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Abstract— Although a quantum computer is the future of 
computing, its practical implementation is still far off. 
Programming a quantum computer is also difficult. Thus, using a 
quantum computer simulator is a way to learn how to use a 
quantum computer. QCL is one of the quantum computer 
simulators. It can simulate the quantum environment and 
execute quantum computer programs. However, the quantum 
computer simulator has limited storage due to its data structure 
that simulates quantum bits. It takes long time to simulate a large 
number of quantum bits. This work proposes an accelerator of 
quantum simulator which is implemented in hardware circuits 
with Field Programmable Gate Array technology. 
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I.  INTRODUCTION 

In every year, computers are developed to be smaller, 

execute tasks faster and use lower power due to the 

technology. The fabrication technology is able to achieve 

double circuit density every year continuously for almost 40 

years. Gordon Moore has forecasted that and it is accepted as 

Moore’s law. 

High performance computers are required to solve many 

problems that cannot be solved with current generation of 

computers such as in medicine, in science and so on. One of 

the promising types of high performance computer is based on 

using Quantum effect for computation. In order to create a 

quantum computer, the fundamental storage, quantum bit, that 

holds simultaneous many states must be realized. The 

quantum computer is being created in research laboratories 

with few quantum bits. Only one system has been available 

commercially. D-wave systems [1] announced the first 

commercial quantum computer operating on a 128-qubit in 

2011. However, it does not have any of evidence, which prove 

that it operates with the real quantum effects. In order to study 

the behavior of a quantum computer, many of the quantum 

simulators were created. The quantum simulator simulates the 

behavior of quantum computer on classical computers. Users 

can write programs for quantum computers that are executed 

by classical computers via simulators. 

In order to simulate operations of quantum bits, the 

simulator must calculate all states that are in entanglement. 

This calculation consumes both time and space. Due to this 

constraint, the simulator can only work on the small number of 

quantum bits. This work tackles the aspect of speed up the 

simulator. The work proposed an accelerator circuit for a 

particular simulator, QCL (Quantum computer language).  

This simulator has been widely available. It is stable and open 

source. 

The next section describes the basic of quantum 

computing. Section 3 describes the concept of QCL simulator. 

Section 4 and 5 describe how to approach the problem of 

finding where in the simulator to be replaced by a hardware 

circuit. Section 6 gives the details of the design of the 

accelerator circuit. Section 7 shows the experimental result 

and the conclusion is in Section 8. 

II. ESSENTIAL QUANTUM COMPUTATION

A. Quantum bit 
A quantum computer [2] is totally different from the 

classical computer. Quantum computer’s operations are based 

on the theory of quantum mechanics. The smallest unit of 

quantum computers is a quantum bit (Qubit). The qubit 

represents a quantum particle, which has a superposition 

property. Thus, the qubit is represented in a linear combination 

as shown in equation 2.1. 

(2.1) 

The  and  are complex numbers. Due to the fact that the 

qubit carries value in superposition state, it has the value 0 and 

1 in the same time. This is a major fact that differentiates the 

quantum computer from the classical computer which has only 

one value either 0 or 1 in each bit. The qubit has value 0 with 

probability   and value 1 with probability . In order to 

preserve the law of total probabilty, the value of  and  must 

satisfy equation 2.2. 

 (2.2) 

Due to the law of total probability, equation 2.1 can be 

rewritten with equation 2.2. The new equation is equation 2.3. 

(2.3) 
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The  and  are real numbers and the  can be 

ignored because it does not affect the value of qubit. Thus, 

equation 2.3 can be rewritten into equation 2.4. 

 (2.4) 

Equation 2.4 is explained by Bloch sphere in figure 1. 

 

Figure.1: A qubit representation in Bloch sphere 

From the figure 1, the , which is the value of qubit, is 

pointed to somewhere on the surface of the Bloch sphere 

depended on the value of  and , which are an angle with 

the X and Z axis of Bloch sphere. Thus, if  means it 

points to the highest of Bloch sphere, vice versa for one. 

In case of multiple qubits, equation 2.1 changes in to 

equation 2.5 due to the increasing state of qubit.  

  (2.5) 

where , ,  and  are probability of qubits that 

have value 00, 01, 10 and 11, respectively. Also, it must 

preserve the law of total probability, so their values must 

follow the equation 2.6. 

  (2.6) 

Evaluation the value of multiple qubits is more complex 

than the single qubit. The order of qubits must be considered. 

If the value of first qubit is 0, the value of multiple qubits is 

evaluated by equation 2.7. 

 (2.7) 

From the equation 2.7,  is a renormalize 

form in order to preserve the law of total probability. The 

double qubits have a significant state, which is Bell state or 

ERP pair. They have a correlation property, which is some 

relationship between two qubits. If the value in one of qubit is 

known, then the value of another qubit can be interpreted by 

using information of the known value qubit. Bell state is an 

important concept to define the Quantum teleportation 

phenomenon. Bell state is presented in equation 2.8. 

  (2.8) 

B. Quantum parallelism 
A quantum parallelism is a property of quantum computers 

which uses the advantage of the superposition property.  When 

a unitary matrix operates with qubit, it will operate with all 

possibility of value. It can be explained with figure 2. 

 

Figure 2: An example of a quantum circuit 

From the figure 2, the quantum circuit has 2 inputs, which 

are and  .   is a controller qubit for input . The 

result of evaluation this circuit shows in equation 2.10. 

 (2.10) 

In case of n-Qubit, the result shows in equation 2.11.  

  (2.11) 

An output depends on the function . Due to quantum 

parallelism property, a quantum computer can execute 

program faster than a classical computer. However, this 

property changes the way we design an algorithm. Many 

algorithms were designed for quantum computers such as 

Deutsch’s algorithm or Deutsh-Jozsa algorithm [3]. 

 

III. QCL SIMULATOR 

QCL is one of the quantum computer simulator which is 

implemented in C++ language. The language of QCL has 

structured and it has hybrid mix of classical statements and 

quantum operations [4]. 

A. Quantum Programming 
Most of the classical computers have high level language 

available, such as C, Java, Pascal, and so on. The high level 
languages are divided into 3 groups: logical, functional and 
procedural.  A structured quantum programming [5] is an 
extended version of a procedural language. It extends the 
classical concept into the quantum concept. 

B. Hybrid architecture 
A hybrid architecture is a combination of classical 

computers and quantum computers. The inputs and outputs of 
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QCL simulator are classical bits. It behaves just like an 

ordinary input and output of a classical computer. However, 

the classical inputs are processed by the quantum program. 

QCL simulates a quantum machine to execute the quantum 

program. After that, the qubits are measured, so the qubits 

collapse into classical bits. 

 

IV. BENCHMARK PROGRAM 

From the section 2 and 3, programing the quantum program 
is completely different from the classical program because of 
its behavior. Benchmark programs for QCL simulator should 
be the programs that are designed for quantum computer and 
coded in QCL. 

In order to accelerate the QCL simulator, the simulator was 
inspected in details to analyze the data flow of program. The 
quantum version of the compact genetic algorithm [6] and Shor 
algorithm [7] were chosen as the benchmark programs to 
evaluate the QCL simulator. 

Compact genetic algorithm 
A compact genetic algorithm is a heuristic algorithm, which 

imitates the process of natural selection. It consists of three 
major steps. 

1) The first step is to create the population. This step 

creates new data related to the old data’s information. After 

that, the new data are adjusted with some rules. 

2) The second step is evaluation. This step evaluates the 

data from first step. The data are evaluated with the fitness 

rule, which depends on the problem. The data that are closest 

to solution of the problem has the highest fitness. 

3) The last step is determination. This step determines the 

data that have the highest possibility to be the solution of the 

problem. 

Because of the probabilistic nature of executing a quantum 

algorithm, it is necessary to iterate the algorithm as many 

times as required to achieve a better accuracy. The higher 

number iteration returns more accurate solutions. 

In order to take advantage of quantum computation, the 

compact genetic algorithm is modified. Due to the 

superposition property, the qubits are operated with all 

possible values. Thus, using the quantum gates and quantum 

bits is exponentially faster than a classical computer because 

the quantum parallelism property is applied. 

 

V. ANALYSIS 

The QCL simulator was developed in C++ language. It 
operates in Linux operating system, so profiling was chosen as 
a tool to inspect the flow of program. The source code of QCL 
simulator was modified in order to perform profiling. 

The QCL simulator executed the benchmark programs, 

which are compact genetic algorithm and Shor algorithm, with 

different qubit length and number of iteration. The profiler’s 

result shows functions that spend more than 15% of the total 

execution time. They are these three functions:  

1) bitvec::bitvec(bitvec const&) 
2) termlist::add(bitvec const&, std::complex<double>) 
3) quSubString::unmap(bitvec const&) const 

 

In order to perform quantum operations, the QCL 

simulator specifies new data types such as bitvec, terminfo, 

qustate and so on. The most time consuming method is 

bitvec::bitvec(bitvec const&), which is a constructor method. 

Therefore it should not be considered to be implemented in 

hardware circuits. The second function, termlist::add(bitvec 
const&, std::complex<double> const&), were considered to 

be implemented on hardware circuits. Moreover, it calls other 

methods. The callee methods are implemented. A pseudo code 

of method termlist::add(bitvec const&, std::complex 
<double> const& ) is described below. 

void termlist::add(const bitvec& v, const complex& z) { 
  Using value of input bitvec v perform hash  
  //First part 
  while(1)  
    Store data termlist from hash in caller to pt  
    if(pt doesn’t have data) { 
      if(caller size is smaller than its specification) { 
        //Second part 
        Increase caller size and call add method with same input 
      } else {            
        //Third part 
        Create new termlist and store it to caller’s hash at pt  
      } 
      return; 
    } 
    if(pt has bitvec same the input bitvec v) {         
       //Fourth part 
      Updating new data in pt with input z 
      return; 
    } 
     //Fifth part 
    Change hash function to get new hash index.  
  } 
} 

The method is divided into 5 parts. The first part is the 

basic step which executes every time the method is called. It 

does a hash function, hashfunct1. Then enter a while loop. The 

second part is in the nested-if case. This part increases size of 

data storage and recreate it with new size. The third part is in 

the else case of nested-if. This part stores new data to the data 

storage. The fourth part is in if-case. This part updates old data 

in data storage which matches the input. The last part operates 

if and only if the other parts are not operated. This part does 

another hash, hashfunct2. Then it repeats the while loop. 

VI. DESIGN AND IMPLEMENTATION 

In order to implement the accelerator circuits, the high 

level data structures and operations must be changed. The 

methods coding in C++ were changed into hardware 
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description language. The accelerator circuits were designed 

to take an advantage of the hardware parallelism.  

A. Flow chart 
The flow chart of method was derived from the software 

code. The code is divided into 5 parts, so the flow chart has 5 

states.  

The flow chart of method is shown in figure 3. 

h = hashfunct1(v)
pt <= hash[h]

!pt

_nterms >= 
listlen

T

F

F

list[_nterms].setvect(v);        
list[_nterms].setampl(z);    
hash[h]=&list[_nterms];

        _nterms++;
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>ampl()+z);

fin = 1

start?

T

F

idle

waitPt

part3

part4

finish

 
Figure 3: The modified flow chart of termlist::add(bitvec const&, 

std::complex<double> const&) method 

The termlist::add(bitvec const&, std::complex<double> 
const&) module was designed to has 5 inputs and 2 outputs. 

The first input is clk signal, which controls the flip flop 

function. The second input is a start signal. The others are the 

inputs of the method: termlist, bitvec v and complex z. A 

block diagram of this module is in figure 4. 
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Figure 4: Block diagram of termlist::add(bitvec const&, 

std::complex<double> const&) method 

1) State machine 
The state machine was derived from the flow chart using 

Moore machine. It used 3 registers to store the current state.  

2) Hashfunct module  

The hashfunct1 and hashfunct2 have same root method, 

which is bitvec::hashfunct(). The difference of hashfunct1 and 

hashfunct2 is masking. 

The bitvec::hashfunct() was implemented by combination 

circuits, so it instantly produces the result of its function. 

B. Floating point unit 
The termlist::add(bitvec const&, std::complex<double> 

const&) method uses complex data type, which is real number, 

so floating point unit must be designed because the tool for 

implementation of FPGA does not provide a floating point 

unit. The floating point unit was designed in the format IEEE 

754 double precision standard.  

In order to add floating point together, firstly, if the 

exponent bits of two numbers are not equal. The exponents 

must be aligned. The bigger exponent is decreased until it is 

equal the other. Then the fractional bits of the bigger number 

will change depend on how much exponent changed. After the 

exponent bits are equal, the add operation can be performed on 

fractional bits. The alignment of exponents requires an 

algorithm that finds the first bit that has value 1 in the 

exponent. The divide and conquer method is used to 

efficiently finding the first 1 value bit from the bit string. The 

bit string is divided into two substrings with equal length, the 

most significant substring and the least significant substring. 

Then, iteration the dividing with the most significant substring 

until it has only two bits. After that, two bits are compared 

with each other. If its value is both 0 check other two bits with 

in the same substring. If its value is both 1, the most 

significant bit is the first 1 value bit from bit string. If it is not 

equal, the higher one is the first 1 value bit from bit string. 

This method finds the first 1 value bit in O(log n). 

The accelerator circuits were implemented in Verilog, 

which is one of the hardware description languages. The 

implementation is carried out on an FPGA board.  Because of 

the limit number of input/output of the FPGA board, the data 

of two dimensional array, which are used in the simulator, 

cannot be fully implemented.  To allow analysis of the speed 

up of the circuits, a partial implementation is done.  Refer to 

the pseudo code of termlist method; the first part, the third part 

and the fourth part are implemented.  These three parts 

consume 99% of the total execution time so they are good 

enough representative. The rest of the simulation is executed 

with the software. 

 

VII. EXPERIMENTAL RESULT 

To collect the experimental data, the interface between 

hardware circuits and the software of the QCL simulator is 

defined. The data going through this interface is collected.  

The hardware circuit is then tested offline (in separation from 

the simulator).  The values through the interface are checked 

to validate the correct function of the accelerator circuits.  To 

measure the speed up of the accelerator circuits, the number of 

cycles of the circuit (one clock) is compared with machine 

code instruction of the software (the assembly language of the 

PC machine) which is collected from the profile of the running 
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simulator.  This assumption seems fair and allows the result to 

be independent of the speed of processor used in PC machine. 

The accelerator circuits met the functional correctness. The 

comparison of the execution time between the accelerator 

circuits and the software is shown in Table 1. 

 

Methods Number 
of clock 

cycle 

Number of 
machine 

instruction 
termlist::add(const bitvec& 

v,const complex& z) 

5 120 

termlist::hashfunct1(const 

bitvec& v) const 

instant 144 

bitvec::hashfunct() const instant 96 

summary 5 360 
Table 1: Comparing the accelerator circuits with the QCL simulator 

VIII. CONCLUSION 

From the section 7, it shows that accelerator circuits are 

much faster than the software. The accelerator is faster than 

the QCL simulator software 72 times.  

The limit of this study is that it is driven by the profile of 

the simulator running benchmarks. Therefore the speed up is 

limited to the frequent operations in software.  To fully 

explore the accelerator that aims to really speed up the 

simulator, perhaps the redesign of data structure should be 

considered. If the data structure is suitable for implementation 

is the hardware using RAM storing in the FPGA board, many 

other parts of simulation can be discovered that have high 

speed up potential.  However, this approach will require 

rewriting the simulator. 
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