
Solving Sudoku Puzzles with Node Based

Coincidence Algorithm

Kiatsopon Waiyapara

Department of Compute Engineering,

Faculty of Engineering,

Chulalongkorn University,

Bangkok, Thailand

kiatsopon.w@gmail.com

Warin Wattanapornprom

Department of Compute Engineering,

Faculty of Engineering,

Chulalongkorn University,

Bangkok, Thailand

yongkrub@gmail.com

Prabhas Chongstitvatana

Department of Computer Engineering,

Faculty of Engineering,

Chulalongkorn University,

Bangkok, Thailand

prabhas@chula.ac.th

Abstract— In Evolutionary computation, Sudoku puzzles are

categorized as hard combinatorial problems. It is almost

impossible to solve these puzzles using only native operations of

genetic algorithms. This article presents an application of

Coincidence algorithm, which is an Estimation of distribution

algorithms in the class of evolutionary computation that can

outperform traditional algorithms on several combinatorial

problems. It makes use of both positive and negative knowledge

for solving problems. The proposed method is compared with the

current best known method. It significantly outperforms

problem-specific GA to solve easy, medium, and hard level of

Sudoku puzzles.

Keywords—Coincidence Algorithm; Sudoku Puzzle;

Multimodal Optimization; Estimation of Distribution Algorithms;

Genetic Algorithm;

I. INTRODUCTION

Sudoku [1], is a popular puzzle, considered as a hard
combinatorial problem. There are various sizes of the Sudoku
tables, but the size 9x9is more recognized standard. The
problem determines the initial given numbers that suffice for
only one global solution. An initial table of a size 9x9 puzzle
and its result is illustrated in figure. 1. The purpose of the
puzzle is to compose groups of permutation values in each row,
column, and sub-block. There have been applications for
solving the Sudoku derived from several group of algorithms
such as binary integer linear programming (BILP) [2] for exact
algorithm, as well as genetic algorithm (GA) [3][4][5] and
estimation of distribution algorithm (EDA) for metaheuristics
algorithms.

Compared to the exact algorithms, metaheuristics
algorithms usually take longer time to solve the small
combinatorial problems; however, for the larger size of
problems, they can find good solutions with in polynomial time
[6]. Implementations of GAs for combinatorial optimizations
have some limitations. In particular, recombination operators
can result in producing infeasible or invalid solutions [6]. A
repair operator is required to fix these solutions. In addition,
the algorithms provide poor maintenance of building blocks.
The recombination operators cannot identify and compose the
building blocks efficiently [3]. However, in recent years, there

emerge new ways to find more competitive solutions called
Estimation of Distribution Algorithms [7]. This class of
algorithms makes use of probabilistic model for learning and
generating solutions instead of using traditional recombination
and mutation operators of GA. For combinatorial
optimizations, the probabilistic model can identify building
blocks and generate candidate feasible solutions that contain
the building block efficiently. There have been several
algorithms in this class such as Edge Histogram Based
Sampling Algorithms (EHBSA) [8], Node Histogram Based
Sampling Algorithms (NHBSA) [9], and Coincidence
Algorithms (COIN) [10].

Fig. 1. Example of a sudoku puzzle and its solution.

COIN is an algorithm in the class of EDA. It uses a model
called a joint probability matrix to identify and compose good
building blocks to form the solutions. The special characteristic
of COIN is that it does not only learn from the good solutions,
but also, learns from the poor solutions in order to prevent the
composition of bad building blocks found in the poor solutions.
This method is called Negative correlation learning (NCL).
The performances of COIN have been test in many
applications including chess puzzles[11], path finding[10],
production line sequencing [12] and production line balancing
[10] for both single and multiple objectives. From preliminarily
empirical studies[13], COINs have shown the capability to
maintain building blocks found in diverse solutions which is a

fundamental capability to solve multimodal and multi-objective
problems.

There has been the group of problems that contain different
solutions of similar qualities, called multimodal problems [6].
Some of them can contain a lot of global optimum solutions.
However, in some problems, the solutions found can have lots
of global and local optimum solutions. EC cannot solve these
problems easily because, sometimes, some of the solutions
with high fitness values cannot guide the algorithm to find
better or global optimum solutions. That is, in each run, the
guide mechanism of EC mostly trapped in one or more local
optimum. This problem can be found in Sudoku as well. The
puzzles, especially at the difficult level, contain many near-
optimal solutions that are not similar to the global optimum
solution. These near-optimal solutions usually mislead the
algorithms to get stuck at a local optimum in which local
search operators cannot improve further. Figure 2 shows the
example of three Sudoku solutions with high fitness scores
equaled to 160 including (a),(b) and (c) and the optimal
solution with the fitness score equaled to 162 (d). The darker
numbers indicate the solution filled by the algorithms while the
brighter numbers indicate the given initial numbers. The fitness
scores are based on the function evaluation of GA [5].

Fig. 2. Example of the three near-optimal solutions (a) ,(b), (c)

 and the only one global optimal solution (d)

 COIN is in some way similar to EHBSA proposed by
Shigeyoshi Tsutsui [9]. Both COIN and EHBSA learn to
generate the population using the edge based probabilistic
models. Such models provide flexible structures where the
remaining of the generate sequences significantly depend on
the previous generated sequences. Figure 3 shows that one
edge based model can represent several solutions. The main
difference of COIN and EHBSA is the learning method.
EHBSA uses histogram to learn the building blocks from the

populations which is an ad-hoc learning model while COIN
uses the incremental learning model which allows the
probabilistic model to learn from the negative samples. Such
incremental learning model enables the algorithm to produce
more diverse solution [14].

Fig. 3. Example of five solutions (on the right) generated from the

probabilistic model of COIN.

 However, the traditional edge based model of COIN is
rather suitable for solving problems where the fitness scores
depend on the relative sequences of elements. Consequently,
the edge based model is not appropriate for solving Sudoku
problems because the building blocks of Sudoku problems
rather stick with the absolute positions. NHBSA [10] is another
algorithm in the same family of EHBSA. The node based
model is more appropriate for Sudoku problems.

 This work presents a new algorithm called Node Based
Coincidence Algorithm (NB-COIN) which adopts the node
based representation from NHBSA and adopts the incremental
learning method and negative correlation learning method from
COIN in order to solve the Sudoku problems. The related
algorithms are reviewed in section II. Section III presents the
basic idea of COIN. Section IV introduces the adaptation of
NB-COIN for solving Sudoku problems. Section V compares
the performance of NB-COIN and GA [5]. Finally, Section VI
concludes the work.

II. RELATED WORK

There are few evolutionary algorithms proposed for solving
Sudoku puzzles. Including algorithms based on GA and EDA.
These algorithms contain some problem specific encodings and
operators that are useful to guide the search. Some of these
ideas from the previous works can be applied to enhance the
performance. The first implementation of GA for solving
Sudoku was proposed by Timo Mantere and Janne Koljonen
[3] in 2003. Each candidate solution is encoded as an integer
string of size 81. The solution composes of 9 integer strings of
sub-block concatenated in a sequence. The recombination
operator was design to allow the exchange between sub-blocks
of the parents. Consequently, the offspring are always feasible
permutation strings in which the positions of the given
numbers are all maintained. There are three mutation operators
to apply for each sub-block including swap, 3-swap and
insertion mutation as shown in Figure 4. These mutation

operators make use of an array to detect the illegal attempt of
swapping, in order to maintain the entire initial given numbers.
However, this work cannot solve the difficult Sudoku
problems.

Fig. 4. The mutation technique using in proposed GA [3].

Later in 2007, the succeeding improvement of [3] is [4], a
work proposed by the same group of researchers. The new
mutation operators have been proposed. The result is
significantly improved from the previous work.

Yuji Sato, and Hazuki Inoue published a better work based
on GA in 2010 [5]. They proposed a new encoding scheme for
solving the Sudoku problems where each solution is encoded
as a 2-dimensional matrix of integer similar to the Sudoku
patterns. A new fitness function is also proposed. The new
fitness function (eq. 1) has the maximum value of 162.
and represent the amount of different integer integers
range from 1 to 9 in each row and column respectively. In
other words, refer to the amount of unique number in
horizontal line as well as refer to the amount of unique
number in vertical line. In addition, | . | represents the amount
of unique number in each row or column [5]. That is, it
examines the set and returns the number of unique digit. The
problem specific recombination operator defines the cutting
point on each vertical and horizontal border lines and on each
sub-block. The mutation operator is a simple 2-swap operation.
This work also applies a local search technique to improve the
performance of the algorithm.

 ∑

 ∑

      

 | | | |     

Recently, there has been an algorithm designed for solving
Sudoku based on EDA called restart estimation of distribution
algorithm (RESEDA) [15]. The algorithm is originated by
Sylvain Maire, and Cyril Prossette. The model can be

described in term of

. The algorithm makes use of given

initial numbers in order to reduce the search space by not
allowing such numbers to be changed as those numbers already
have been used. The update function of the probabilistic model

is shown in eq. (3), where .

 is an empirical

probability distribution [15] of the k numbers among some of
the better candidate solutions found in the population. The
parameter represents the learning rate of the update function
in which the larger value specifies the faster convergence of the
process. This algorithm also determines the getting stuck

conditions where the populations are trapped in a local
optimum and then restarts the optimization process in order to
jump out of the local traps.



     

III. BASIC IDEA OF COINCIDENCE ALGORITHM

The operational process of COIN [11] composes of several
steps including (i) initializing the joint probability matrix, (ii)
generating candidate solutions, (iii) evaluating the population
for fitness value, (iv) selecting the good and the poor solutions
from the population, and (v) updating the model. The flowchart
of COIN is shown in Figure 5. The algorithm is terminated
when a satisfactory solution is found or a maximum generation
number is reached.

Start

Initialize COIN’s

model

Is satisfactory?

Generate

Population

&

Evaluate them

N

Select some good

and not-good

solution

Update the model Return resultY

END

Fig. 5. Flowchart represented overall process of COIN.

The initialization of the model is determined by

 in edge

based representation and

 in node based representation. n

denotes the problem size. Figure 6 shows the example of COIN
with node based representation for a problem size 5. In node
based COIN, the initial value of all possible numbers in the
matrix is equaled to 0.2. The solutions are generated from this
model. Each column denotes each position and each number in
a column denotes the probability that it takes a particular value.
Suppose the darker blocks designate the higher probability then
one potential solution is 2-1-4-5-3.

After the initialization state, the candidate solutions are
generated from the probabilistic model and then the population
is evaluated. Both good and poor solutions from the population
are selected for updating the matrix. The selected population
size denoted by C%, is called the selection pressure.

 Node

 1 2 3 4 5

P
o

si
ti

o
n

1 0.15 0.4 0.15 0.15 0.15

2 0.4 0.15 0.15 0.15 0.15

3 0.15 0.15 0.15 0.4 0.15

4 0.15 0.15 0.15 0.15 0.4

5 0.15 0.15 0.4 0.15 0.15

Position 1 2 3 4 5

Node 2 1 4 5 3

Fig. 6. The probabilistic model of NB-COIN based on a problem size equal

to 5! and the potential solution generated from the model.

In each updating process, COIN uses two sub-populations,
the better groups for rewarding and worse groups for
punishment. The reward function is equation (4). The

punishment function is equation (5).

denotes the variable of probabilistic model of COIN at the
position i, and the node j. k denotes the learning rate, and L
denotes the problem size.

 stands for each candidate solution
at g in the t-th generation. It composes of L permutation
elements showing in {

 .
 ,

called delta function which is a selector function defined in
equation (6). Both equations (4) and (5) are used to increase
and decrease the probability value as well as to control the sum
of probability in each column (position) to always equal to 1.0.
The overall processes are repeated until the number of
generation is equaled to the maximum generation.



∑

∑ ∑

      



∑

∑ ∑

      


 {

     

IV. REPRESENTATION OF NB-COIN FOR SOLVING SUDOKU

NB-COIN for solving the Sudoku puzzle makes use of
several ideas from the previous works. To represent the
solutions, the node based matrix is suitable as Sudoku problem
has some predefined positions (Fig. 7 a). The fitness function
(eq. 1) is adopted from GA[5].

Each 9x9 solution is represented as a 3x3 sub-blocks, each
sub-block is a 3x3 matrix (Fig. 7 b). NB-COIN represents one
probabilistic model for each sub-block. Therefore, NB-COIN
uses totally 9 probabilistic models, each of size 9x9 for each
sub-block to evolve the solutions. Figure 7 (c) shows an
example of the probabilistic model for the sub-block number 3.
These 9 probabilistic models are co-evolved, that is, they are

independently evolved, and at the same time, they are partially
influenced by their neighborhood models.

The initial given numbers are used for search space
reduction. The predetermined of positions in each sub-block
constraints its neighbor sub-block. For example, the sub-block
no.3 (Fig.7 b), the number 7 and 3 are predetermined, therefore
the NB-COIN matrix (Fig.7 c) (the row is the possible value in
the table, the column is the position in the table, numbering the
top-left as the position 1, and continue to the right and down,
the bottom-right is the position 9) in the row 7 and 3 are fixed
to zeros. According to the top-left position of the sub-block no.
3 (Fig. 7 a), along the vertical direction (column), the neighbor
sub-block has a number 4, so this constrains the sub-block no.
3 at the position 1, 2 and 3 not to be the number 4 (the
probabilities of each number in the row number 4 are all zeros).
The predetermined process is applied for all the sub-blocks on
the left and the right, the top and the bottom sub-blocks. It is
determined that the only possible number at the position 6 of
the sub-block no. 3 is the number 4 (shown in black, with the
possibility 1.0) (Fig. 7 c). All these initial given numbers
constraint the matrix in such a way that they reduce the search
space enormously.

Fig. 7. Flowchart represented overall process of COIN.

V. EXPERIMENTAL RESULT

In the experiment, we compare the NB-COIN implemented
in C++ with the previous work called GA preserving building
blocks [5]. There are 6 benchmarks obtained from [3][4][5]
which compose of three levels including easy, medium, and
difficult. All of the parameters setting can be seen in the Table
I. In order to compare the results, the population size and the
number of maximum generation are set such that they are equal
to the GA [5].

TABLE I. EXPERIMENTAL SETTING

Parameters NB-COIN GA

Population size 150 150

Selection pressure (C%) 25 2

Step size (k) 0.4 N/A

Upper bound 0.99 N/A

Maximum generation 100000 100000

Independent Run 100 100

Crossover rate N/A 0.3

Mutation rate N/A 0.3

Table II shows the experiment results. The column “Count”
shows successful run in which the algorithm found the optimal
solution out of 100 independent runs. The column “Nfe” shows
the average number of function evaluation in term of number
of generation used to find the best solution. The benchmarks
(Fig. 1 and 8) compose of several levels from Sudoku problems
such as easy (No.1), medium (No.27), and difficult (No. 106).

TABLE II. PERFORMANCE OF COIN AND GA FOR SOLVING SUDOKU

Difficulty rating Givens
NB-COIN GA (mut+cross+LS)

Count Nfe Count Nfe

Easy (No. 1) 38 100 2 100 62

Easy (No. 11) 34 100 4 100 137

Medium (No. 27) 30 100 130 100 910

Medium (No. 29) 29 100 1196 100 3193

Difficult (No. 77) 28 100 2710 100 9482

Difficult (No. 106) 24 100 2341 96 26825

The result is shown in Table II, NB-COIN found the
solution of Sudoku in every benchmark. But the result of GA in
Difficult (No. 106) misses the optimal solution 4 times.
Comparing the number of function evaluation, COIN uses
several times fewer number of function evaluation in all
benchmarks. It uses 3 times to 10 times less function
evaluation than the competing algorithm.

VI. CONCLUSION

Though COIN is recently designed, it has been applied to a

number of applications. The performances of COIN prove that

it can work better than several traditional evolutionary

algorithms. Particularly, COIN can maintain a large number of

diverse solutions. Consequently, COIN is suitable for solving

multimodal combinatorial optimization problems and thus is

suitable for solving Sudoku problems which have several

diverse near-optimal solutions. The experimental results

demonstrate that node based implementation of COIN can

outperform a problem specific GA.

Fig. 8. Benchmarks [3][4][5] and their Solutions.

REFERENCES

[1] Wikipedia. Sudoku. Available via WWW:
https://en.wikipedia.org/wiki/Sudoku (cited 20.2.2012)

[2] A. Bartlett, and A. Langville, “An Integer Programming Model for the
Sudoku Problem,” Journal online of Mathematics and Applications, vol.
8, May 2008.

[3] T. Mantere, and J. Koljonen, “Solving and Rating Sudoku Puzzles with
Genetic Algorithms,” Finnish Artificial Intelligence Society FAIS,
Espoo, Finland, pp. 86-92, October 2006.

[4] T, Mantere, and J. Koljonen, “Solving, Rating and Generating Sudoku
Puzzles with GA,” IEEE Congress on Evolutoinary Computation, pp.
1382-1389, September 2007.

[5] Y. Sato, and H. Inoue, “Solving Sudoku with Genetic Operations that
Preserve Building Blocks,” IEEE Conference on Computational
Intelligence in Game. IEEE, pp. 23-29, August 2010.

[6] X. Yu, and M. Gen, “Introduction to Evolutionary Alogorithms,”
Springer, pp. 267, 2010.

[7] L. Bi, and S. Zhang, “Analysis and Research Models of the Estimation
of Distribution Algorithms,” International Conference on Computer
Science and Network Technology, 2011.

[8] S. Tsutsui, M. Pelikan, and D. E. Goldberg, “Using Edge Histogram
Models to Solve Permutation Problems with Probabilistic Model
Building Genetic Algorithms, ” IlliGAL Report No. 2004022, University
of Illinois, 2003.

[9] S. Tsutsui, M. Pelikan, and D.E. Goldberg, “Node Histogram vs. Edge
Histogram: A Comparison of PMBGAs in Permutation Domains,”
MEDAL Report No. 2006009, July 2006.

[10] W. Wattanapornprom, P. Olanviwitchai, P. Chutima, and P.
Chongstitvatana, “Multi-objective Combinatorial Optimization with
Coincidence Algorithm,” IEEE Congress on Evolutionary Computation,
Norway, May 18-21, 2009.

[11] R. Sirovetnukul, P. Chutima, W. Wattanapornprom, and P.
Chongstitvatana, “The Effectiveness of Hybrid Negative Correlation
Learning in Evolutionary Algorithm for Combinatorial Optimization
Problems,” IEEE Int. Conf. on Industrial Engineering and Engineering
Management, Singapore, 6-9 Dec 2011.

[12] P. Chutima, and N. Kampirom, “A multi-objective coincidence memetic
algorithm for a mixed-model U-line sequencing problem,” International
Journal of Advanced Operations Management, vol. 2, no. 3/4, pp. 201-
48, 2010.

[13] K. Waiyapara, and P. Chongstitwattana, “Solving Multimodal Problems
by Coincidence Algorithm,” Int. Joint Conf. on Computer Science and
Software Engineering (JCSSE), Thailand, pp. 45-48, 30 May -1 June
2012.

[14] Y. Liu., X. Yao., and T. Higuchi. “Evolutionary Ensembles with
Negative Correlation Learning” IEEE Transaction on Evolutionary
Computation. 4 (September 2000) : 380-387.

[15] S. Maire, and C. Prissette, “A Restarted Estimation of Distribution
Algorithm for Solving Sudoku Puzzles,” Statistics and Computing,
2012.

https://en.wikipedia.org/wiki/Sudoku

