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Abstract—Programming a quantum computer is still a chal-
lenge for researchers. Quantum computers operate based on
a fundamentally different paradigm from classical computers.
Programming a quantum computer today is somewhat like
programming a classical computer in the 1950s, in a manner
close to assembly language. This paper presents a Grover-assisted
compact genetic algorithm to solve some real-world problems on
a quantum computer. This method is a combination of Grover’s
search algorithm initializing with the probability distribution,
and a compact genetic algorithm with elite (cGA*), which keeps
the current best individual. The compact genetic algorithm (cGA)
is a powerful and popular method in evolutionary computation.
The results of the proposed algorithm are compared with the
cGA running on classical computers in terms of the solution
quality and the number of function evaluations. The compared
results illustrate that the proposed methodology can successfully
reach 100% accuracy of the solution with a higher number of
function evaluations than the cGA.

Index Terms—Quantum computing, Grover’s search algo-
rithm, compact genetic algorithm (cGA)

I. INTRODUCTION

Quantum computation is an emerging interdisciplinary prac-
tice of science where processing of information is based
on quantum mechanics. It has been shown that quantum
algorithms can provide dramatic advantages over the classical
ones. Two of the most well-known algorithms are the number
factorization algorithm [1] (Shor’s algorithm), which can be
used to break the cryptographic system that we use to send
credit card data in today’s internet efficiently, and a general un-
structured search algorithm [2] (Grover’s algorithm). Although
Grover’s algorithm provides only polynomial speed up over
classical brute force method, they can be used to speed up
wide range of applications.

The task of finding the minimum or the maximum of a
given function, the optimization problem, is one of the most
important problem in computer science and has a wide range
of applications to engineering and finances. In this work,
Travelling Salesman Problem (TSP) is presented as a test
problem since it is a common optimization issue seen in a
variety of fields of science and engineering. The problem
is to find the shortest possible route that visits every city

exactly once and returns to the starting point. One approach
to tackle the optimization problem is to use evolutionary
algorithm where the main mechanism that is used to search for
solutions comes from biological evolution [3]. It is thought that
mutation, recombination, and natural selection of genes from
the population are keys to make them survive and progress
through generations, survival of the fittest. The idea has been
applied to optimization, by defining a fitness function where
it output the score (or fitness) of a given solution candidate.
If one were to encode possible solutions into a population,
simulate the evolution procedure, and the entire population
would evolve and producing newer generations of candidate
that will converge into the best candidate with the highest
fitness.

Genetic algorithms [4], [5] (GAs) are one of the most
widely used type of evolutionary algorithms. They encode the
input to the optimization into a structured string that which
utilizes the randomization process to produce new sets of
strings from bits and parts of fittest of the old. A memory
efficient variant, compact genetic algorithm [6] (cGA), which
instead of storing all the population strings in memory, only
represents the population as a probability distribution over a
set of solutions. Although cGA behaviors only mimic that of
uniform cross over, order-one simple GA, its simple structure
can be implemented directly onto hardware with low memory
to boost its performance [7].

There have been attempts to combine quantum computing
and genetic algorithms in the hope that their quantum ver-
sions would provide speed up or new ideas to the classical
algorithms. Quantum-inspired genetic algorithms [8]–[10] are
one of the attempt where the algorithms are still executed
purely in the classical computers but took some of the ideas
of quantum phenomena such as interference and superposition
and translate them into classical analogue. Another approach,
quantum-assisted genetic algorithms, [11]–[14] and quantum-
assisted compact genetic algorithm [15] are to delegate some
tasks of the algorithm like mutation operator or probabilis-
tic elements to quantum computers while still performing
crossover and population update on the classical side. The last
approach is the attempts to redefine the GA in the context of
quantum computation [16]–[18] by creating a population with
superposition of all states, measuring the fitness to reduce the978-1-6654-1197-4/21/$31.00 ©2021 IEEE



dimension of the space, applying crossover while parts of the
population are still entangled, and re-expanding the space into
a superposition of larger dimension. The process is repeated
until the population converged or termination condition is met.

Most approaches to combine GA and quantum so far focus
on the traditional GA where crossover, recombination, and mu-
tation are presented and often require a huge number of qubits
to operate. In this work we aim to utilize Grover’s algorithm
to enhance the performance of cGA as briefly outlined in the
work from [15] which requires fewer number of qubits than
traditional GA. We demonstrate a Grover-assisted compact
genetic algorithm solving the traveling salesman problem
of size 3 and 4 city. The simulations were executed using
Qiskit library [19], software package for simulating quantum
computers provided by IBM. The results are compared with
the classical cGA in terms of solution quality and number of
function evaluations.

II. COMPACT GENETIC ALGORITHM

The Genetic Algorithm (GA) is a powerful optimization
algorithm inspired by natural evolution [4]. The GA is per-
formed by creating a population of solutions and produced the
offspring using genetic operators. The solutions are continu-
ously improved by a selection scheme that selects the survivors
to the next generation based on their fitness values defined by
users. Conversely, the cGA manipulates the probability vector
instead of the actual population. This dramatically reduces the
number of bits required in cGA to store the population. How-
ever, both algorithms still encounter premature convergence to
local optima of the objective function. Thus, we propose the
cGA storing the current best individual to ensure that it gets
no worse individual at each generation. The steps of cGA are
described below.

A. Compact Genetic Algorithm

The compact genetic algorithm (cGA) [6] represents the
population as a probability vector over the set of solutions.
The vector contains each bit with a real number from 0.0
to 1.0 represents the probability of that bit to be one. At
each generation, cGA samples two individuals according to
the probability value and calculates their fitness using the
fitness function. Next is to determine the winner by comparing
their fitness values. The winner’s chromosome will be used
to update the probability vector so that the distribution will
converge towards the best fit solution. This is an iterative
process until we reach a termination condition.

B. Compact Genetic Algorithm with Elite

The main concept is using the current best individual to
get the second individual. The second individual is sampled
from probability vector as normal but if its fitness is lower
than that of the current best individual, it will be replaced
with current best individual. Thus, the fitness of the second
individual is always greater than or equals to the fitness of the
current best observed fitness. A cGA with elite is shown as
Algorithm 1. If the search space has N entries, then the time

taken to complete a linear search is O(N) (on average, N/2).
The quantum Grover’s search algorithm can do better, which
is completed in time O(

√
N) [2].

Algorithm 1: The cGA with elite
1) initialize probability vector:
for i← 1 to l do

p[i] ← 0.5;
end
2) initialize the current best individual:
curBestIdv ← 000..00;
3) generate two individuals from the vector:
a← generate(p) b← generate(p);
4) evaluate the second individual’s fitness:
if curBestIdv.fitness > b.fitness then

b← curBestIdv;
end
5) let them compete:
winner, loser ← compete(a, b);
6) update probability vector towards winner:
for i← 1 to l do

if winner[i] 6= loser[i] then
if winner[i] 6= i then

p[i]← p[i] + 1/n;
else

p[i]← p[i]− 1/n;
end

end
end
7) update the current best individual:
if curBestIdv.fitness < winner.fitness then

curBestIdv ← winner;
end
8) check if the vector has converged:
for i← 1 to l do

if p[i] > 0 and p[i] < 1 then
return to step 3;

end
end
l is a chromosome length and n is a population size.

III. GROVER’S SEARCH ALGORITHM

Grover’s search algorithm can provide improvements over
classical algorithms as a quadratic speedup to solve the prob-
lem of unstructured search on quantum computers [2]. The
oracle and amplitude amplification stages in the algorithm help
to get the target solutions with high probability. The oracle
does not find the solution but simply recognizes them. The
key to quantum search is that we can look at all solutions si-
multaneously: the oracle just manipulates the state coefficients
using a unitary operator. Thus, we exploit this advantage by
applying Grover’s search algorithm to generate individual in
order to increase the chances of observing a target solution.
The first step in Grover’s algorithm is that all qubits are set to
be in superposition. After this operation, the amplitude of each



state is 1/
√
2n, where n is the number of qubits. Next, create

an oracle function to performs a phase flip on the marked
state. Then the diffuser operator performs an inversion of the
average of the amplitudes. The qubits are measured in finally.
Grover iteration (repeat oracle and amplification stages) can
be repeated to increase the probability of finding the target
solution. It requires approximately (π4 )

√
N
t where N is the

number of states and t is the number of target solutions.

IV. PERFORMING COMPACT GENETIC ALGORITHM ON A
QUANTUM SIMULATOR

The proposed algorithm consists of two methods for gen-
erating individuals. The first method, as shown in Fig. 1,
is to generate an individual using qubit rotation based on
probabilities and then applying measurement to generate an
individual. So, the amplitudes of the individuals are updated
by a rotation of quantum gates, which is used to generate
the first individual. The second method initializes the system
according to the probability distribution in a quantum register.
This method is used for generating the second individual. The
implementation of Grover’s search algorithm is described in
the next subsection, followed by an overview of the proposed
algorithm.

A. Initial State in Grover’s Search Algorithm

In this quantum version, the population is represented as
a probability distribution in a quantum register. At each
generation, the probability vector is updated towards the better
individual and it is used to generate an individual for the
next generation. Thus, the initial state of Grover’s search al-
gorithm for the second generation onwards should be adjusted
according to the probability distribution. Grover’s algorithm
always begin with a uniform distribution. We assumed some
other initial distribution |w〉, which is translated directly from
probability vector of cGA. The initial state of the Grover’s
search algorithm is similar to the method for generating the
first individual as shown in Fig. 1.

Since an arbitrary single-qubit state can be written as
follows:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (1)

where θ, and φ are real numbers. The numbers 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π define a point on a unit three-dimensional sphere.
To initialize stage of Grover’s search algorithm based on the
probabilities, we applied the qubit rotation for angle(θ), which
is defined as following:

angle(θ) = (probability(p)− 0.5)× π (2)

Therefore, all qubits are rotated along the Y-axis as angle(θ)
to initialize the state according to the probabilities. A new
Grover circuit is shown in Fig. 1.

B. Creating An Oracle Function in Grover’s Search Algorithm

The key idea is to define a function f(x) such that f(x) = 1 if
y(x) solves the search problem, and otherwise. This function is
called an oracle. So different search problems need different

oracles. In this work, travelling salesman problem (TSP) is
presented as a test problem since it is a common optimization
issue seen in a variety of fields of science and engineering. The
objective function is to find a shortest route that a salesman
visits every city exactly once and returns to the starting point.
In our oracle, we only focus on defining an oracle to recognize
all feasible solutions. The TSP are mapped to the Hamiltonian
cycles problem, that is reducing the problem to the decision
form of an Ising model with scales (N-1)2 spins are required,
where N is the number of cities, and we designate city 1 to
appear first in the Hamiltonian cycle. For example, a route
1→ 2→ 3→ 4→ 1 is represented by the matrix (N − 1)×
(N−1). So, it required a quantum register that contains (N-1)2

qubits to represent a solution. We can unpack this matrix into
a vector X = [1, 0, 0, 0, 1, 0, 0, 0, 1]. Each cell of the matrix is
a variable Xi,p where i represents the node and p represents
its order in a prospective cycle, and has a value of 1 if city i
is visited at order p, and 0 otherwise. This encoding scheme
helps to create a quantum circuit for the problem easier [20].
The binary variable Xi,p = 1 is converted to the spin value
σi,p = 1, and Xi,p = 0 is converted to σi,p = −1 by the
following formula:

Xi,p = (σi,p + 1)/2 (3)

Although we requires a lot of qubits to represents all solutions,
Grover’s algorithm can look at all solutions simultaneously
utilizing quantum parallelism and the oracle helps to increase
the probability of all feasible solutions, which is total (N−1)!
feasible solutions from all 2(N−1)2 solutions. The total energy
of the system is called Hamiltonian (H). The energy of the
Ising model which TSP is mapped to is H = HA + HB ,
with HA the Hamiltonian given for the undirected Hamiltonian
cycles problem [20] which is the total distance for each route.
We then simply add HB the constraints for the rows and
columns with the following formula:

HB = B
∑
p

(
1−

∑
i

Xi,p

)2

+

B
∑
i

(
1−

∑
p

Xi,p

)2
(4)

where the terms in underbraces are squared so that the lowest
possible minimum value is zero. The factor B is a weight of
penalty term, has large enough weight to avoid an infeasible
solution. So, the fitness function of TSP is represented by the
energy of the Ising model which we need to minimize the
energy to get the shortest feasible route.

To check a feasible solution on the quantum state, we simply
need to create a classical function on a quantum circuit to
check down both columns and across both rows have “1”
appearing in one place because every city can only appear once
in the cycle, and for each time a city has to occur. We compile
this set of comparisons into a list of clauses and check these
clauses computationally using the XOR gate. For instance, the
oracle to verify a solution of TSP 3-city is shown in Fig. 2.



In part of computing clauses, we complete a checking circuit
to provide a single qubit to be “1” of each clause, and then
we repeat the XOR gate for each pairing in the list of clauses.
The output qubit is flipped when all the clauses are satisfied.
Finally, all clauses qubits are reset by repeating the part of the
circuit that computes the clauses.

C. Revising Diffusion Operator in Grover’s Search Algorithm
Grover’s search algorithm’s initial state is based on the

probability distribution in a quantum register, so the diffusion
operator needs to be changed as well [21]. We assume the
initial probability distribution |w〉, which is a subset of a
superposition. So, the new Grover diffusion operator is written
2 |w〉 〈w| − I . The new diffuser circuit is drawn in Fig. 3

Algorithm 2 shows the pseudocode of Grover-assisted
cGA*. The two candidates are generated by the first method
and the second method in steps 4 and 5 respectively, which
were run on the IBMQ QASM simulator. Grover iterations in
the second method ensure to get the second individual which is
a feasible solution. Then the candidates are converted as spin
values according to equation (3) to represent the solution with
the Ising model. The fitness value is a Hamiltonian energy of
the Ising model (HA+HB). Then the evolutionary process in
the cGA is used to update the probability vector towards the
better individual and the new probability value will affect the
angle value (θ) used for the quantum preparation state in the
next iteration. It is repeated until the vector converges.

Fig. 1. A circuit to initial the state of the system based on the probability
distribution which encoding problem with 4 qubits.

V. TESTING PROBLEMS AND EXPERIMENTAL SETUP

From the previous section, we illustrated how to encode the
TSP as a quantum state and build an oracle in Grover’s algo-
rithm. It can be seen that the proposed algorithm uses a binary
encoding as an Ising model that requires O(N−1)2 qubits. On
the other hand, encoding the problem to be addressed on the
classical cGA is a different way. We can minimize the number
of required bits by adapting the path representation model
which represents a feasible tour as possible permutations of
the N cities. Thus, a total number of feasible edges between
cities are defined as:

Number of feasible edges =
(N − 1)

2
×N (5)

A total number of feasible edges is a set of l-bit binary
string. The probability value of each bit (Pi,j) represents the
probability value of edge between city i and city j.

Fig. 2. An example of oracle circuit for TSP 3-city.

Fig. 3. A diffuser circuit which encoding problem with 4 qubits.

We employed TSP 3 and 4-city as test problems in the
studies, as shown in Fig. 4, and conducted the quantum
computation phases on the IBMQ QASM simulator. Since the
limitation of the number of qubits supported by the simulator,
so we can only demonstrate small size TSP. The classical
cGA and Grover-assisted cGA* were compared in terms of
solution quality and number of function evaluations that were
run from population size 4–50 for TSP 3-city and population

Algorithm 2: Grover-assisted cGA*
Steps 1 and 2 are similar to steps 1 and 2 in
Algorithm 1

3) initialize quantum register, classical register, circuit:
circuit← QuantumCircuit(qr, cr);
4) generate first individual using qubit rotation based
on the probabilities:
a← generateF irstIdv(p);
5) generate second individual using the adjusted
Grover’s algorithm with oracle of the objective
function:
b← generateSecondIdv(p);
6) map to an Ising model:
a← ising(a) b← ising(b);
The remaining steps are similar to steps 4 to 8 in
Algorithm 1.



size 4–100 for TSP 4-city with increments of 2. The proposed
method’s number of function evaluations can be estimated by
multiplying Number of shots by Number of Grover iterations,
plus one for evaluation its fitness. The data were averaged
over 25 runs and used tournament selection with s = 2.
The quantum computation phases were run with the various
number of shots and Grover iterations. All runs ended when
the vector fully converges. We used 1 shot for TSP 3-city
and used 1, 10, and 20 shots for TSP 4-city. The required
number of Grover iterations for TSP 3-city (encode with 4
qubits) is approximately 2 iterations at maximum because
there is a total of 24 population and 2 target solutions that can
provide a feasible route. TSP 4-city (encode with 9 qubits)
requires approximately 7 Grover iterations at maximum since
there is a total of 29 population and 6 target solutions [2].
In this experiment, different numbers of Grover iterations and
shots were used to see how they affect solution quality and
performance.

Fig. 4. TSP 3-city and 4-city.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments on TSP 3-city are shown in Fig. 5 and
Fig. 6. The results obtained show that the two algorithms are
equivalent in terms of solution quality but the cGA uses a
smaller number of function evaluations. One Grover iteration
is enough for solving TSP 3-city with 100% reaching the target
solution because there have been just 4 qubits that represent all
16 quantum states [2]. Fig. 7 and Fig. 8 shows the experimental
results on the TSP 4-city The cGA obtains higher solution
quality than the proposed algorithm for the various number of
shots and Grover iterations with a smaller number of function
evaluations. When compared to the others, the classical cGA
can achieve the target solution with 8 population sizes and
approximately 22 function evaluations, whereas the cGA* with
7 Grover iteration, 20 shots, gives the solution quality as
close to the classic but uses more function evaluations. From
Fig. 7, it can be seen that increasing the number of Grover
iterations (green line) yields a higher solution quality than
increasing the number of shots (red line) and increasing both
the number of shots and Grover iterations (dark green line)
yields a higher solution quality than increasing the number
of Grover iterations alone. It is because applying adequate
Grover iterations results in a higher probability of finding the
target solution, whereas the number of shots aids in obtaining
a probability distribution of results. However, the number of
function evaluations taken to converge as shown in Fig. 8 is a
quadratic growth according to the number of shots and Grover
iterations. On a classical cGA, the TSP 4-city uses 6 bits to

represent all 26 solutions, whereas on a quantum computer,
the TSP 4-city uses 9 qubits to represent all 29 solutions.
Therefore, the classical one can achieve the target solution
using evolutionary selection with a small number of function
evaluations on small problem sizes. Considering TSP 10-city,
the problem is encoded as 45 bits on the classical cGA that
represent all 245 solutions, resulting in a very wide search
space with a large time complexity to solve the problem.
So, quantum parallelism in Grover’s algorithm could play an
important role in achieving benefits over a classical computer
to tackle medium problem sizes upwards. This would require
improving a binary encoding scheme of the problem and the
quantum resources required in quantum hardware.

Fig. 5. Comparison of the solution quality (number of correct bits in
percentage at the end of the run) achieved by the classical cGA and the
cGA* on TSP 3-city.

Fig. 6. Comparison of the classical cGA and the cGA* in the number of
function evaluations needed to achieve convergence on TSP 3-city.

VII. CONCLUSION

This paper proposes a simulation of Grover-assisted com-
pact genetic algorithm to solve some real-world problems
which requires fewer number of qubits than traditional GA.
It combines the Grover’s search algorithm, which assigns a
specific state to the system based on the probabilities, with
the generation of an individual process in a cGA with elite.



Fig. 7. Comparison of the solution quality (number of correct bits in
percentage at the end of the run) achieved by the classical cGA and the
cGA* on TSP 4-city.

Fig. 8. Comparison of the classical cGA and the cGA* in the number
of function evaluations (are plotted in logarithmic scale) needed to achieve
convergence on TSP 4-city.

The studies are carried out on TSP using different encoding
schemes between the classical cGA and the Grover-assisted
cGA* to minimize the number of bits and qubits necessary.
TSP is mapped to an Ising model for the proposed algorithm,
making it easier to build a quantum circuit. The results
show that the classical method outperforms the Grover-assisted
cGA* in terms of solution quality and performance on small
problem size. However, for medium size upwards, quantum
parallelism in Grover’s algorithm could play a key role in
achieving benefits over a classical computer, which would
necessitate enhancing the problem’s binary encoding strategy
and the quantum resources required in quantum hardware.
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