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Abstract—This work proposes an algorithm called Node 
Based Coincidence algorithm (NB-COIN) focusing on total 
flowtime minimization in the permutation flowshop scheduling 
problems. Many algorithms have been proved to be effective for 
this problem. However, in the real situation, cost of computation 
becomes an important factor. NB-COIN produces reasonable 
solutions using a lot less computation power than other 
algorithms in consideration. Compared to a number of well-
known algorithms, the results show that NB-COIN is an effective 
algorithm which generates less than 1.7% different from recently 
best known solutions from Taillard’s benchmark instances.   

Keywords—Coincidence Algorithm; permutation flowshop 
scheduling; Estimation of Distribution Algorithms 

I.  INTRODUCTION  
The flowshop scheduling problem challenged many 

researchers for many years. It is the arrangement a sequence of 
task to process on all machines in the same order. This problem 
consists of n jobs and m machines. The processing time for 
each job has to be predetermined. All jobs have to process 
completely.  Each machine is idle and can process only one job 
at the time with no preemption allowance. For the permutation 
flowshop scheduling problem (PFSP), it is not allow passing 
any jobs in order to reduce the possible solutions into (n!). The 
two popular basic objectives for PFSP are makespan 
minimization or total flowtime minimization. In this paper, we 
aim to minimize the total flowtime which denote as 
F/prmu/∑Cj. To calculate the total flowtime, the equation is 
defined as follow: 

                                TFT=   

 denotes the completion time of job k on the last 
machine. The completion time of job k,  on the 
machine i,  can be denotes as  where  
and .The processing time of job j on machine i is 
denote to t[k] j. Therefore, C[k]j is compute as follows: 

                          

This problem has been reported as NP-hard by Garey, 
Johnson, and Sethi (1976) [1].  Many algorithms were 
presented as a new tool for PFSP. Jarboui et al. (2009) 
proposed an Estimation of Distribution Algorithm (EDAj). 
EDAj shared the main steps from Estimation of Distribution 

Algorithm (EDA) by Lozano et al [2] but adopt Reeves 
technique [3] for the selection procedure and focus on either 
job’s position in the sequence or parent’s job for the 
Probabilistic model. Variable neighborhood search (VNSj) is 
another algorithm introduced by Jarboui et al. (2009). It is a 
Hybrid EDA where local search method, VNS algorithm, was 
used to improve the performance. 

This research applies a combinatorial optimization with 
coincidence algorithm (COIN) [4]. Unlike other approaches of 
Estimation of Distribution Algorithm (EDA) [5], COIN learns 
building blocks of the solutions using both negative and 
positive samples. Through the negative learning, COIN can 
contribute better quality of solutions and provide more diverse 
solutions. In addition, COIN is simple to implement and it 
requires small amount of resource.  

This paper is organized as follows: Section 2 determines 
Node-Based Coincidence Algorithm (COIN). Section 3 
describes the compared algorithms. Section 4 presents the 
computational result and the conclusion is shown in Section 5. 

II. NODE-BASED COINCIDENCE ALGORITHM 
Coincidence Algorithm (COIN) [4] is a method in 

Estimation of Distribution Algorithm (EDA) class. Similarity 
to Shigeyoshi Tsutsui method [6] that has two representations: 
Edge Histogram Based Sampling Algorithms (EHBSAs) and 
Node Histogram Based Sampling Algorithms (NHBSAs), 
COIN also has both edge-based and node-based versions. In 
edge-based COIN, a coincidence denotes an adjacent pair that 
is generated from a probabilistic table. In the contrary, Node-
based COIN represents an incidence as a node so the 
probability of each element can be updated independently. 
However, the specific characteristic of COIN is the negative 
correlation learning. COIN makes use of both positive and 
negative samples to improve the solutions.  

COIN is proved to be an effective algorithm for many 
combinatorial optimization problems such as Traveling 
Salesman Problem and Knight’s Tour Problem [7]. It is also 
used to solve mixed-model u-shaped assembly line balancing 
problem (MMUALBP) [8] and it is reported that COIN 
outperformed well-known algorithm, NSGA II. 

Generally, the procedure of NB-COIN is described as the 
following steps: 
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1) Initialization: set the parameters and generate a joint 
probability matrix. 

2) Population production: sample the population from a 
joint probability matrix. 

3) Population evaluation: calculate the fitness value of 
each candidate. 

4) Candidate selection: rank all candidates by fitness 
value, select top and bottom candidates. 

5) The joint probability matrix update: update the matrix 
by giving a reward and punishment to the selected candidate.  

6) Termination condition check: if the termination 
condition is not met, repeat step 2. 

A. Initialization 
The joint probability matrix  is a matrix of size 

 where n is the problem size. Each row(yi) represents the 
position of job. Each column(xj) represents the probability of 
each job that may put into the position. In this state, we give 
the probability 1/n to all element in matrix . Table I. 
shows the example of joint probability matrix where xj refers to 
probability of job i and yi refer to the position. 

TABLE I.  AN EXAMPLE OF PROBABILITY MATRIX 

 X1 X2 X3 X4 X5 

Y1 0.2 0.2 0.2 0.2 0.2 

Y2 0.2 0.2 0.2 0.2 0.2 

Y3 0.2 0.2 0.2 0.2 0.2 

Y4 0.2 0.2 0.2 0.2 0.2 

Y5 0.2 0.2 0.2 0.2 0.2 
a. The problem size is five.  

Population production 
To create a population, we sample the position of jobs into 

a sequence. Then, generate the candidate as an order using that 
sequence.  

Population evaluation and candidate selection 
The algorithm evaluates the population using fitness 

function and ranks the candidate from the best to the worst 
solution. According to the unique characteristic of COIN, it 
selects two groups of sub-population, the good solutions and 
the poor solutions. The size of these two groups denote by the 
cut-off size parameter such as 5% or 25%. 

The joint probability matrix updating 
COIN updates the joint probability matrix by giving a 

reward to the good solution group and a punishment to bad 
solution group. To reward and punish the candidate Hxy, the 
probability weight is adjusted as the equation below: 

 

Where k is the learning step, n is the problem size,  is the 
total number of coincidence Hxy which found in the group of 
good solutions and pxy is the total number of coincidence Hxy 
which found in the group of poor solutions. Furthermore, In 

order to maintain the probability summation in each row to 1.0, 
other element which share the same row as the good solution or 
bad solution have to adjust the probability by 

. 

III. ALGORITHMS IN COMPARISON 
EDAj and Hybrid EDA (Jarboui et al, 2009) are used as a 

comparison to the proposed algorithm.  EDAj and Hybrid EDA 
are in the class of EDA which is the most powerful class of 
Evolutionary Algorithms at present.  The result reported here is 
taken from the experiment reported in [10].   

There are three steps in EDAj: Selection, Probabilistic 
model, Update. 

1) Selection:  
a) calculate fitness for an individual p,  

                               (4)               

b)  the population is sorted by their fitness (higher TFT 
value is at the top of the list. The selection is made with the 
probability: 

                         (5) 

where r is the rank of the r th individual in the sorted list. P 
is the size of population. 

2) Probabilistic model: 
The individual is generated according to πjk. 

πjk is the probability of selecting the job j in the position kth.      
               (6) 

 = the number of times that the job j appears before or in 
the position k. 

 = the number of times the job j is immediately after 
the job in the position k-1. 

 the set of jobs not already scheduled until position k. 

3) Update: 
After a subset of population is selected, the new individual 

is compared with the worst individual in the current population.  
If the new individual has a higher fitness value and the 
sequence of this new individual is unique, it replaces the worst 
individual. 

Local search (VNS) has been incorporated into EDAj to 
enhance the performance. Two local search methods were 
reported in the experiment:  swap_local_search and 
insert_local_search.  VNS is applied to a subset of individuals 
selected by the probability of improvement depends on the 
quality. 

                        (7) 

 

is the created offspring,  is the best solution 
found so far. 
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IV. COMPUTATIONAL RESULT 
The proposed algorithm is implement in C++ and run on a 

machine with MS Windows 7 using Intel Core i5 450M, 
2.40GHz and 4GB of RAM. In order to test the proposed 
method, 30 instances of the Taillard (1993) benchmark [9] are 
used where n = 20 and  which represent into 
three groups, 20×5, 20×10 and 20×20. We compare the results 
in two aspects; the performance using same amount of CPU 
time and the best solution found. 

We compare the performance of NB-COIN against two 
well-known algorithms EDAj and VNSj proposed by Jarboui et 
al. (2009), using the average relative percentage deviation from 
a reference solution (ARPD). The equation of ARPD is below.  

ARPD = ( ) / R 

In Eq(2) R refers to the number of round, Si is the solution 
in each round and Sbest is the best solution among all the 
comparison algorithms. In this case, we compare the 
algorithms in different environment. We use the result of EDAj 
and VNSj from Pan and Ruiz.(2012) [10] EDAj and VNSj are 
run on a cluster of 30 blade servers with two Intel XEON 5254 
quad core processors, 2,5GHz and 16GB of RAM memory in 
each server. As the result in Pan and Ruiz.(2012) didn’t 
mention the Sbest of EDAj and VNSj, we decide to use the 

 

TABLE II.  BEST KNOWN SOLUTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recently best known results found so far for instance. In 
addition, we adopt the same termination criterion, maximum 
CPU time at t=  milliseconds. The result from Table II 
shows that the average ARPD value generated by COIN is 
lower than the other methods. 

TABLE III.  ARPD RESULTS OF THE ALGORITHM 

Instances EDAj VNSj COIN 

20 × 5 1.20 2.92 1.37 

20 × 10 1.56 2.90 1.34 

20 × 20 0.97 2.15 0.53 

average 1.24 2.66 1.08 

 

Our best solution found by COIN is compared against 
recently best known result reported by Jarboui et al.(2009), 
Zheng and Li(2011)  and Pan and Ruiz (2012 . The 
proposed method uses a lot less resource with the same 
maximum CPU time t=400mn milliseconds. The best result of 
our method has small difference to the best solution. As shown 
in the Table III, the result from COIN is less than 1.7% 
different from the best known result of the other methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instances Best known NB-COIN Differentials (%) Instances Best known NB-COIN Differentials (%) 

Ta001 14033 14043 0.07 Ta016 19245 19507 1.36 

Ta002 15151 15237 0.57 Ta017 18363 18624 1.42 

Ta003 13301 13413 0.84 Ta018 20241 20412 0.84 

Ta004 15447 15575 0.83 Ta019 20330 20597 1.31 

Ta005 13529 13600 0.52 Ta020 21320 21418 0.46 

Ta006 13123 13333 1.60 Ta021 33623 33816 0.57 

Ta007 13548 13760 1.56 Ta022 31587 31806 0.69 

Ta008 13948 14026 0.56 Ta023 33920 34088 0.49 

Ta009 14295 14346 0.35 Ta024 31661 31774 0.36 

Ta010 12943 13142 1.54 Ta025 34557 34705 0.43 

Ta011 20911 21007 0.46 Ta026 32564 32822 0.79 

Ta012 22440 22806 1.63 Ta027 32922 33318 1.20 

Ta013 19833 19930 0.49 Ta028 32412 32750 1.04 

Ta014 18710 18899 1.01 Ta029 33600 33976 1.12 

Ta015 18641 18821 0.96 Ta030 32262 32746 1.5 
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V. CONCLUSION 
Many algorithms have been introduced to solve the total 

flowtime minimization flowshop scheduling problems.  In this 
paper, we introduce a method called Node-based Coincidence 
Algorithm (NB-COIN). The experiments show that this 
method uses less computation power than other algorithms in 
consideration. In addition, the solutions found by NB-COIN 
are close to the best known solutions for Taillard’s benchmark. 
Thus, NB-COIN is an outstanding method for flowshop 
scheduling problem with the small computational resource.  
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