
output of an interpreter is executed immediately.
This fact makes it possible to use the action to
participate in the translation process of the source
program. Secondly, an interpreter is much easier to
write than a compiler. The initial effort to bring up a
working interpreter is much less than writing and
debugging a compiler. This is because an interpreter
works directly with tokens of the source program

rather than handling intermediate representation
usually required by a compiler. Of course, there is a
penalty associated with using an interpreter, the
speed of execution. An executable code produced by
a compiler runs much faster than using an interpreter
on the same source program.

I have two aims in this paper. First, I want to explore
a class of language, called Threaded Language,
which has a structure that fits very well with an
interpretive implementation. Second, I want to
illustrate the application of a program transformation,
called partial evaluation, to generate a faster version
of a program produced by an interpreter. This is
done using the Threaded Language itself.

The presentation is divided into 4 sections. Section 2
defines Threaded Language including the details of
its interpreter. Section 3 explores simple extensions
of the language by means of an interpretive
technique. Section 4 show a simple scheme of partial
evaluation written in Threaded Language. The next
section discusses the implication of Threaded
Language and finally, I relate the idea in this
presentation to other works.

2. Threaded language

2.1 Definition

A threaded language (TL) is composed of functions.
There are two types of functions in TL: primitives,
and definitions. A primitive contains the actual
machine codes. A definition contains a list of
"threads" (or the pointers to functions). A thread can
be either a primitive or a definition.

 TL = definition
 definition = primitive | definition

where
 primitive contains the actual machine codes.
 definition is list of pointers to functions

The data structure ("form") that represents primitives
and definitions is designed so that the evaluation
(execution) of both kinds is uniform. The first
location of a function is called a "head". The last
location is called a "tail" (see Fig. 1). As the form is
dependent on the evaluation, the evaluator of a TL
will be explained first.

An evaluator of a TL implements the flow of threads
by exploiting one stack (called "return stack", R) for
storing the continuation points of function calls and
using one machine code routine, “enter” and one
primitive, “exit”. The flow of control employs two
pointers: the instruction pointer (IP) and the function
pointer (FP). The instruction pointer, IP, is a kind of
"program counter" that points to the definition being
evaluated. A program in TL is a list of pointers to
functions. So, the actual "instruction" of a program is
reached by dereferencing IP. This value is kept in
FP. To reach an actual machine code, FP is
dereferencing once again. Let @A++ -> B denotes
a dereference of A put to B and post-incrementing A,
pc denotes the actual machine code program counter.

To evaluate (execute) a function:

 @IP++ -> FP, @FP++ -> pc

Now, we must present the "form" of TL. The head of
a primitive is the pointer to the next address (denoted
by *). The tail of a primitive is a machine instruction
to jump to the "next" function. The body of a
primitive consisted entirely of machine codes. The
head of a definition is the pointer to the "enter"
routine. The tail of a definition is the pointer to a
primitive "exit". To avoid confusion between names
that denote difference objects, let us use the
following notation. let “name” be the name of a
function as it appears in the source program (printed
name), let &name be a reference to a functon (a
primitive or a definition), let *name be a reference to
a machine code routine. The Arial font will be used
for the text that is the source program.

 definition primitive

IP -> *enter +--> FP -> *
 &FP1 __| machine
 &FP2 codes

 &exit jmp next

* denote the next address

Figure 1 The structure of definitions and
primitives

The head is a special place, it contains the machine
code to set up the evaluation. The "enter" is a
machine routine, it saves the current IP and enters a
function call pointed to by FP.

enter:
push IP -> R, FP -> IP, jmp next

The "next" machine code performs fetching of a
thread and execute it.

next:
@IP++ -> FP, @FP++ -> pc

The tail of a definition performs a "return" to the
caller, hence "exiting" a definition. The "exit" is a
primitive. It restores the IP from the return stack and
continue to evaluate the next function.

exit:
* , pop R -> IP, jmp next

The head of a primitive contains the pointer to the
actual machine code in its body. All primitives end
with a jump to "next" hence evaluating the next
function. The FP is important, before the evaluation it
points to the head of a function to be evaluated, once
the evaluation starts, it is then advanced to point to
the body of function. The actual machine code is
executed by the second half of "next" using FP,
@FP++ -> pc.

The "enter", "exit" and "next" are the crux of the
evaluator of TL. It allows a higher form of language
to exist as definitions.

2.2 Compiling

Compiling a "source" language into a correct form
(threads) can be achieved by an evaluator (an
interpreter). The evaluator can be very small as most
of the work is distributed to definitions themselves
which are actively participate in generating threads.

The process of compiling is unlike a conventional
compiler. It is more like applying a function to
generate definitions which will be evaluated to create
more definitions. Primitives are pre-existing routines
to build the first evaluator. The process is dynamic.
The code is generated from the source, some of
which is executed to generate more code. This is in
contrast with a conventional compiler where the
process of compiling is more batch-like.

An evaluator employs an evaluation stack (E) to store
all the intermediate results. It has a state called
"mode". The evaluator can be in either mode: a

compile mode or an execution mode. The compile
mode is established when a type of definition, called
defining functions, appears in the source. When a
definition is ended, the mode is changed to execution.
For example, here is the source of a postfix form TL:

 def add2
 2 +
 end
 11 add2 print

The "def" and "end" are defining functions. They
define the token "add2" as a new function. Its body
is the thread of "2" and "+" functions. "11 add2 print"
is in the execution mode. It is immediately executed.
Please note that the source is a mix of both defining
new functions and executing them.

In the compile mode, most tokens read from the
source will be translated into pointers to functions.
In the execution mode, a token will be searched in a
list of existing definitions (store in a symbol table) to
find its reference (FP) and then it will be executed
(using the "next"). Some definitions are executed in
the compile mode. They are the part of the compiler.
There are five possible actions in an evaluator. An
evaluator can be described as follows:

eval
 read a token from source
 if it is a number
 if execute mode
 push it to E (1)
 else
 include its handler in def_n (2)
 else
 if search is not found
 stop with error (3)
 if execute md or compiler function
 execute it (4)
 else
 include its ref in def_n(5)
 eval

The example of source above will be compiled into
the following definition.

symbol table

"add2" $2

 definition

$2 *enter
 &number
 2
 &add
 &exit

Where &number, &add are the pointers to the
appropriate functions (either a primitive of a
definition). The tokens "11", "add2" and "print" will
be executed immediately under the execution mode.
With this basic evaluator, now simple extensions will
be demontrated.

3. Language extension

3.1 Higher order function

Compiler functions are examples of higher order
functions. Collectively they create another function
which can be executed. A "def" and an "end" do:

def
 change mode to "compile"
 read the next token from source (1)
 create entry in the symbol table (2)
 alloc an open-end space for storing
 the definition (3)
 put "*enter" at the head

end
 put "&exit" at the tail
 change mode to "execute"

Between "def" and "end" is the body of a function.
The body of definition will be filled in by the
evaluator evaluating the source.

A generic defining function can be defined as follow.

 def def-generic
 create pack machine
 <machine code>
 end

There are three functions to be explained: "create",
"pack" and "machine".

create
 do the (1) (2) (3) of "def" above

pack
 pop a value from E,
 put it in the body

machine
 similar to "end" but
 put "mcode" at tail instead of "exit"
 read the <machine code> until "end"
 fill them in the body of def-generic
 change mode to "execute"

The function "machine" is a compiler function. The
<machine code> that followed is not executed. It is
put into the body. The definition of "def-generic" is
as follows:

symbol table

"def-generic" $3

 definition

$3 *enter
 &create
 &pack
 &mcode
 <machine code>

The primitive "mcode" will be explained after we
show how this "def-generic" is used to create a new
function. As an example, we will create a new
defining function "variable" which is used to create a
global variable.

 def variable
 create pack machine
 <machine code for variable>
 end

The definition of "variable" is:

symbol table

"variable" $4

 definition

$4 *enter
 &create
 &pack
 &mcode
$5 <machine code for variable>

The "variable" is used (executed) as this:

 10 variable xyz

Using "create" the "variable" function will create the
following definition:

symbol table

"xyz" $6

 definition

$6 *
 10

The "pack" includes a value from E to the body.
Then, the "machine" primitive does placing the
reference to the <machine code for variable>, $5, in
the head of this new definition. When "xyz" is
evaluated, its machine code is activated (by the
pointer in the head). The machine code for "xyz" will
just leave its value on E. "xyz" acts like a global
variable. The value storing in its body is an
initialised value. A compiler function "->" is defined
to set a value of a variable.

->
 read next token from source
 search its reference
 include "&set reference"

set
 *
 pop a value from E
 store it to reference+1

"xyz 1 + -> xyz" will increment xyz. Please note
that "->" must be used in the compile mode only. A
"type" can be implemented by using different
<machine code> appropriate to the desired type of
function.

3.2 Local variables

We have defined a language where everything are
functions where all intermediate values passing
between them are in the evaluation stack, S. A
function to create a global variable is defined,
"variable". How to include local variables in the
language? Local variables can be stored in R (similar
to a stack frame in a conventional compiler). A
pointer "Local Stack" (LS) stores the base address of
this frame. A reference to a local variable is an offset
from LS. Two primitives are defined for local
variables: lget, lput.

lget i
 push LS[i] to S

lput i
 LS[i] = pop S

where i denotes a reference to a local variable. A
compiler function, "[" is used to create local variable
of a function. It reads the source and build a local
symbol table with references 1..n until the token "]"
is found. All tokens between "[" and "]" are local
variable names. The behaviour of a local variable is
defined as follows. When a local variable name
appears in the source, it is compiled into "lget". To
update a value to a local variable, a function "->" is
defined. It must be modified slightly from the
previous definition that deals with a global variable
only.

->
 read next token from source
 if search local symbol table is found
 then
 include "&lput ref" in def_n
 else
 search global symbol table
 include "&set ref" in def_n

The following is an example of a function with local
variables.

 def haslocal [x y]
 1 -> x
 2 -> y
 x y +
 end

The above function is compiled into the following
definition:

local symbol table
"x" 1
"y" 2

symbol table
"haslocal" $7

 definition

$7 *enter
 &frame 2
 &number 1
 &lput 1
 &number 2
 &lget 1
 &lget 2
 &add
 &remove
 &exit

where "frame n" and "remove" are primitives that
create a frame of size n, and remove the frame.

The evaluator has to be modified slightly to search a
local symbol table first then the global symbol table.

When a local name is found it includes "lget ref" into
the definition (modifying the (5) action of the
evaluator). The "def" and "end" needed to be
changed slightly too, to handle "frame" and
"remove".

A new evaluator can replace the old evaluator using
the observation that an evaluator is a function hence
its definition is like this:

 definition

&eval -> *enter
$8 *eval
 *jmp .-1
 &exit

Please note that an evaluator runs in an infinite loop.
Its "exit" is never executed. We define a function
"neweval" to replace the "*eval" (at $8) with the
reference to a new evaluator "&eval2" (assuming it
just has been defined).

 def eval2
 ...
 end
 neweval

3.3 Example of a TL

A simple language in postfix form is defined using a
few defining functions. These are compiler functions:

 def end if else { } while ->

The control flow functions: if else { } while, compile
the appropriate handlers (jmp, jmp-if-false) into the
body of definition. Other functions are of general use.
They are simple to be implemented as primitives
("variable" is as defined previously).

 variable + <= print

For the evaluator we need these machine code
routines:

 enter next exit number search set

For local variables the following functions are
needed:

compiler functions: [] ->
machine code: lget lput frame remove

Here are some example of language use:

 0 variable count

 def one-to-ten
 1 -> count
 while count 10 <= {
 count print
 count 1 + -> count
 }
 end

 def rec-one-to-ten [n]
 -> n
 if n 10 <= {
 n print
 n 1 + rec-one-to-ten
 }
 end

 one-to-ten
 1 rec-one-to-ten

The beauty of this example is that the compilation of
this source and its execution is contained in the
evaluator (eval function) and all pre-defined
functions above. There is no need for any other
function to compile and run this source!

4. Partial Evaluation

A partial evaluation [1] is program optimisation
technique, so called "program specialisation". It is a
method to generate a specialised version of a
program. It takes two inputs: the source program,
and a part of its input, it then outputs a program that
is usually longer than the original but runs faster. Fig
2 shows a partial evaluator takes two input: a
program p, and its input in1. It constructs a new
program p_in1, which will yield the same result that
p would have produced given both inputs.

 static input in1
 |
 v
a program
 p -> partial evaluator
 |
 |
 v
dynamic
input in2 -> specialised -> output
 program p_in1

Figure 2. A partial evaluation due to [1]

We can apply a partial evaluation with TL. We need
to execute a function as usual but a "trace" of
execution is recorded. This can be achieved with a

modified evaluator. With this "trace" a new version
of program can be generated using a defining
function. We give a simple example of the process.
Given a program "power" that computes xy where x
is a global variable and y is a local variable and a
static input "3 power".

 def power [y]
1 -> y
2 if y 1 == {
3 x
4 else
5 x y 1 - power *
 }
 end

The specialised version of "power" will be

 def power3
 x x x * *
 end

To achieve a partial evaluation, the technique of
"unfolding" function calls [2] is used. We record the
binding of the original program with respect to its
input "3 power", hence the syntactic entities of
interest are: "x" and "*". We modify the evaluator to
record these two entities, the record is called a
"trace". Here is the trace of executing "3 power".

 (y = 3)
 1 2 4 5
 (y = 2)
 1 2 4 5
 (y = 1)
 1 2 3

At line 3 and 5, the "x" and "*" are recorded. Here is
it.

 "&x" "&x" "&x" "&*" "&*"

We can define a defining function to take this trace
and generate a function.

 def power3
 x x x * *
 end

Another use of a partial evaluation is to generate an
"unfold" version of a function. In our case, a
definition can be unfolded into primitives. This will
speed up the execution of a program because the
overhead associated with "threading", the "enter",
"next" and "exit" can be reduced or bypass. This is
similar to compile to machine codes. In order to do
this, the evaluator must be able to understand the

meaning of some machine codes so that it will be
able to take appropriate "execution" of those
instructions and records its effect.

A defining function to generate a primitive is as
follows.

 def primitive
 create
 packcode
 end

Where "packcode" is similar to "machine" but does
not include "mcode". It reads the source until "end"
and packs the machine code into the body of the
function being defined. Here is a sample of its use.

 primitive power3p <machine code> end

The part <machine code> is generated by applying
partial evaluation to "power3" and record its
primitives execution.

5. Discussion

I have explore the design of a Threaded language
and show its implementation. Because of its dynamic
execution it is easily applied to generate programs. I
will discuss two aims I set out from the beginning of
this presentation.

First, the language, the structure of TL as definitions
allows the representation to be uniformly interpreted.
The flow control of TL is encapsulated into a few
mechanisms ("enter", "next", "exit"). This structure
gives rise to a "higher level" language, i.e. the
definition. Once the first evaluator (interpreter) is
written, the subsequent programming can be done
with this "higher level" language (define new
functions).

Second, the application of TL as a partial evaluator
can be easily achieved. This is because the nature of
TL as an interpreter. The defining function plays an
important role in the flexibility. The ability to take
some appropriate input and generates a program out
of it. This allows a partial evaluator to be constructed
naturally in TL.

Now I will elaborate on the implication of this
presentation. The implementation effort to bring up a
TL language is very minimal. Each primitive can be
implemented in around 10 lines of assembly code.
The "eval" function is implemented in 50 lines of
assembly code (it can be done as a definition but
something has to be pre-existed for it to work). The

accompany symbol table search and the scanner for a
source can be implemented conventionally. The crux
of TL is just a few machine code instructions (as it
should be as it is the bottleneck of the performance of
a TL). To contrast this with a compiler. I have a
compiler system written in the same machine code
that I wrote TL (s-code [3]). The source is publicly
available (Som version 2.0 [4]). The compiler source
code is about 2000 lines. Of course, this is not a very
fair comparison because the compiler and tke
interpreter do not "compile" the same language (one
being Som language, another is TL). But, both
languages are not too different as they are simple
languages for teaching purpose.

This use of TL can be very beneficial to
"boostrapping" a language in a new environment.
For example, to build a new embedded system, an
engineer usually selects a processor which has a rich
set of accompanying compiler, assembler, monitor to
create and debug software for a new platform. This
is appropriate. However, if the engineer wants to
choose a custom-made processor, then he or she will
face with an enormous task of creating an appropriate
tool chain. Here is where a TL style can be of help.

The result of partial evaluation is quite impressive.
Here are the comparison of "power", "power3" and
"power3p" on the same dynamic input. The speed is
measured in terms of the number of machine
instructions executed to complete the task.

power 492 instructions
power3 196 instructions
power3p 21 instructions

6. Related work

The term "threaded code" was used as a technique to
write an interpreter. It can be traced far back many
years ([5] in 1973). A. Ertl [6] discussed many
methods to implement "threaded code". My threaded
language is influenced heavily by this history. The
implementation presented here is partly similar in
style to the one in the book [7] which was also
influenced by the FORTH language invented by
Charles H. Moore [8, 9]. The discussion on the topic
of boostrapping a new system is explored in depth in
my earlier work [10].

The code and the executable system for this
experiment is available publicly on my website, at the
project topic "Threaded Language" [11].

7. References

[1] N. Jones, "An introduction to partial evaluation",

ACM Computing Surveys, Vol 28, Issue 3,
September 1996.

[2] R. Burstall, and J. Darlington, “A transformation
system for developing recursive programs,” J ACM,
24, 1, Jan. 1977, pp.44-67.

[3] http://www.cp.eng.chula.ac.th/~piak/project/som/
s-code.htm

[4] http://www.cp.eng.chula.ac.th/~piak/project/som/
index.htm

[5] J. Bell, "Threaded code", Communications of the
ACM, Volume 16 Issue 6, June 1973.

[6] M. Anton Ertl, Implementation of Stack-Based
Languages on Register Machines, PhD thesis,
Technische Universitat Wien, Austria, 1996.

[7] R. Loeliger, "Threaded Interpretive Languages", Byte
book, 1981.

[8] C. Moore and G. Leach, Forth : A language for
interactive computing, 1970.

[9] R. Wexelblat, History of programming languages,
ACM Press, 1978.

[10] P. Chongstitvatana, "Self-Generating Systems: How a
10,000,0002-line Compiler Assembles Itself," Proc. of
National Computer Science and Engineering
Conference, Bangkok, 2005.

[11] http://www.cp.eng.chula.ac.th/~piak/project/tl/

	Email: prabhas@chula.ac.th

