
Applying SVM to data bypass
prediction in multi core
last-level caches

Warisa Sritriratanarak1a), Mongkol Ekpanyapong2,
and Prabhas Chongstitvatana1b)
1 Faculty of Engineering, Chulalongkorn University,

254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
2 Asian Institute of Technology,

Km. 42, Paholyothin Highway, Klong Luang, Pathumthani 12120, Thailand

a) warisa.sr@student.chula.ac.th

b) prabhas@chula.ac.th

Abstract: Bypassing emerged as a performance improvement method for

shared Last-Level Caches (LLC) in multicore processors where large data

portions are never reused, wasting system resources. This paper proposes an

alternative method to predict data bypassing using Support Vector Machine

(SVM). Based on access traces obtained from a simulator, SVM is trained to

generate bypass models which are integrated into the simulator to quantify

LLC performance improvements. Results show that SVM can classify which

data to bypass, improving LLC performance, achieving an average 6.72%

miss rate decrease across SPLASH2 benchmark combinations.

Keywords: cache bypassing, cache hit rate, last-level cache, SVM

Classification: Integrated circuits

References

[1] M. Kharbutli and Y. Solihin: IEEE Trans. Comput. 57 (2008) 433. DOI:
10.1109/TC.2007.70816

[2] L. Li, D. Tong, Z. Xie, J. Lu and X. Cheng: PACT (2012) 315. DOI:10.1145/
2370816.2370862

[3] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero and A. V. Veidenbaum:
MICRO (2012) 389. DOI:10.1109/MICRO.2012.43

[4] G. S. Tyson, M. K. Farrens, J. Matthews and A. R. Pleszkun: MICRO (1995)
93. DOI:10.1145/225160.225177

[5] A. González, C. Aliagas and M. Valero: ICS (1995) 338. DOI:10.1145/224538.
224622

[6] T. L. Johnson, D. A. Connors, M. C. Merten and W. M. W. Hwu: IEEE Trans.
Comput. 48 (1999) 1338. DOI:10.1109/12.817393

[7] J. Jalminger and P. Stenstrom: ICPP (2003) 294. DOI:10.1109/ICPP.2003.
1240592

[8] J. A. Rivers and E. S. Davidson: ICPP (1996) 154. DOI:10.1109/ICPP.1996.
537156

[9] H. Lim, J. Kim and J. W. Chong: IEICE Electron. Express 7 (2010) 850.
DOI:10.1587/elex.7.850

[10] L. Xiang, T. Chen, Q. Shi and W. Hu: ICS (2009) 68. DOI:10.1145/1542275.
1542290

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

1

LETTER IEICE Electronics Express, Vol.12, No.22, 1–6

http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1109/TC.2007.70816
http://dx.doi.org/10.1145/2370816.2370862
http://dx.doi.org/10.1145/2370816.2370862
http://dx.doi.org/10.1145/2370816.2370862
http://dx.doi.org/10.1145/2370816.2370862
http://dx.doi.org/10.1109/MICRO.2012.43
http://dx.doi.org/10.1109/MICRO.2012.43
http://dx.doi.org/10.1109/MICRO.2012.43
http://dx.doi.org/10.1109/MICRO.2012.43
http://dx.doi.org/10.1145/225160.225177
http://dx.doi.org/10.1145/225160.225177
http://dx.doi.org/10.1145/225160.225177
http://dx.doi.org/10.1145/224538.224622
http://dx.doi.org/10.1145/224538.224622
http://dx.doi.org/10.1145/224538.224622
http://dx.doi.org/10.1109/12.817393
http://dx.doi.org/10.1109/12.817393
http://dx.doi.org/10.1109/12.817393
http://dx.doi.org/10.1109/ICPP.2003.1240592
http://dx.doi.org/10.1109/ICPP.2003.1240592
http://dx.doi.org/10.1109/ICPP.2003.1240592
http://dx.doi.org/10.1109/ICPP.2003.1240592
http://dx.doi.org/10.1109/ICPP.1996.537156
http://dx.doi.org/10.1109/ICPP.1996.537156
http://dx.doi.org/10.1109/ICPP.1996.537156
http://dx.doi.org/10.1109/ICPP.1996.537156
http://dx.doi.org/10.1587/elex.7.850
http://dx.doi.org/10.1587/elex.7.850
http://dx.doi.org/10.1587/elex.7.850
http://dx.doi.org/10.1587/elex.7.850
http://dx.doi.org/10.1145/1542275.1542290
http://dx.doi.org/10.1145/1542275.1542290
http://dx.doi.org/10.1145/1542275.1542290


[11] R. Ubal, B. Jang, P. Mistry, D. Schaa and D. Kaeli: PACT (2012) 335. DOI:
10.1145/2370816.2370865

[12] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta: ISCA (1995) 24.
DOI:10.1145/223982.223990

[13] P. Vateekul, M. Kubat and K. Sarinnapakorn: IDA 18 (2014) 717. DOI:10.3233/
IDA-140665

[14] S. M. Khan, Y. Tian and D. A. Jimenez: MICRO (2010) 175. DOI:10.1109/
MICRO.2010.24

1 Introduction

Memory system is today’s computer system performance bottleneck. Sophisticated

workloads on multi-core processors perform data requests which cannot be easily

predicted through traditional algorithms or methods. The memory system, espe-

cially shared last-level cache (LLC), is impacted by these accesses; different types

of concurrent workloads result in lower hit rate or even thrashing when the working

set is larger than the cache size. In order to better manage limited cache space,

selectively bypassing data from the LLC has been shown to ameliorate the problem

[1, 2, 3].

Temporal locality in the LLC is inverted from inner-level caches [2]; several

LLC blocks are never reused before eviction, deteriorating its performance. Recent

works proposed methods to improve LLC hit-rate by avoiding allocating every

datum, selectively bypassing not-reused data. The most common method is to

predict when the data will be reused by collecting data access profiles into table(s)

and use counter to selectively cache the data. Most works require a large space to

store table(s) and involve updates on access to maintain accuracy, wasting band-

width and cache space when the patterns become more complex than the counter

can predict.

In this work, we convert the prediction into a binary classification problem,

deciding whether each datum should be bypassed or not. We propose bypass

prediction using Support Vector Machine (SVM) to learn data access patterns on

LLC. The output model (Bypass classifier) automatically determines whether to

bypass the data. SVM is used because of its great performance on binary

classification. Our method proves that it is possible for SVM to learn access

patterns not easily identifiable through traditional methods. With proper training

data and parameters, SVM can provide a bypass model which improves LLC

performance. The main contribution of this work is a proof of concept of SVM as a

method for determining data bypass. SVM-generated bypass classifier’s integration

in hardware is outside the scope of this paper, reserved for future work.

2 Related work

Determining cache bypassing relies on analyzing which data will be reused and

their reuse distance. A number of works focus on predicting which data will be

reused using predictors and information collected based on either the program

counter (PC) [2, 4, 5] or the address [6, 7, 8].

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

2

IEICE Electronics Express, Vol.12, No.22, 1–6

http://dx.doi.org/10.1145/2370816.2370865
http://dx.doi.org/10.1145/2370816.2370865
http://dx.doi.org/10.1145/2370816.2370865
http://dx.doi.org/10.1145/2370816.2370865
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.1145/223982.223990
http://dx.doi.org/10.3233/IDA-140665
http://dx.doi.org/10.3233/IDA-140665
http://dx.doi.org/10.3233/IDA-140665
http://dx.doi.org/10.1109/MICRO.2010.24
http://dx.doi.org/10.1109/MICRO.2010.24
http://dx.doi.org/10.1109/MICRO.2010.24
http://dx.doi.org/10.1109/MICRO.2010.24
http://dx.doi.org/10.1109/MICRO.2010.24


Tyson et al. seminal work [4] used the PC to block some instructions from

allocating data on cache. Instructions which create a lot of misses are not allowed to

allocate, identified by a two-bit predictor; later used in [7] to predict which data

should be bypassed based on addresses instead of PC. Similarly, Johnson et al. [6]

store counters in Memory Access Table, looked up to decide bypassing.

Since prior works bypass the lines from all caches, additional hardware is

required to keep the cache inclusion property. In [1], Kharbutli et al. relaxed cache

inclusion and bypassed data from L2 (LLC) only, requiring less hardware overhead.

Similarly focused on LLC, [9] creates new replacement policy on last-level shared

cache (L2) by adding two tables and counter. Later, Xiang et al. [10] suggested that

bypassing only never-reused lines is not enough; lines which are least reused

should also be bypassed. Apart from bypassing, PDP [3] uses reuse prediction to

create a new replacement policy and protect blocks from replacement; if all are

protected, then the incoming block is bypassed. OBM [2] involves predicting

whether the incoming or the victim block will be reused first and keeping the

closest reused one.

To the best of our knowledge, all previous work in cache data bypassing has

relied on ad-hoc prediction methods; our work is the first presenting the use of

machine learning applied to memory system performance.

3 Materials and methods

We used Multi2Sim simulator [11] to model a quad-core processor with X86 ISA,

non-inclusive, write-through LRU cache; parameters depicted in Table I.

Cache size is small in relation to benchmark memory usage (working set) in

order to force contention. Since the purpose is to prove the SVM’s ability to

selectively bypass the data, two-level cache is sufficient to demonstrate the

feasibility, exploiting the relationship between each core’s private cache and the

shared LLC. Fig. 1 illustrates the system structure.

Benchmark combinations are run, and cache access traces (Instruction and

Data) from each processor core are collected. Subsets of these traces are used for

SVM training, in order to output a bypassing model. This model is then integrated

on a modified Multi2Sim cache, performing bypassing, and LLC hit rates are

compared (only for the trace subsets not used for SVM training, with and without

bypassing, i.e., different training and testing data).

Table I. Parameters of the simulated cache

L1 Instruction Cache 8KB, 32B-line size, 2-way

L1 Data Cache 8KB, 32B-line size, 2-way

L2 Shared Last-level Cache 64KB, 32B-line size, 4-way

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

3

IEICE Electronics Express, Vol.12, No.22, 1–6



3.1 Benchmarks

To demonstrate the effectiveness of SVM prediction, simulator runs multithreaded

SPLASH2 [12] benchmarks. We created 7 benchmark combinations by randomly

selecting 4 out of 11 SPLASH2 benchmarks to run simultaneously, 4 threads per

benchmark. Each combination is listed in Table II and simulated for 200 million

committed instructions after fast forwarding the first 100 million instructions.

3.2 Support vector machine

HR-SVM [13] is an SVM-based technique specifically tailored for hierarchical

multi-label classification, suitable for binary classification with the imbalanced

class issue. To provide data for the HR-SVM, we generate the following attributes

each time the cores requested data from cache: address requested, program counter,

core number which requested data, access type (Instruction or Data), previous

address requested from the core, previous address requested to the LLC. This set of

data is referred to as features, scaled appropriately for SVM training. Accesses to

the LLC (misses from L1 caches) are extracted from the trace and separated into

two parts: the first one million accesses are training data and the rest is reserved for

testing. SVM training is supervised, i.e., the training data must be marked as bypass

or not. Marking the training data uses our knowledge of future behavior, similar to

the optimal lookahead in [2]; a look-ahead window of size n is used to check for

Fig. 1. System structure. The dotted arrows represent the information
required by the classifier. The solid arrows represent data flows
when cores request data from main memory (L2 missed).

Table II. Benchmarks combination

com 1 Raytrace, Radiosity, Water-nsquared, Water-spatial

com 2 Radiosity, Lu, Ocean, FFT

com 3 Cholesky, Fmm, Water-nsquared, Radix

com 4 Barnes, Fmm, FFT, Radix

com 5 Ocean, Lu, Barnes, Water-spatial

com 6 Fmm, Cholesky, Lu, Raytrace

com 7 FFT, Barnes, Radiosity, Water-nsquared

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

4

IEICE Electronics Express, Vol.12, No.22, 1–6



reuse. E.g., when address A is accessed, LLC trace is checked for n addresses,

determining whether or not address A is reused. If so, then A will be marked as to

be reused and will not be bypassed. If not, then A is marked as to be bypassed and

will not be allocated in LLC. Experimental results suggest the most efficient

window size for our experiment is n ¼ 5000; varying window size between 1000

and 10000, we noticed no significant improvement for n greater than 5000.

Benchmark combination 6 is an exception; further detail will be explained in the

last section. For feasible training, sampling was performed to obtain adequate

training data. Previous work has shown that a small fraction of data could represent

the access pattern of the entire trace [14]. Empirical results showed that sampling

every fifth address for a total of 100,000 data yielded adequate SVM training

results.

3.3 Features and kernel functions

Four different SVM kernels with various parameters are tested to find the most

suitable model: Linear, Polynomial, Radial basis function, and Sigmoid. Fig. 2

shows the percentage of miss rate decrease of each combination compared to the

baseline achieved through bypassing for each SVM kernel.

4 Results and discussion

Fig. 2 displays the results for our combinations. We present the percentage of the

cache miss improvement compare to the baseline, as predicted by four SVM

kernels per combination. Evaluating results yields several conclusions: (1) cache

miss rate is improved across combinations (except for combination 6). This shows

SVM feasibility as a tool for bypass prediction; to the best of our knowledge, this is

the first proof-of-concept of applying machine learning techniques to caches or

memory systems. (2) Radial basis function is, across most configurations, the

kernel function which yields the best gains. Experiments suggest that Radial basis

function is the optimal kernel for memory systems behavior, paving the way for

Fig. 2. Percentage of L2 miss rate achieved for each combination. The
positive results mean miss rate decrease and the negative results
mean miss rate increase.

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

5

IEICE Electronics Express, Vol.12, No.22, 1–6



further studies. (3) Perhaps the most interesting result is the observation that

combination 6 miss rate does not improve, regardless of the kernel. Experiments

on this combination showed hit rate can be improved, using 7 features by adding

the time of access as a 7th feature. The result is that the miss rate of combination 6

reduced from 29.52% to 28.83% improvement which could possibly translate as

combination 6 access is time-sensitive. This analysis will provide clues into

classifying SVM kernels and number of features across particular memory access

behaviors in the future.

Across positive results for 6 features, SVM-predicted bypass yields an average

miss rate decrease of 6.72%, which compared to related work such as [9] which

achieves a 6.01% average, shows that SVM-predicted bypass can provide cache

utilization comparable to ad hoc replacement policy mechanisms.

5 Conclusion

We presented a novel method to determine cache bypassing in LLC by using SVM-

based prediction. The proposed method provides an alternative to traditional ad-hoc

bypass methods, outperforming related work.

We showed the suitability of SVM for accurately predicting cache bypassing

for shared LLC and characterized SVM kernel functions, features and training data

look-ahead window-size for best prediction. Results show that a window-size of

5000, coupled with Radial basis function kernel and 6 features, is the most efficient

training parameters combination for data-bypassing prediction across our work-

loads.

Future work will focus on refining SVM kernel analysis for application

suitability; especially determining why combination 6 differs from others, requiring

a different set of training parameters for accurate prediction. Future work will also

focus on efficient cache hardware implementation of bypass classifier.

Acknowledgments

This work was partially supported by Graduate School Thesis Grant, Chulalong-

korn University and CP Chulalongkorn Graduate Scholarship.

© IEICE 2015
DOI: 10.1587/elex.12.20150736
Received September 2, 2015
Accepted October 14, 2015
Publicized October 28, 2015
Copyedited November 25, 2015

6

IEICE Electronics Express, Vol.12, No.22, 1–6


