
Application of Node Based Coincidence Algorithm
for Flow Shop Scheduling Problems

Ornrumpha Srimongkolkul
Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

ornornmail@gmail.com

Prabhas Chongstitvatana
Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

prabhas@chula.ac.th

Abstract—This work proposes an algorithm called Node
Based Coincidence algorithm (NB-COIN) focusing on total
flowtime minimization in the permutation flowshop scheduling
problems. Many algorithms have been proved to be effective for
this problem. However, in the real situation, cost of computation
becomes an important factor. NB-COIN produces reasonable
solutions using a lot less computation power than other
algorithms in consideration. Compared to a number of well-
known algorithms, the results show that NB-COIN is an effective
algorithm which generates less than 1.7% different from recently
best known solutions from Taillard’s benchmark instances.

Keywords—Coincidence Algorithm; permutation flowshop
scheduling; Estimation of Distribution Algorithms

I. INTRODUCTION
The flowshop scheduling problem challenged many

researchers for many years. It is the arrangement a sequence of
task to process on all machines in the same order. This problem
consists of n jobs and m machines. The processing time for
each job has to be predetermined. All jobs have to process
completely. Each machine is idle and can process only one job
at the time with no preemption allowance. For the permutation
flowshop scheduling problem (PFSP), it is not allow passing
any jobs in order to reduce the possible solutions into (n!). The
two popular basic objectives for PFSP are makespan
minimization or total flowtime minimization. In this paper, we
aim to minimize the total flowtime which denote as
F/prmu/∑Cj. To calculate the total flowtime, the equation is
defined as follow:

 TFT=

 denotes the completion time of job k on the last
machine. The completion time of job k, on the
machine i, can be denotes as where
and .The processing time of job j on machine i is
denote to t[k] j. Therefore, C[k]j is compute as follows:

This problem has been reported as NP-hard by Garey,
Johnson, and Sethi (1976) [1]. Many algorithms were
presented as a new tool for PFSP. Jarboui et al. (2009)
proposed an Estimation of Distribution Algorithm (EDAj).
EDAj shared the main steps from Estimation of Distribution

Algorithm (EDA) by Lozano et al [2] but adopt Reeves
technique [3] for the selection procedure and focus on either
job’s position in the sequence or parent’s job for the
Probabilistic model. Variable neighborhood search (VNSj) is
another algorithm introduced by Jarboui et al. (2009). It is a
Hybrid EDA where local search method, VNS algorithm, was
used to improve the performance.

This research applies a combinatorial optimization with
coincidence algorithm (COIN) [4]. Unlike other approaches of
Estimation of Distribution Algorithm (EDA) [5], COIN learns
building blocks of the solutions using both negative and
positive samples. Through the negative learning, COIN can
contribute better quality of solutions and provide more diverse
solutions. In addition, COIN is simple to implement and it
requires small amount of resource.

This paper is organized as follows: Section 2 determines
Node-Based Coincidence Algorithm (COIN). Section 3
describes the compared algorithms. Section 4 presents the
computational result and the conclusion is shown in Section 5.

II. NODE-BASED COINCIDENCE ALGORITHM
Coincidence Algorithm (COIN) [4] is a method in

Estimation of Distribution Algorithm (EDA) class. Similarity
to Shigeyoshi Tsutsui method [6] that has two representations:
Edge Histogram Based Sampling Algorithms (EHBSAs) and
Node Histogram Based Sampling Algorithms (NHBSAs),
COIN also has both edge-based and node-based versions. In
edge-based COIN, a coincidence denotes an adjacent pair that
is generated from a probabilistic table. In the contrary, Node-
based COIN represents an incidence as a node so the
probability of each element can be updated independently.
However, the specific characteristic of COIN is the negative
correlation learning. COIN makes use of both positive and
negative samples to improve the solutions.

COIN is proved to be an effective algorithm for many
combinatorial optimization problems such as Traveling
Salesman Problem and Knight’s Tour Problem [7]. It is also
used to solve mixed-model u-shaped assembly line balancing
problem (MMUALBP) [8] and it is reported that COIN
outperformed well-known algorithm, NSGA II.

Generally, the procedure of NB-COIN is described as the
following steps:

2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE)

978-1-4799-0806-6/13/$31.00 ©2013 IEEE 49

1) Initialization: set the parameters and generate a joint
probability matrix.

2) Population production: sample the population from a
joint probability matrix.

3) Population evaluation: calculate the fitness value of
each candidate.

4) Candidate selection: rank all candidates by fitness
value, select top and bottom candidates.

5) The joint probability matrix update: update the matrix
by giving a reward and punishment to the selected candidate.

6) Termination condition check: if the termination
condition is not met, repeat step 2.

A. Initialization
The joint probability matrix is a matrix of size

 where n is the problem size. Each row(yi) represents the
position of job. Each column(xj) represents the probability of
each job that may put into the position. In this state, we give
the probability 1/n to all element in matrix . Table I.
shows the example of joint probability matrix where xj refers to
probability of job i and yi refer to the position.

TABLE I. AN EXAMPLE OF PROBABILITY MATRIX

 X1 X2 X3 X4 X5

Y1 0.2 0.2 0.2 0.2 0.2

Y2 0.2 0.2 0.2 0.2 0.2

Y3 0.2 0.2 0.2 0.2 0.2

Y4 0.2 0.2 0.2 0.2 0.2

Y5 0.2 0.2 0.2 0.2 0.2
a. The problem size is five.

Population production
To create a population, we sample the position of jobs into

a sequence. Then, generate the candidate as an order using that
sequence.

Population evaluation and candidate selection
The algorithm evaluates the population using fitness

function and ranks the candidate from the best to the worst
solution. According to the unique characteristic of COIN, it
selects two groups of sub-population, the good solutions and
the poor solutions. The size of these two groups denote by the
cut-off size parameter such as 5% or 25%.

The joint probability matrix updating
COIN updates the joint probability matrix by giving a

reward to the good solution group and a punishment to bad
solution group. To reward and punish the candidate Hxy, the
probability weight is adjusted as the equation below:

Where k is the learning step, n is the problem size, is the
total number of coincidence Hxy which found in the group of
good solutions and pxy is the total number of coincidence Hxy
which found in the group of poor solutions. Furthermore, In

order to maintain the probability summation in each row to 1.0,
other element which share the same row as the good solution or
bad solution have to adjust the probability by

.

III. ALGORITHMS IN COMPARISON
EDAj and Hybrid EDA (Jarboui et al, 2009) are used as a

comparison to the proposed algorithm. EDAj and Hybrid EDA
are in the class of EDA which is the most powerful class of
Evolutionary Algorithms at present. The result reported here is
taken from the experiment reported in [10].

There are three steps in EDAj: Selection, Probabilistic
model, Update.

1) Selection:
a) calculate fitness for an individual p,

 (4)

b) the population is sorted by their fitness (higher TFT
value is at the top of the list. The selection is made with the
probability:

 (5)

where r is the rank of the r th individual in the sorted list. P
is the size of population.

2) Probabilistic model:
The individual is generated according to πjk.

πjk is the probability of selecting the job j in the position kth.
 (6)

 = the number of times that the job j appears before or in
the position k.

 = the number of times the job j is immediately after
the job in the position k-1.

 the set of jobs not already scheduled until position k.

3) Update:
After a subset of population is selected, the new individual

is compared with the worst individual in the current population.
If the new individual has a higher fitness value and the
sequence of this new individual is unique, it replaces the worst
individual.

Local search (VNS) has been incorporated into EDAj to
enhance the performance. Two local search methods were
reported in the experiment: swap_local_search and
insert_local_search. VNS is applied to a subset of individuals
selected by the probability of improvement depends on the
quality.

 (7)

is the created offspring, is the best solution
found so far.

50

IV. COMPUTATIONAL RESULT
The proposed algorithm is implement in C++ and run on a

machine with MS Windows 7 using Intel Core i5 450M,
2.40GHz and 4GB of RAM. In order to test the proposed
method, 30 instances of the Taillard (1993) benchmark [9] are
used where n = 20 and which represent into
three groups, 20×5, 20×10 and 20×20. We compare the results
in two aspects; the performance using same amount of CPU
time and the best solution found.

We compare the performance of NB-COIN against two
well-known algorithms EDAj and VNSj proposed by Jarboui et
al. (2009), using the average relative percentage deviation from
a reference solution (ARPD). The equation of ARPD is below.

ARPD = () / R

In Eq(2) R refers to the number of round, Si is the solution
in each round and Sbest is the best solution among all the
comparison algorithms. In this case, we compare the
algorithms in different environment. We use the result of EDAj
and VNSj from Pan and Ruiz.(2012) [10] EDAj and VNSj are
run on a cluster of 30 blade servers with two Intel XEON 5254
quad core processors, 2,5GHz and 16GB of RAM memory in
each server. As the result in Pan and Ruiz.(2012) didn’t
mention the Sbest of EDAj and VNSj, we decide to use the

TABLE II. BEST KNOWN SOLUTIONS

recently best known results found so far for instance. In
addition, we adopt the same termination criterion, maximum
CPU time at t= milliseconds. The result from Table II
shows that the average ARPD value generated by COIN is
lower than the other methods.

TABLE III. ARPD RESULTS OF THE ALGORITHM

Instances EDAj VNSj COIN

20 × 5 1.20 2.92 1.37

20 × 10 1.56 2.90 1.34

20 × 20 0.97 2.15 0.53

average 1.24 2.66 1.08

Our best solution found by COIN is compared against
recently best known result reported by Jarboui et al.(2009),
Zheng and Li(2011) and Pan and Ruiz (2012 . The
proposed method uses a lot less resource with the same
maximum CPU time t=400mn milliseconds. The best result of
our method has small difference to the best solution. As shown
in the Table III, the result from COIN is less than 1.7%
different from the best known result of the other methods.

Instances Best known NB-COIN Differentials (%) Instances Best known NB-COIN Differentials (%)

Ta001 14033 14043 0.07 Ta016 19245 19507 1.36

Ta002 15151 15237 0.57 Ta017 18363 18624 1.42

Ta003 13301 13413 0.84 Ta018 20241 20412 0.84

Ta004 15447 15575 0.83 Ta019 20330 20597 1.31

Ta005 13529 13600 0.52 Ta020 21320 21418 0.46

Ta006 13123 13333 1.60 Ta021 33623 33816 0.57

Ta007 13548 13760 1.56 Ta022 31587 31806 0.69

Ta008 13948 14026 0.56 Ta023 33920 34088 0.49

Ta009 14295 14346 0.35 Ta024 31661 31774 0.36

Ta010 12943 13142 1.54 Ta025 34557 34705 0.43

Ta011 20911 21007 0.46 Ta026 32564 32822 0.79

Ta012 22440 22806 1.63 Ta027 32922 33318 1.20

Ta013 19833 19930 0.49 Ta028 32412 32750 1.04

Ta014 18710 18899 1.01 Ta029 33600 33976 1.12

Ta015 18641 18821 0.96 Ta030 32262 32746 1.5

51

V. CONCLUSION
Many algorithms have been introduced to solve the total

flowtime minimization flowshop scheduling problems. In this
paper, we introduce a method called Node-based Coincidence
Algorithm (NB-COIN). The experiments show that this
method uses less computation power than other algorithms in
consideration. In addition, the solutions found by NB-COIN
are close to the best known solutions for Taillard’s benchmark.
Thus, NB-COIN is an outstanding method for flowshop
scheduling problem with the small computational resource.

Acknowledgement
We would like to thank Warin Wattanapornprom for his

untiring positive suggestion on many ideas used in this paper.

REFERENCES

[1] M. Garey, D. Johnson, and R. Sethi, “The Complexity of Flowshop and
Jobshop Scheduling,” Mathematics of Operations Research, 1976, pp.
117–29.

[2] B. Jarboui, M. Eddaly, P. Siarry, “An Estimation of Distribution
Algorithm for Minimizing the Total Flowtime in Permutation Flowshop
Scheduling Problems,” Computers & Operations Research, 2009, pp.
2638 2646.

[3] J. Liu, CR. Reeves, “Constructive and Composite Heuristic Solutions to
The P ∑Ci Scheduling Problem,” European Journal of Operational
Research, 2001, pp. 439–52.

[4] W. Wattanapornprom, P. Olanviwitchai, P. Chutima, and P.
Chongstitvatana, “Multi-objective Combinatorial Optimization with
Coincidence Algorithm,” IEEE Congress on Evolutionary Computation,
Norway, May 18-21, 2009.

[5] P. Larrañaga, and J.A. Lozano, “Estimation of distribution algorithms: A
new tool for evolutionary computation,” Kluwer Academic Publishers,
Boston, 2002.

[6] S. Tsutsui, M. Pelikan, and D.E. Goldberg, “Node Histogram vs. Edge
Histogram: A Comparison of PMBGAs in Permutation Domains,”
MEDAL Report No. 2006009, July 2006.

[7] R. Sirovetnukul, P. Chutima, W. Wattanapornprom, and P.
Chongstitvatana, “The Effectiveness of Hybrid Negative Correlation
Learning in Evolutionary Algorithm for Combinatorial Optimization
Problems,” IEEE Int. Conf. on Industrial Engineering and Engineering
Management, Singapore, 6-9 Dec, 2011.

[8] P. Chutima, and P. Olanviwatchai, “Mixed-model u-shaped assembly
line balancing problem with Coincidence Memetic Algorithm,” J.
Software Engineering & Applications, pp.347-363, 2010.

[9] E. Taillard, “Benchmarks for Basic Scheduling Problems,” European
Journal of Operational Research, 1993, pp. 278–85.

[10] Q.-K. Pan, and R. Ruiz, “Local search methods for the flowshop
scheduling problem with flowtime minimization,” European Journal of
Operational Research 222, 2012, pp.31-43.

[11] Y. Zhang, and L. Xiaoping, “Estimation of Distributed Algorithm for
permutation flow shops with total flowtime minimization,”
Computer&Industrial Engineering, 2011, pp706-718.

52

