
Constant time Floating Point Adder Circuits

Yuranan Kitrungrotsakul, Prabhas Chongstitvatana

Department of Computer Engineering

Chulalongkorn University

yuranan.kit@student.chula.ac.th, prabhas.c@chula.ac.th

Abstract— Floating point unit is commonly used in

computers. However, the arithmetic logic unit (ALU) for floating

point operations such as addition or subtraction is complicated.

Moreover, many floating point ALUs are designed to operate in

many clock cycles. Thus, its speed are varied depend on the

number of clock cycle. However, in many field, circuits with fix

delay time are preferred. This work proposes a constant time

floating point adder circuits implemented in Field Programmable

Gate Array technology.

Keywords—floating point operations; find first bit value 1;

adder circuits

I. MOTIVATION

The floating point adder is one of very widely used circuits
in computing. The most common data format is IEEE 754.
There are so many designs even recently, for example, one
design for speed [1] another for small area [2]. There are many
tradeoff in designing the circuits, mostly on area versus speed
[3]. The standard high speed design with custom macro
modules is presented in [4]. The design proposed here aims to
achieve a constant time delay which makes it very useful for
real-time embedded devices. The proposed design achieved its
goal using a good binary-search for the first bit value 1 which
takes O(log n) time. The design uses IEEE 754 64-bit format
with 52-bit fraction. The design composed of only combination
circuits.

II. FLOATING POINT ADDER BEHAVIORAL DESCRIPTION

In order to add or subtract floating point together, first the
exponents are aligned. If the exponent bits of two data are not
equal, the smaller number will increase its exponent until it is
equal the other number. Then the fractions bits of the smaller
number will change depended on the amount of exponent
change. After this de-normalization, two numbers can be added
or subtracted depending on the sign bit of operands, i.e.
fraction bits. In the last step, the exponent bits will be realigned
into IEEE 754 double precision format, so the fraction bits will
change too. The realignment of exponents requires finding the
first bit that is one in the exponent. The next section shows how
to solve this problem.

III. FIND FIRST SET PROBLEM

Finding first bit value 1 can be solved with many
algorithms. The major constraints are area and speed of
circuits. The purpose of this circuits is a constant time circuits,
so the speed will be the most important consideration. The
divide and conquer method is used to efficiently finding the

first 1 value bit from the bit string. The bit string is divided into
2 substrings with equal length, the most significant substring
and the least significant substring. Then, repeat the dividing
step with the most significant substring until it has only 2 bits.
Then, compare the 2 bits with each other. If it is equal with 0
check another 2 bits with in the same substring generation. If it
is equal with 1, the most significant bit is the first 1 value bit
from bit string. If it is not equal, the higher one is the first 1
value bit from bit string. This method finds the first 1 value bit
in O(log n). Moreover, the area of this method are O(2 log n –
1).

IV. DESIGN

The floating point adder circuits were implemented in
hardware description language in order to operating in bit level.
Moreover, it is implemented in combination circuits so it has a
constant time delay. The design is based on the algorithm
described in Section 2. The whole circuit is shown in Figure 1.

Shifted bits[52:0]The other input[51:0]

ALU

Output[52:0]Find first �1

�1

Add/Sub

Rearranged fraction[51:0]
lead
sign

Rearranged
exponent[62:52]

Fig. 1. Flow of whole circuits

Firstly, the operands will be compared with each other to
find the smaller number. The smaller fraction bits are aligned
by alignment circuits. Then, the operands will be added or
subtracted depending on their sign bits. After that, the output
will be realigned according to the first bit value 1 of ALU’s
output. The sign bit is dependent on the larger operand. The
alignment circuits were achieved by logical shift circuits that
are shown in Figure 2.

lower51 lower50 lower49 lower2 lower1 lower0...�1

�1 lower51 lower50 lower3 lower2 lower1...�0

�0

�0 �1 lower49 lower4 lower3 lower2...�0

�0
Shifting n

rounds

Fig. 2. Alignment circuits

Number of shifting rounds depends on the difference
between operands exponent bits. The smaller exponent bits are
changed to be equal to the larger exponent bits. Then, the
smaller fraction bits are logical right shifted n rounds with one
value bit concatenating at the most significant bit in the first
round. Find first bit value 1 circuits in Section 3 were
implemented by nested 2 to 1 multiplexers. It is shown in
Figure 3.

�52

�51

Output[52]

�50

�49

Output[50]

~|Output[52:51]

1

0

1

0

1

0
1

0

~|Output[52:49]

1

0

~|Output[52:45]

1

0

~|Output[52:39]

1

0

~|Output[5:0]

1

0

~|Output[12:6]

�3

�2

Output[3]

�1

�0

Output[1]

1

0

1

0

1

0

~|Output[3:2]

1

0

~|Output[52:26]

1

0

~|Output[25:13]

first �1

...

Fig. 3. Find first bit value 1 circuits

Fig. 4. Design Summary

The synthesis result using Xilinx xc3s200 is reported in Figure

4. The large amount of resources is mostly consumed by LUT

which implemented the alignment circuits and the find first

one bit circuits. The speed of our floating point adder is

shown in the critical path of 59 ns and has 75 levels of logic.

The circuits can be operated at the maximum clock of 288

MHz.

V. CONCLUSION

After the synthesis that targets a Field Programmable Gate
Array, the result shows that it is quite large in terms of area.
However, it is fast. The technique proposed here can also be
verified for its correctness easily.

REFERENCES

[1] Sunesh, N.V., Sathishkumar, P., Design and implementation of fast
floating point multiplier unit, Int. Conf. VLSI Systems, Architecture,
Technology and Applications, 2015, pp.1-5

[2] Ehliar, Andreas, Area efficient floating-point adder and multiplier with
IEEE-754 compatible semantics, Int. Conf. Field-Programmable
Technology, 2014, pp.131-138.

[3] Malik, A., Dongdong Chen, Younhee Choi, Moon Lee, Seok-Bum Ko,
Design tradeoff analysis of floating-point adders in FPGAs, Canadian
Journal of E6lectrical and Computer Engineering, vol.33, issue 3/4,
2008, pp.169-175.

[4] Chi Huang, Xinyu Wu, Jinmei Lai, Chengshou Sun, Gang Li, A design
of high speed double precision floating point adder using macro
modules, Proc. Design Automation Conference, 2005, vol.2, pp.D/11-
D/12.

Cell name Amount of CLB

2-Bit Look-Up-Table (LUT2) 113

3-Bit Look-Up-Table (LUT3) 560

4-Bit Look-Up-Table (LUT4) 1249

Inverter (INV) 5

Fast Multiplier AND

(MULT_AND)

50

2-to-1 Multiplexer for Carry

logic (MUXCY)

327

2-to-1 Look-Up Table

Multiplexer (MUXF5)

343

XOR for Carry Logic

(XORCY)

256

D Flip-Flop (FD) 8

