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Abstract— In Evolutionary computation, Sudoku puzzles are 

categorized as hard combinatorial problems. It is almost 

impossible to solve these puzzles using only native operations of 

genetic algorithms. This article presents an application of 

Coincidence algorithm, which is an Estimation of distribution 

algorithms in the class of evolutionary computation that can 

outperform traditional algorithms on several combinatorial 

problems. It makes use of both positive and negative knowledge 

for solving problems. The proposed method is compared with the 

current best known method. It significantly outperforms 

problem-specific GA to solve easy, medium, and hard level of 

Sudoku puzzles. 
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I.  INTRODUCTION 

Sudoku [1], is a popular puzzle, considered as a hard 
combinatorial problem. There are various sizes of the Sudoku 
tables, but the size 9x9is more recognized standard. The 
problem determines the initial given numbers that suffice for 
only one global solution. An initial table of a size 9x9 puzzle 
and its result is illustrated in figure. 1. The purpose of the 
puzzle is to compose groups of permutation values in each row, 
column, and sub-block. There have been applications for 
solving the Sudoku derived from several group of algorithms 
such as binary integer linear programming (BILP) [2] for exact 
algorithm, as well as genetic algorithm (GA) [3][4][5] and 
estimation of distribution algorithm (EDA) for metaheuristics 
algorithms.  

Compared to the exact algorithms, metaheuristics 
algorithms usually take longer time to solve the small 
combinatorial problems; however, for the larger size of 
problems, they can find good solutions with in polynomial time 
[6]. Implementations of GAs for combinatorial optimizations 
have some limitations. In particular, recombination operators 
can result in producing infeasible or invalid solutions [6]. A 
repair operator is required to fix these solutions. In addition, 
the algorithms provide poor maintenance of building blocks. 
The recombination operators cannot identify and compose the 
building blocks efficiently [3].  However, in recent years, there 

emerge new ways to find more competitive solutions called 
Estimation of Distribution Algorithms [7]. This class of 
algorithms makes use of probabilistic model for learning and 
generating solutions instead of using traditional recombination 
and mutation operators of GA. For combinatorial 
optimizations, the probabilistic model can identify building 
blocks and generate candidate feasible solutions that contain 
the building block efficiently. There have been several 
algorithms in this class such as Edge Histogram Based 
Sampling Algorithms (EHBSA) [8], Node Histogram Based 
Sampling Algorithms (NHBSA) [9], and Coincidence 
Algorithms (COIN) [10]. 

 

Fig. 1. Example of a sudoku puzzle and its solution. 

COIN is an algorithm in the class of EDA. It uses a model 
called a joint probability matrix to identify and compose good 
building blocks to form the solutions. The special characteristic 
of COIN is that it does not only learn from the good solutions, 
but also, learns from the poor solutions in order to prevent the 
composition of bad building blocks found in the poor solutions. 
This method is called Negative correlation learning (NCL). 
The performances of COIN have been test in many 
applications including chess puzzles[11], path finding[10], 
production line sequencing [12] and production line balancing 
[10] for both single and multiple objectives. From preliminarily 
empirical studies[13], COINs have shown the capability to 
maintain building blocks found in diverse solutions which is a 



fundamental capability to solve multimodal and multi-objective 
problems.  

There has been the group of problems that contain different 
solutions of similar qualities, called multimodal problems [6]. 
Some of them can contain a lot of global optimum solutions. 
However, in some problems, the solutions found can have lots 
of global and local optimum solutions. EC cannot solve these 
problems easily because, sometimes, some of the solutions 
with high fitness values cannot guide the algorithm to find 
better or global optimum solutions. That is, in each run, the 
guide mechanism of EC mostly trapped in one or more local 
optimum. This problem can be found in Sudoku as well. The 
puzzles, especially at the difficult level, contain many near-
optimal solutions that are not similar to the global optimum 
solution. These near-optimal solutions usually mislead the 
algorithms to get stuck at a local optimum in which local 
search operators cannot improve further. Figure 2 shows the 
example of three Sudoku solutions with high fitness scores 
equaled to 160 including (a),(b) and (c) and the optimal 
solution with the fitness score equaled to 162 (d). The darker 
numbers indicate the solution filled by the algorithms while the 
brighter numbers indicate the given initial numbers. The fitness 
scores are based on the function evaluation of GA [5]. 

 

Fig. 2. Example of the three near-optimal solutions (a) ,(b), (c) 

 and the only one global optimal solution (d) 

 COIN is in some way similar to EHBSA proposed by 
Shigeyoshi Tsutsui [9]. Both COIN and EHBSA learn to 
generate the population using the edge based probabilistic 
models. Such models provide flexible structures where the 
remaining of the generate sequences significantly depend on 
the previous generated sequences. Figure 3 shows that one 
edge based model can represent several solutions. The main 
difference of COIN and EHBSA is the learning method. 
EHBSA uses histogram to learn the building blocks from the 

populations which is an ad-hoc learning model while COIN 
uses the incremental learning model which allows the 
probabilistic model to learn from the negative samples. Such 
incremental learning model enables the algorithm to produce 
more diverse solution [14]. 

 

Fig. 3. Example of five solutions (on the right) generated from the 

probabilistic model of COIN. 

 However, the traditional edge based model of COIN is 
rather suitable for solving problems where the fitness scores 
depend on the relative sequences of elements. Consequently, 
the edge based model is not appropriate for solving Sudoku 
problems because the building blocks of Sudoku problems 
rather stick with the absolute positions. NHBSA [10] is another 
algorithm in the same family of EHBSA. The node based 
model is more appropriate for Sudoku problems. 

 This work presents a new algorithm called Node Based 
Coincidence Algorithm (NB-COIN) which adopts the node 
based representation from NHBSA and adopts the incremental 
learning method and negative correlation learning method from 
COIN in order to solve the Sudoku problems. The related 
algorithms are reviewed in section II. Section III presents the 
basic idea of COIN. Section IV introduces the adaptation of 
NB-COIN for solving Sudoku problems. Section V compares 
the performance of NB-COIN and GA [5]. Finally, Section VI 
concludes the work. 

II. RELATED WORK 

There are few evolutionary algorithms proposed for solving 
Sudoku puzzles. Including algorithms based on GA and EDA. 
These algorithms contain some problem specific encodings and 
operators that are useful to guide the search. Some of these 
ideas from the previous works can be applied to enhance the 
performance. The first implementation of GA for solving 
Sudoku was proposed by Timo Mantere and Janne Koljonen 
[3] in 2003. Each candidate solution is encoded as an integer 
string of size 81. The solution composes of 9 integer strings of 
sub-block concatenated in a sequence. The recombination 
operator was design to allow the exchange between sub-blocks 
of the parents. Consequently, the offspring are always feasible 
permutation strings in which the positions of the given 
numbers are all maintained. There are three mutation operators 
to apply for each sub-block including swap, 3-swap and 
insertion mutation as shown in Figure 4. These mutation 



operators make use of an array to detect the illegal attempt of 
swapping, in order to maintain the entire initial given numbers. 
However, this work cannot solve the difficult Sudoku 
problems. 

 

Fig. 4. The mutation technique using in proposed GA [3]. 

Later in 2007, the succeeding improvement of [3] is [4], a 
work proposed by the same group of researchers. The new 
mutation operators have been proposed. The result is 
significantly improved from the previous work. 

Yuji Sato, and Hazuki Inoue published a better work based 
on GA in 2010 [5]. They proposed a new encoding scheme for 
solving the Sudoku problems where each solution is encoded 
as a 2-dimensional matrix of integer similar to the Sudoku 
patterns. A new fitness function is also proposed. The new 
fitness function (eq. 1) has the maximum value of 162.       
and       represent the amount of different integer integers 
range from 1 to 9 in each row and column respectively. In 
other words,       refer to the amount of unique number in 
horizontal line as well as       refer to the amount of unique 
number in vertical line. In addition, | . | represents the amount 
of unique number in each row or column [5]. That is, it 
examines the set and returns the number of unique digit. The 
problem specific recombination operator defines the cutting 
point on each vertical and horizontal border lines and on each 
sub-block. The mutation operator is a simple 2-swap operation. 
This work also applies a local search technique to improve the 
performance of the algorithm. 
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Recently, there has been an algorithm designed for solving 
Sudoku based on EDA called restart estimation of distribution 
algorithm (RESEDA) [15]. The algorithm is originated by 
Sylvain Maire, and Cyril Prossette. The model can be 

described in term of       
   

. The algorithm makes use of given 

initial numbers in order to reduce the search space by not 
allowing such numbers to be changed as those numbers already 
have been used. The update function of the probabilistic model 

is shown in eq. (3), where      .       
     

 is an empirical 

probability distribution [15] of the k numbers among some of 
the better candidate solutions found in the population. The 
parameter   represents the learning rate of the update function 
in which the larger value specifies the faster convergence of the 
process. This algorithm also determines the getting stuck 

conditions where the populations are trapped in a local 
optimum and then restarts the optimization process in order to 
jump out of the local traps. 
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III. BASIC IDEA OF COINCIDENCE ALGORITHM 

The operational process of COIN [11] composes of several 
steps including (i) initializing the joint probability matrix, (ii) 
generating candidate solutions, (iii) evaluating the population 
for fitness value, (iv) selecting the good and the poor solutions 
from the population, and (v) updating the model. The flowchart 
of COIN is shown in Figure 5. The algorithm is terminated 
when a satisfactory solution is found or a maximum generation 
number is reached. 
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Fig. 5. Flowchart represented overall process of COIN. 

 

The initialization of the model is determined by 
 

   
 in edge 

based representation and 
 

 
 in node based representation. n 

denotes the problem size. Figure 6 shows the example of COIN 
with node based representation for a problem size 5. In node 
based COIN, the initial value of all possible numbers in the 
matrix is equaled to 0.2. The solutions are generated from this 
model. Each column denotes each position and each number in 
a column denotes the probability that it takes a particular value. 
Suppose the darker blocks designate the higher probability then 
one potential solution is 2-1-4-5-3. 

After the initialization state, the candidate solutions are 
generated from the probabilistic model and then the population 
is evaluated. Both good and poor solutions from the population 
are selected for updating the matrix. The selected population 
size denoted by C%, is called the selection pressure. 
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1 0.15 0.4 0.15 0.15 0.15 
 

2 0.4 0.15 0.15 0.15 0.15 
 

3 0.15 0.15 0.15 0.4 0.15 
 

4 0.15 0.15 0.15 0.15 0.4 
 

5 0.15 0.15 0.4 0.15 0.15 
 

Position  1 2 3 4 5 

 

Node  2 1 4 5 3  

 

Fig. 6. The probabilistic model of NB-COIN based on a problem size equal 

to 5! and the potential solution generated from the model. 

In each updating process, COIN uses two sub-populations, 
the better groups for rewarding and worse groups for 
punishment. The reward function is equation (4). The 

punishment function is equation (5).     
                  

denotes the variable of probabilistic model of COIN at the 
position i, and the node j. k denotes the learning rate, and L 
denotes the problem size.   

  stands for each candidate solution 
at g in the t-th generation. It composes of L permutation 
elements showing in {  

       
         

       .        
  , 

called delta function which is a selector function defined in 
equation (6). Both equations (4) and (5) are used to increase 
and decrease the probability value as well as to control the sum 
of probability in each column (position) to always equal to 1.0. 
The overall processes are repeated until the number of 
generation is equaled to the maximum generation. 
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IV. REPRESENTATION OF NB-COIN FOR SOLVING SUDOKU 

NB-COIN for solving the Sudoku puzzle makes use of 
several ideas from the previous works.  To represent the 
solutions, the node based matrix is suitable as Sudoku problem 
has some predefined positions (Fig. 7 a).  The fitness function 
(eq. 1) is adopted from GA[5].  

Each 9x9 solution is represented as a 3x3 sub-blocks, each 
sub-block is a 3x3 matrix (Fig. 7 b). NB-COIN represents one 
probabilistic model for each sub-block. Therefore, NB-COIN 
uses totally 9 probabilistic models, each of size 9x9 for each 
sub-block to evolve the solutions. Figure 7 (c) shows an 
example of the probabilistic model for the sub-block number 3. 
These 9 probabilistic models are co-evolved, that is, they are 

independently evolved, and at the same time, they are partially 
influenced by their neighborhood models.     

The initial given numbers are used for search space 
reduction. The predetermined of positions in each sub-block 
constraints its neighbor sub-block.  For example, the sub-block 
no.3 (Fig.7 b), the number 7 and 3 are predetermined, therefore 
the NB-COIN matrix (Fig.7 c) (the row is the possible value in 
the table, the column is the position in the table, numbering the 
top-left as the position 1, and continue to the right and down, 
the bottom-right is the position 9) in the row 7 and 3 are fixed 
to zeros.  According to the top-left position of the sub-block no. 
3 (Fig. 7 a), along the vertical direction (column), the neighbor 
sub-block has a number 4, so this constrains the sub-block no. 
3 at the position 1, 2 and 3 not to be the number 4 (the 
probabilities of each number in the row number 4 are all zeros). 
The predetermined process is applied for all the sub-blocks on 
the left and the right, the top and the bottom sub-blocks. It is 
determined that the only possible number at the position 6 of 
the sub-block no. 3 is the number 4 (shown in black, with the 
possibility 1.0) (Fig. 7 c). All these initial given numbers 
constraint the matrix in such a way that they reduce the search 
space enormously.   

 

 

Fig. 7. Flowchart represented overall process of COIN. 



V. EXPERIMENTAL RESULT 

In the experiment, we compare the NB-COIN implemented 
in C++ with the previous work called GA preserving building 
blocks [5]. There are 6 benchmarks obtained from [3][4][5] 
which compose of three levels including easy, medium, and 
difficult. All of the parameters setting can be seen in the Table 
I. In order to compare the results, the population size and the 
number of maximum generation are set such that they are equal 
to the GA [5]. 

TABLE I.  EXPERIMENTAL SETTING 

Parameters NB-COIN GA 

Population size 150 150 

Selection pressure (C%) 25 2 

Step size (k) 0.4 N/A 

Upper bound 0.99 N/A 

Maximum generation 100000 100000 

Independent Run 100 100 

Crossover rate N/A 0.3 

Mutation rate N/A 0.3 

 

Table II shows the experiment results. The column “Count” 
shows successful run in which the algorithm found the optimal 
solution out of 100 independent runs. The column “Nfe” shows 
the average number of function evaluation in term of number 
of generation used to find the best solution. The benchmarks 
(Fig. 1 and 8) compose of several levels from Sudoku problems 
such as easy (No.1), medium (No.27), and difficult (No. 106).  

TABLE II.  PERFORMANCE OF COIN AND GA FOR SOLVING SUDOKU 

Difficulty rating Givens 
NB-COIN GA (mut+cross+LS) 

Count Nfe Count Nfe 

Easy (No. 1) 38 100 2 100 62 

Easy (No. 11) 34 100 4 100 137 

Medium (No. 27) 30 100 130 100 910 

Medium (No. 29) 29 100 1196 100 3193 

Difficult (No. 77) 28 100 2710 100 9482 

Difficult (No. 106) 24 100 2341 96 26825 

 

The result is shown in Table II, NB-COIN found the 
solution of Sudoku in every benchmark. But the result of GA in 
Difficult (No. 106) misses the optimal solution 4 times. 
Comparing the number of function evaluation, COIN uses 
several times fewer number of function evaluation in all 
benchmarks. It uses 3 times to 10 times less function 
evaluation than the competing algorithm.  

 

VI. CONCLUSION 

Though COIN is recently designed, it has been applied to a 

number of applications. The performances of COIN prove that 

it can work better than several traditional evolutionary 

algorithms. Particularly, COIN can maintain a large number of 

diverse solutions. Consequently, COIN is suitable for solving 

multimodal combinatorial optimization problems and thus is 

suitable for solving Sudoku problems which have several 

diverse near-optimal solutions. The experimental results 

demonstrate that node based implementation of COIN can 

outperform a problem specific GA. 
 

 

 

 

 

 



 

 

 

Fig. 8. Benchmarks [3][4][5] and their Solutions. 
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