
An Algorithm for the Shortest Superstring Problem:

A Dynamic Programming Approach

Pattara Rujeerapaiboon

Alongkot Burutarchanai

Prabhas Chongstitvatana

Department of Computer Engineering, Chulalongkorn University

Bangkok, 10330, Thailand

Email: Prabhas@chula.ac.th

Abstract

The Shortest Superstring Problem, also known as

SSP, is a computational problem to construct the

shortest string that contains every string in the given

set. SSP is an important optimization problems as it

has many applications in various fields including

computing science, information technology and

bioinformatics. SSP is proven to be NP-complete,

thus, it cannot be solved by any efficient algorithms

unless P=NP. Recently, machine learning and greedy

procedures are major paradigms used for handling

the problem. In this paper, the authors propose a

dynamic programming algorithm which is accurate

and computationally simple. Also, the algorithm can

be adjusted or extended to handle the problem in

specific domains.

Key Words: SSP, shortest superstring problem, data

compression, genome assembly, fragment assembly

1. Introduction
SSP has posed immediate applications in many

classical domains for a long time. For example, data

compression, which is the process of encoding

information with fewest information bearing units, in

computing science and information technology. Also,

the problem is of increasing importance in recent

years as it is the generalization of fragment assembly

in the newly explored bioinformatics domains.

DNA or Deoxyribonucleic Acid is a nucleic acid

consisting of four different nucleotides, namely A or

Adenine, T or Thymine, C or Cysteine and G or

Guanine. Due to technological limits, an accurate

long DNA molecule cannot be directly identified.

Instead, a whole molecule is reconstructed from

several smaller parts of it, which are up to 600 bases

long for best accuracy according to current

techniques [1]. The reconstruction is named fragment

assembly and is a special case of SSP. However,

some assumptions have to be made upon the SSP

approach when dealing with fragment assembly as

some of DNA molecules consist of repetitive parts

called repeats.

SSP is proven to be NP-complete which shows

that the problem itself is inherently computationally

complex. Many attempts are devoted to invent an

acceptably accurate algorithm [3-7]. In this paper, the

authors develop an accurate and efficient graph

algorithm on the basis of dynamic programming,

which is adapted from Floyd-Warshall algorithm to

some extent.

2. Algorithms

2.1 Floyd-Warshall Algorithm

Floyd-Warshall algorithm [2] is an algorithm, on

the basis of dynamic programming, to find the

shortest path between all pairs of vertices in a

directed graph that has no negative-length cycles.

That is, given a directed graph of 𝑛 vertices, with no

negative-length cycles, in the form of 𝑛 × 𝑛 distance

matrix 𝑑𝑖𝑗 , the algorithm is based on the following

recurrent relation for 𝑖, 𝑘 = 1,… , 𝑛 and 𝑖, 𝑘 ≠ 𝑗

 𝑑𝑖𝑗 = 𝑚𝑖𝑛 𝑑𝑖𝑘 , 𝑑𝑖𝑗 + 𝑑𝑘𝑗 1

The time complexity of a trivial implementation

of the algorithm is 𝑂 𝑛3

2.2 Preliminaries to the Proposed Algorithm

In this section, the authors will introduce

functions, sets, graphs and other terminologies used

to describe the algorithm.

Given a finite set of non-null strings 𝑆 =
 𝑠1 , 𝑠2 , … , 𝑠𝑛 where 𝑠𝑖 ∈ ∑

∗ for 1 ≤ 𝑖 ≤ 𝑛, the

reduced set 𝑆 ′ is the largest set that preserves the

following conditions.

1. ∀𝑥 ∈ 𝑆 ′ 𝑥 ∈ 𝑆

2. ∀𝑎, 𝑏 ∈ 𝑆 ′∧𝑎 ≠ 𝑏

 ∀𝑞, 𝑟, 𝑠, 𝑡 ∈ ∑∗
𝑞𝑎𝑟 ≠ 𝑏
𝑠𝑏𝑡 ≠ 𝑎

Let 𝜇 be the overlap function. 𝜇: ∑∗ × ∑∗ → 𝐼+∪

 0 preserves the following condition.

 ∃𝑥, 𝑦, 𝑧
𝑎 = 𝑥𝑦∧𝑏 = 𝑦𝑧∧|𝑦| = 𝑤∧

∀𝑟 𝑎 = 𝑞𝑟∧𝑏 = 𝑟𝑠 → 𝑟 ≤ 𝑤
 →

 𝜇 𝑎, 𝑏 = 𝑤

Let 𝜌 be the concatenating function. 𝜌: ∑∗ × ∑∗

→ ∑∗ preserves the following condition.

 ∃𝑥, 𝑦, 𝑧 𝑎 = 𝑥𝑦∧𝑏 = 𝑦𝑧∧|𝑦| = 𝜇 𝑎, 𝑏 →

 𝜌 𝑎, 𝑏 = 𝑥𝑦𝑧

Let 𝜌∗ be the composite concatenating function.

Given 𝑛 ≥ 3 and 𝑎𝑖 ∈ ∑
∗ for 𝑖 ∈ 𝐼+, 𝜌∗ preserves

the following conditions.

1. 𝜌∗ 𝑎1 , 𝑎2 = 𝜌 𝑎1 , 𝑎2

2. 𝜌∗ 𝑎1 , 𝑎2 , … , 𝑎𝑛 =
𝜌 𝜌∗ 𝑎1 , 𝑎2, … , 𝑎𝑛−1 , 𝑎𝑛

Let 𝛼 ∈ 0,1 and 𝛽 ∈ 𝐼+ be parameterized

variables. Given 𝛼, 𝛽, 𝑎, 𝑏 where 𝑎, 𝑏 ∈ 𝑆 ′and 𝑎 ≠
𝑏 and 𝛾 𝑖𝑠 the length of the shortest string in 𝑆 ′ , let

𝑃𝑎𝑏 be the possibility set under the reduced set 𝑆 ′ .
𝑃𝑎𝑏 preserves the following conditions.

1. 𝑃𝑎𝑏 = 𝑝𝑎𝑏1 , 𝑝𝑎𝑏2 , … , 𝑝𝑎𝑏𝛽

2. ∀𝑖 ∈ 1,2, … , 𝛽
∃𝑥, 𝑦 𝑎 = 𝑥𝑦∧|𝑦|=

𝛾𝛼𝑖

𝛽+1

→ ℎ𝑎𝑏𝑖 = 𝑦

3. ∀𝑖 ∈ 1,2, … , 𝛽

∃𝑞, 𝑟, 𝑠

𝑏 = 𝑞𝑟𝑠∧

|𝑞| = 𝜇 𝑎, 𝑏 ∧
 𝑟 = 𝑚𝑖𝑛

𝛾𝛼

 1 −
𝑖

𝛽+1
 ,

 𝑏 − 𝑞

→ ℎ𝑎𝑏𝑖 = 𝑟

4. ∀𝑖 ∈ 1,2, … , 𝛽 𝑝𝑎𝑏𝑖 = ℎ𝑎𝑏𝑖 + 𝑡𝑎𝑏𝑖

 Let 𝐺 = 𝑉, 𝐸 be the complete directed graph

(that is there are edges from every vertices to every

other vertices in the same graph) under the reduced

set 𝑆 ′ called validity graph. Each vertex in 𝐺
represents different strings in 𝑆 ′ and 𝐺 preserves the

following conditions.

1. 𝑆 ′ = 𝑚 → 𝑉 = 𝑣1 , 𝑣2 , … , 𝑣𝑚

2. ∃𝑦 ∈ 𝑃𝑎𝑏 , 𝑥, 𝑧 𝑥𝑦𝑧 ∈ 𝑆 ′ → 𝑣𝑎 , 𝑣𝑏 = 1

3. ∀𝑦 ∈ 𝑃𝑎𝑏 , 𝑥, 𝑧 ∈ ∑∗ 𝑥𝑦𝑧𝑆 ′ → 𝑣𝑎 , 𝑣𝑏 = 0

Let 𝜎 be the repeat eliminating function under the

validity graph 𝐺. Given 𝑎, 𝑏, 𝑐 ∈ 𝑆 ′ , 𝜎 preserves the

following conditions.

1. 𝜎 𝑎, 𝑏 = 𝑎, 𝑏

2. 𝜌 𝑎, 𝑏 = 𝑥∧∃𝑦, 𝑧 𝑦𝑐𝑧 = 𝑥 → 𝜎 𝑎, 𝑏, 𝑐 =
 𝑎, 𝑏

3. 𝜌 𝑎, 𝑏 = 𝑥∧∀𝑦, 𝑧 ∈ ∑∗ 𝑦𝑐𝑧 ≠ 𝑥 →
𝜎 𝑎, 𝑏, 𝑐 = 𝑎, 𝑏, 𝑐

Let 𝜎∗ be the composite repeat eliminating

functions under the validity graph 𝐺. Given 𝑛 ≥
4 and 𝑎𝑖 ∈ 𝑆

 ′ for 𝑖 ∈ 𝐼+, 𝜎∗ preserves the following

conditions.

1. 𝜎∗ 𝑎1 , 𝑎2 = 𝜎 𝑎1 , 𝑎2

2. 𝜎∗ 𝑎1 , 𝑎2 , 𝑎3 = 𝜎 𝑎1, 𝑎2 , 𝑎3

3. 𝜎∗ 𝑎1 , 𝑎2 , … , 𝑎𝑛−1 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ ∧𝜌∗ 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ =

𝑥∧∃𝑦, 𝑧 𝑦𝑎𝑛𝑧 = 𝑥 → 𝜎∗ 𝑎1 , 𝑎2, … , 𝑎𝑛 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′

4. 𝜎∗ 𝑎1, 𝑎2 , … , 𝑎𝑛−1 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ ∧𝜌∗ 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ = 𝑥∧∀𝑦, 𝑧 ∈

∑∗ 𝑦𝑎𝑛𝑧 ≠ 𝑥 → 𝜎∗ 𝑎1, 𝑎2 , … , 𝑎𝑛 =
 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑙

′ , 𝑎𝑛

Let 𝜏 be the scoring function under the validity

graph 𝐺. Given 𝑛 ≥ 2 and 𝑎𝑖 ∈ 𝑆
′ for 𝑖 ∈ 𝐼+

and 𝑎𝑖 ≠ 𝑎𝑗 if 𝑖 ≠ 𝑗 , 𝜏 preserves the following

condition.

 𝜎∗ 𝑎1, 𝑎2, … , 𝑎𝑛 = 𝑎1
′ , 𝑎2

′ , … , 𝑎𝑙
′ →

 𝜏 𝑎1 , 𝑎2 , … , 𝑎𝑛 =
∑ 𝑣

𝑎𝑖
′ ,𝑣

𝑎𝑖+1
′ 𝑙−1

𝑖=1

𝑙−1

2.3 The Algorithm

Given a finite set of non-null strings 𝑆 =
 𝑠1 , 𝑠2 , … , 𝑠𝑛 , the algorithm follows the sequence of

instructions.

1. Let the best superstring 𝐵 be null.

2. Reduce 𝑆 into a reduced set 𝑆
′ by repeatedly

eliminating a string of 𝑆 which is a substring of one

or more other strings (rather than itself) until no such

string exists. Let 𝑚 be the size of 𝑆 ′ .
3. Construct a validity graph 𝐺 from 𝑆 ′ where

each vertex represents different strings in 𝑆 ′ . For each

edge, the weight is 1 if collapsing its initial vertex

with terminal vertex produces a valid link (a portion

of resulting string around the overlapping region

which is a substring of some members of 𝑆 ′).
Otherwise, the edge is 0.

4. Find all-pair most accurate acyclic path by

exploiting Floyd-Warshall algorithm with slight

modification (instead of the path’s length, the scoring

function 𝜏 is used as the metric).

5. Transform each 𝑚 𝑚 − 1 path into a

superstring (by orderly using the composite repeat

eliminating function 𝜎∗ and the composite

concatenating function 𝜌∗.
6. Choose the best superstring in step 4 by

selecting the string that contains most number of

strings in 𝑆 ′ (if there are more than one such strings,

choose the shortest one). Compare the chosen string

with 𝐵 using the same method and assign the better

string to 𝐵.
7. For each vertex in 𝐺 find the most accurate

acyclic path (the scoring function 𝜏 is used as the

metric) that begins with the vertex (if there are more

than one such paths, choose one that represents the

longest superstring) and transform it into a

superstring. At this point, we get 𝑚 superstrings.

Let 𝑆, whose size is 𝑚, be the set of these string

8. Continue step 1 until the exit condition

(such as maximum number of iterations or maximum

number of iterations that 𝐵 is not changed) is

reached.

9. Return 𝐵.

3. Performance
A string of length 1000 over a set of alphabet

whose size is 4 is sheared into 50 strings whose

length are between 100-120. Parameters 𝛼 and 𝛽 are

accordingly set to 1.0 and 3. The maximum number

of iterations and the maximum number of iterations

that the best solution does not improve are 5 and 2

respectively. Levenshstein distance, which is the

minimum number of operations {character insertion,

deletion and substitution}
[8]

 required to transform

one string to another string, together with an original

string length which the authors define as 𝑙, is used to

measure similarity between an original string and a

string constructed by the algorithm.

In the following performance evaluation, a noise-

free environment is assumed (exploitation under a

less ideal environment will be further discussed). Ten

experiments are conducted. The results are presented

in table 1.

 Table 1 Experimental results

From experiments, the average accuracy of the

algorithm is 97.33%. By a statistical hypothesis

testing, the algorithm can reconstruct an original

string from its corresponding smaller strings with not

less than 99.00% average accuracy over a 0.05

significant level.

4. Time Complexity Analysis
For the sake of simplicity, in this analysis, the

authors will not take time complexity of string

processing into account as it varies greatly depends

on which string processing algorithms are used.

The time complexity of the algorithm is

dominated by step 4. As previously discussed in

section 2.1, Floyd-Warshall algorithm’s time

complexity is 𝑂 𝑛3 where 𝑛 is a number of vertices

in a graph under consideration. Step 4 requires circuit

check, which is performed every time each current

shortest path is about to be updated, in additional to

normal Floyd-Warshall algorithm. A fast sorting

algorithm whose time complexity is 𝑂 𝑛 𝑙𝑜𝑔 𝑛 and

searching for consecutive identical vertices can be

exploited to identify whether the path contains

circuits. By using previous technique and the fact that

each current shortest path has no more than 𝑛

vertices, the time complexity of the algorithm is

𝑂 𝑛4 𝑙𝑜𝑔 𝑛 . However, this is a loose time

complexity approximation and the exact time

complexity is expected to be substantially less.

5. Conclusions
 The algorithm is computationally simple and

accurate. Also, it can be adjusted or extended to

handle SSP in specific domains like computing

science, information technology or bioinformatics.

Moreover, the algorithm can be exploited even in the

presence of noise. That is if maximum error rate in

No. Levenshtein

Distance

 𝑑
 1 −

𝑑

𝑙
 × 100%

Accuracy

1. 0 100.00

2. 72 92.80

3. 0 100.00

4. 78 92.20

5. 1 99.90

6. 0 100.00

7. 34 96.60

8. 74 92.60

9. 8 99.20

10. 0 100.00

strings is known, the string matching condition can

be adjusted according to that rate.

 The algorithm may yield better performance if an

overlap graph is used instead of the validity graph. In

this context, the overlap graph is the complete

directed graph. An edge from vertex 𝑣𝑎 to vertex 𝑣𝑏

is
𝜇 𝑎,𝑏

𝑚𝑖𝑛 |𝑎|,|𝑏|
 where 𝑎 and 𝑏 are strings represented by

𝑣𝑎 and 𝑣𝑏 respectively. Further investigation should

be conducted to prove or disprove this hypothesis.

 Future works focus on enhancing the algorithm to

handle several or long repetitive parts in strings.

6. References
[1] M. Pop, S.L. Salzberg, and M. Shumway, “Genome

sequence assembly: algorithms and issues”, IEEE

Computer, 35, 2002, pp.47-54.

[2] C.H., Papadimitriou and K. Steiglitz, Combinatorial

Optimization: Algorithms and Complexity, Dover

Publications, 1998.

[3] A. Blum, et al., “Linear approximation of shortest

superstring”, Journal of the Association for Computing

Machinery, 41, 1994, pp. 630-647.

[4] D. Breslauer, T. Jiang, and Z. Jiang, “Rotations of

periodic strings and short superstring”, Journal of

Algorithms, 24, 1997, pp. 340-353.

[5] C. Armen and C. Stein, “A 2
2

3
 superstring

 approximation algorithm”, Discrete Applied

Mathematics, 88, 1998, pp. 29-57.

[6] Z. Sweedyk, “A 2
1

2
- approximation algorithm for

shortest superstring”, SIAM Journal on Computing, 29,

1999, 954-986.

[7] M.K. Goldberg and D.T. Lim, “A learning algorithm

for the shortest superstring problem”, in: Proceedings

of the Atlantic Symposium on Computational Biology

and Genome Information Systems and Technology,

Durham, NC, 2001.

[8] N.C. Jones and P.A. Pevzner, An Introduction to

Bioinformatics Algorithms, MIT Press, 2004.

