
An Algorithm for the Shortest Superstring Problem: 

A Dynamic Programming Approach 
 

Pattara Rujeerapaiboon 

Alongkot Burutarchanai 

Prabhas Chongstitvatana 

 

Department of Computer Engineering, Chulalongkorn University  

Bangkok, 10330, Thailand 

Email: Prabhas@chula.ac.th 

 

 
Abstract 

 

The Shortest Superstring Problem, also known as 

SSP, is a computational problem to construct the 

shortest string that contains every string in the given 

set. SSP is an important optimization problems as it 

has many applications in various fields including 

computing science, information technology and 

bioinformatics. SSP is proven to be NP-complete, 

thus, it cannot be solved by any efficient algorithms 

unless P=NP. Recently, machine learning and greedy 

procedures are major paradigms used for handling 

the problem. In this paper, the authors propose a 

dynamic programming algorithm which is accurate 

and computationally simple. Also, the algorithm can 

be adjusted or extended to handle the problem in 

specific domains. 
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1. Introduction 
SSP has posed immediate applications in many 

classical domains for a long time. For example, data 

compression, which is the process of encoding 

information with fewest information bearing units, in 

computing science and information technology. Also, 

the problem is of increasing importance in recent 

years as it is the generalization of fragment assembly 

in the newly explored bioinformatics domains. 

DNA or Deoxyribonucleic Acid is a nucleic acid 

consisting of four different nucleotides, namely A or 

Adenine, T or Thymine, C or Cysteine and G or 

Guanine. Due to technological limits, an accurate 

long DNA molecule cannot be directly identified. 

Instead, a whole molecule is reconstructed from 

several smaller parts of it, which are up to 600 bases 

long for best accuracy according to current 

techniques [1]. The reconstruction is named fragment 

assembly and is a special case of SSP. However, 

some assumptions have to be made upon the SSP 

approach when dealing with fragment assembly as 

some of DNA molecules consist of repetitive parts 

called repeats. 

SSP is proven to be NP-complete which shows 

that the problem itself is inherently computationally 

complex. Many attempts are devoted to invent an 

acceptably accurate algorithm [3-7]. In this paper, the 

authors develop an accurate and efficient graph 

algorithm on the basis of dynamic programming, 

which is adapted from Floyd-Warshall algorithm to 

some extent. 

  

2. Algorithms 
 

2.1 Floyd-Warshall Algorithm 

Floyd-Warshall algorithm [2] is an algorithm, on 

the basis of dynamic programming, to find the 

shortest path between all pairs of vertices in a 

directed graph that has no negative-length cycles. 

That is, given a directed graph of 𝑛 vertices, with no 

negative-length cycles, in the form of 𝑛 × 𝑛 distance 

matrix 𝑑𝑖𝑗 , the algorithm is based on the following 

recurrent relation for 𝑖, 𝑘 = 1,… , 𝑛 and 𝑖, 𝑘 ≠ 𝑗 
 

 𝑑𝑖𝑗 = 𝑚𝑖𝑛 𝑑𝑖𝑘 , 𝑑𝑖𝑗 + 𝑑𝑘𝑗      1  

  

The time complexity of a trivial implementation 

of the algorithm is 𝑂 𝑛3  
 

2.2 Preliminaries to the Proposed Algorithm 

In this section, the authors will introduce 

functions, sets, graphs and other terminologies used 

to describe the algorithm. 

Given a finite set of non-null strings  𝑆 =
 𝑠1 , 𝑠2 , … , 𝑠𝑛   where 𝑠𝑖 ∈ ∑

∗ for 1 ≤ 𝑖 ≤ 𝑛, the 



reduced set 𝑆 ′  is the largest set that preserves the 

following conditions. 

 

1. ∀𝑥 ∈ 𝑆 ′ 𝑥 ∈ 𝑆  

 

2. ∀𝑎, 𝑏 ∈ 𝑆 ′∧𝑎 ≠ 𝑏 

 ∀𝑞, 𝑟, 𝑠, 𝑡 ∈ ∑∗  
𝑞𝑎𝑟 ≠ 𝑏
𝑠𝑏𝑡 ≠ 𝑎

   

  
Let 𝜇 be the overlap function. 𝜇: ∑∗ × ∑∗ → 𝐼+∪

 0  preserves the following condition.  

 

      ∃𝑥, 𝑦, 𝑧  
𝑎 = 𝑥𝑦∧𝑏 = 𝑦𝑧∧|𝑦| = 𝑤∧

∀𝑟 𝑎 = 𝑞𝑟∧𝑏 = 𝑟𝑠 →  𝑟 ≤ 𝑤 
 →

      𝜇 𝑎, 𝑏 = 𝑤 

 

Let 𝜌 be the concatenating function. 𝜌: ∑∗ × ∑∗

→ ∑∗ preserves the following condition.  

 

    ∃𝑥, 𝑦, 𝑧 𝑎 = 𝑥𝑦∧𝑏 = 𝑦𝑧∧|𝑦| = 𝜇 𝑎, 𝑏  →

      𝜌 𝑎, 𝑏 = 𝑥𝑦𝑧 

 

Let 𝜌∗ be the composite concatenating function. 

Given 𝑛 ≥ 3 and 𝑎𝑖 ∈ ∑
∗ for 𝑖 ∈ 𝐼+, 𝜌∗  preserves 

the following conditions.  

 

1. 𝜌∗ 𝑎1 , 𝑎2 = 𝜌 𝑎1 , 𝑎2  
 

2. 𝜌∗ 𝑎1 , 𝑎2 , … , 𝑎𝑛 =
𝜌 𝜌∗ 𝑎1 , 𝑎2, … , 𝑎𝑛−1 , 𝑎𝑛  

 

Let 𝛼 ∈  0,1  and 𝛽 ∈ 𝐼+ be parameterized 

variables. Given 𝛼, 𝛽, 𝑎, 𝑏 where 𝑎, 𝑏 ∈ 𝑆 ′and 𝑎 ≠
𝑏 and 𝛾 𝑖𝑠 the length of the shortest string in 𝑆 ′ , let 

𝑃𝑎𝑏  be the possibility set under the reduced set 𝑆 ′ . 
𝑃𝑎𝑏  preserves the following conditions.  

 

1. 𝑃𝑎𝑏 =  𝑝𝑎𝑏1 , 𝑝𝑎𝑏2 , … , 𝑝𝑎𝑏𝛽   

 

2. ∀𝑖 ∈  1,2, … , 𝛽  
∃𝑥, 𝑦  𝑎 = 𝑥𝑦∧|𝑦|=

𝛾𝛼𝑖

𝛽+1
 

→ ℎ𝑎𝑏𝑖 = 𝑦
  

 

3. ∀𝑖 ∈  1,2, … , 𝛽 

 

 
 
 
 
 
 

∃𝑞, 𝑟, 𝑠

 

 
 
 
 

𝑏 = 𝑞𝑟𝑠∧

|𝑞| = 𝜇 𝑎, 𝑏 ∧
 𝑟 = 𝑚𝑖𝑛

 

𝛾𝛼

 1 −
𝑖

𝛽+1
 ,

 𝑏 −  𝑞 

 

 

 
 
 
 

→ ℎ𝑎𝑏𝑖 = 𝑟  

 
 
 
 
 
 

 

4. ∀𝑖 ∈  1,2, … , 𝛽  𝑝𝑎𝑏𝑖 = ℎ𝑎𝑏𝑖 + 𝑡𝑎𝑏𝑖   
     

      Let 𝐺 =  𝑉, 𝐸   be the complete directed graph      

(that is there are edges from every vertices to every 

other vertices in the same graph) under the reduced 

set 𝑆 ′   called validity graph. Each vertex in 𝐺  
represents different strings in 𝑆 ′  and 𝐺 preserves the 

following conditions. 

 

1.  𝑆 ′  = 𝑚 → 𝑉 =  𝑣1 , 𝑣2 , … , 𝑣𝑚   
 

2. ∃𝑦 ∈ 𝑃𝑎𝑏 , 𝑥, 𝑧 𝑥𝑦𝑧 ∈ 𝑆 ′ →  𝑣𝑎 , 𝑣𝑏 = 1 
 

3. ∀𝑦 ∈ 𝑃𝑎𝑏 , 𝑥, 𝑧 ∈ ∑∗ 𝑥𝑦𝑧𝑆 ′ →  𝑣𝑎 , 𝑣𝑏 = 0 
 

Let 𝜎 be the repeat eliminating function under the 

validity graph 𝐺. Given 𝑎, 𝑏, 𝑐 ∈ 𝑆 ′ , 𝜎 preserves the 

following conditions. 

 

1. 𝜎 𝑎, 𝑏 =  𝑎, 𝑏  
 

2. 𝜌 𝑎, 𝑏 = 𝑥∧∃𝑦, 𝑧 𝑦𝑐𝑧 = 𝑥 → 𝜎 𝑎, 𝑏, 𝑐 =
 𝑎, 𝑏  
 

3. 𝜌 𝑎, 𝑏 = 𝑥∧∀𝑦, 𝑧 ∈ ∑∗ 𝑦𝑐𝑧 ≠ 𝑥 →
𝜎 𝑎, 𝑏, 𝑐 =  𝑎, 𝑏, 𝑐  

 

Let 𝜎∗ be the composite repeat eliminating 

functions under the validity graph 𝐺. Given 𝑛 ≥
4 and 𝑎𝑖 ∈ 𝑆

 ′  for 𝑖 ∈ 𝐼+, 𝜎∗ preserves the following 

conditions.  

 

1. 𝜎∗ 𝑎1 , 𝑎2 = 𝜎 𝑎1 , 𝑎2  
 

2. 𝜎∗ 𝑎1 , 𝑎2 , 𝑎3 = 𝜎 𝑎1, 𝑎2 , 𝑎3  
 

3. 𝜎∗ 𝑎1 , 𝑎2 , … , 𝑎𝑛−1 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ ∧𝜌∗ 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ =

𝑥∧∃𝑦, 𝑧 𝑦𝑎𝑛𝑧 = 𝑥 → 𝜎∗ 𝑎1 , 𝑎2, … , 𝑎𝑛 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′  
 

4. 𝜎∗ 𝑎1, 𝑎2 , … , 𝑎𝑛−1 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ ∧𝜌∗ 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ = 𝑥∧∀𝑦, 𝑧 ∈

∑∗ 𝑦𝑎𝑛𝑧 ≠ 𝑥 → 𝜎∗ 𝑎1, 𝑎2 , … , 𝑎𝑛 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ , 𝑎𝑛  
 

Let 𝜏 be the scoring function under the validity 

graph 𝐺. Given 𝑛 ≥ 2 and 𝑎𝑖 ∈ 𝑆
′  for 𝑖 ∈ 𝐼+  

and 𝑎𝑖 ≠ 𝑎𝑗  if 𝑖 ≠ 𝑗 , 𝜏 preserves the following 

condition.  

 

      𝜎∗ 𝑎1, 𝑎2, … , 𝑎𝑛 =  𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ → 

      𝜏 𝑎1 , 𝑎2 , … , 𝑎𝑛 =
∑  𝑣

𝑎𝑖
′ ,𝑣

𝑎𝑖+1
′  𝑙−1

𝑖=1

𝑙−1
 

 

2.3 The Algorithm 

Given a finite set of non-null strings 𝑆 =
 𝑠1 , 𝑠2 , … , 𝑠𝑛  , the algorithm follows the sequence of  

 



instructions. 

1.   Let the best superstring 𝐵 be null. 

2. Reduce 𝑆 into a reduced set 𝑆
′  by repeatedly 

eliminating a string of 𝑆 which is a substring of one 

or more other strings (rather than itself) until no such 

string exists. Let 𝑚 be the size of  𝑆 ′ . 
3. Construct a validity graph 𝐺 from 𝑆 ′  where 

each vertex represents different strings in 𝑆 ′ . For each 

edge, the weight is 1 if collapsing its initial vertex 

with terminal vertex produces a valid link (a portion 

of resulting string around the overlapping region 

which is a substring of some members of  𝑆 ′). 
Otherwise, the edge is 0.  

4. Find all-pair most accurate acyclic path by 

exploiting Floyd-Warshall algorithm with slight 

modification (instead of the path’s length, the scoring 

function 𝜏 is used as the metric). 

5. Transform each 𝑚 𝑚 − 1  path into a 

superstring (by orderly using the composite repeat 

eliminating function 𝜎∗ and the composite 

concatenating function 𝜌∗. 
6. Choose the best superstring in step 4 by 

selecting the string that contains most number of 

strings in 𝑆 ′  (if there are more than one such strings, 

choose the shortest one). Compare the chosen string 

with 𝐵 using the same method and assign the better 

string to 𝐵. 
7. For each vertex in 𝐺 find the most accurate 

acyclic path (the scoring function 𝜏 is used as the 

metric) that begins with the vertex (if there are more 

than one such paths, choose one that represents the 

longest superstring) and transform it into a 

superstring. At this point, we get 𝑚 superstrings. 

Let 𝑆, whose size is 𝑚, be the set of these string  

8. Continue step 1 until the exit condition 

(such as maximum number of iterations or maximum 

number of iterations that 𝐵 is not changed) is 

reached. 

9. Return 𝐵. 

 

3. Performance 
A string of length 1000 over a set of alphabet 

whose size is 4 is sheared into 50 strings whose 

length are between 100-120. Parameters 𝛼 and 𝛽 are 

accordingly set to 1.0 and 3. The maximum number 

of iterations and the maximum number of iterations 

that the best solution does not improve are 5 and 2 

respectively. Levenshstein distance, which is the 

minimum number of operations {character insertion, 

deletion and substitution}
[8]

  required to transform 

one string to another string, together with an original 

string length which the authors define as 𝑙, is used to 

measure similarity between an original string and a 

string constructed by the algorithm.  

In the following performance evaluation, a noise-

free environment is assumed (exploitation under a 

less ideal environment will be further discussed). Ten 

experiments are conducted. The results are presented 

in table 1.  

 
                    Table 1 Experimental results  

 

From experiments, the average accuracy of the 

algorithm is 97.33%. By a statistical hypothesis 

testing, the algorithm can reconstruct an original 

string from its corresponding smaller strings with not 

less than 99.00% average accuracy over a 0.05 

significant level. 

 

4. Time Complexity Analysis 
For the sake of simplicity, in this analysis, the 

authors will not take time complexity of string 

processing into account as it varies greatly depends 

on which string processing algorithms are used.  

The time complexity of the algorithm is 

dominated by step 4. As previously discussed in 

section 2.1, Floyd-Warshall algorithm’s time 

complexity is 𝑂 𝑛3  where 𝑛 is a number of vertices 

in a graph under consideration. Step 4 requires circuit 

check, which is performed every time each current 

shortest path is about to be updated, in additional to 

normal Floyd-Warshall algorithm. A fast sorting 

algorithm whose time complexity is 𝑂 𝑛 𝑙𝑜𝑔 𝑛  and 

searching for consecutive identical vertices can be 

exploited to identify whether the path contains 

circuits. By using previous technique and the fact that 

each current shortest path has no more than 𝑛 

vertices, the time complexity of the algorithm is 

𝑂 𝑛4 𝑙𝑜𝑔 𝑛 . However, this is a loose time 

complexity approximation and the exact time 

complexity is expected to be substantially less. 

 

5. Conclusions 
     The algorithm is computationally simple and 

accurate. Also, it can be adjusted or extended to 

handle SSP in specific domains like computing 

science, information technology or bioinformatics. 

Moreover, the algorithm can be exploited even in the 

presence of noise. That is if maximum error rate in 

No. Levenshtein 

Distance 

  𝑑  
 1 −

𝑑

𝑙
 × 100% 

Accuracy 

1. 0 100.00 

2. 72 92.80 

3. 0 100.00 

4. 78 92.20 

5. 1 99.90 

6. 0 100.00 

7. 34 96.60 

8. 74 92.60 

9. 8 99.20 

10. 0 100.00 



strings is known, the string matching condition can 

be adjusted according to that rate.  

     The algorithm may yield better performance if an 

overlap graph is used instead of the validity graph. In 

this context, the overlap graph is the complete 

directed graph. An edge from vertex 𝑣𝑎   to vertex 𝑣𝑏  

is 
𝜇 𝑎,𝑏   

𝑚𝑖𝑛  |𝑎|,|𝑏| 
 where 𝑎 and 𝑏 are strings represented by 

𝑣𝑎  and 𝑣𝑏  respectively. Further investigation should 

be conducted to prove or disprove this hypothesis. 

      Future works focus on enhancing the algorithm to 

handle several or long repetitive parts in strings.  
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