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Abstract—Quantum computers can be much faster than any
classical computers in solving a certain class of problems. One
of the interesting problems is the combinatorial optimization
problem, which is a challenge for classical computer systems. We
encode these problems into the Quadratic Unconstrained Binary
Optimization (QUBO) format and then solve them with quantum
solvers. In this study, we compare the performance of D-Wave’s
quantum annealing system with classical solvers, namely, Gurobi
and Fixstars. We demonstrate the current capabilities of the D-
Wave system.

Index Terms—quantum optimization, quantum annealing,
combinatorial optimization.

I. INTRODUCTION

Quantum computing has emerged as a transformative ap-
proach for addressing the challenges of combinatorial opti-
mization, leveraging quantum mechanical phenomena to po-
tentially outperform classical methods in specific cases. Quan-
tum annealing and gate-based quantum algorithms provide
novel paradigms for solving optimization problems, specifi-
cally combinatorial optimization problems.

Combinatorial optimization lies at the heart of real-world
applications, including logistics, scheduling, and network de-
sign, with their complexity growing exponentially as the
problem size increases. While classical solvers such as Gurobi
and Fixstars excel at problems like the 3-Satisfiability (3SAT),
the Quadratic Assignment Problem (QAP), and the Traveling
Salesman Problem (TSP), using techniques like linear pro-
gramming and heuristics, their scalability is limited by compu-
tational resources and runtime. These limitations highlight the
potential of quantum computing as a complementary approach.

In the current Noisy Intermediate-Scale Quantum (NISQ)
era, where quantum systems are characterized by limited
coherence time, noise, and susceptibility to errors, quantum
annealing (QA) has stood out as a currently practical approach
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for solving combinatorial optimization problems. Unlike the
gate-based quantum computing model, QA demonstrates re-
silience by leveraging the quantum tunneling effect to traverse
energy barriers, thus avoiding local extrema. This feature
makes QA particularly suitable for the NISQ era [1].

QA is rooted in simulated annealing but employs quan-
tum phenomena for optimization. It is closely linked to the
Quadratic Unconstrained Binary Optimization (QUBO) for-
malism, which has been a standard representation in combi-
natorial optimization for decades. QUBO serves as the input
language for quantum machines such as D-Wave Systems and
other quantum-inspired technologies such as Fujitsu’s Digital
Annealer and NTT’s Coherent Ising Machine [1].

This study focuses on benchmarking quantum anneal-
ing’s capabilities for combinatorial optimization problems,
examining its strengths and limitations. To ensure fair-
ness, we kept all default hyperparameters of the quan-
tum annealer unchanged—such as annealing_time, and
chain_strength—modifying only the num_reads pa-
rameter, which controls the number of annealing samples re-
turned by the hardware. Since quantum annealing is inherently
probabilistic, increasing the number of reads improves the like-
lihood of obtaining the optimal solutions. By comparing the
performance of D-Wave Advantage System 6.4 with classical
solvers, we aim to provide insights into the practical potential
of quantum computing in optimization.

II. PRELIMINARIES

A. Quadratic Unconstrained Binary Optimization (QUBO)

QUBO is a mathematical formulation used to represent
optimization problems. It encodes the objective function as
a quadratic polynomial in binary variables. The goal is to find
a binary vector that minimizes the quadratic cost function [2].
QUBO problems can be expressed as:

E(x) = xTQx, (D



where () is a symmetric matrix of weights, and x is a binary
vector {0,1}. QUBO is widely used due to its flexibility in
representing problems such as 3SAT, QAP, and TSP.

B. The Ising Model

The Ising model is a widely used representation of opti-
mization problems in quantum annealing, formulated to find
the ground state of the Hamiltonian:

H= Z hio; + Z Jijoio;, 2
i i<j

where h; represents local fields, J;; denotes spin coupling,
and o} are Pauli-Z operators. The Ising model and QUBO
are equivalent and can be interconverted using the linear
transformation [3]:
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where z; is a binary variable and s; is a spin variable
{-1,1}.
III. METHODS FOR SOLVING QUBO PROBLEMS
A. Classical Methods

Classical optimization techniques often use Mixed Integer
Programming (MIP) solvers to address QUBO problems.
These solvers handle quadratic problems involving integer and
real variables, including QUBO formulations. For example,
the Gurobi Optimizer is a widely used MIP solver that can
process QUBO problems by defining the objective function in
quadratic form and applying standard optimization algorithms
to find the optimal solution [4].

Z;

B. Quantum Annealing with D-Wave

The D-Wave quantum processing unit employs quantum
annealing to find the minimum of an energy landscape defined
by the biases and couplings applied to its qubits in the form of
a problem Hamiltonian. This process involves evolving qubits,
initially in a superposition of states, toward the ground state
of a problem-specific Hamiltonian [5]. To solve a problem
through sampling, the objective function is formulated such
that finding its minimum corresponds to solving the problem.
The objective is defined as the problem Hamiltonian by
specifying the linear and quadratic coefficients of a binary
quadratic model (BQM), which maps these values to the qubits
and couplers of the quantum processing unit (QPU). For the
QPU, objective functions can be represented using either the
Ising Model or QUBO, both of which are binary quadratic
models and converting from one formulation to the other is
trivial.

C. Gate-Based Quantum Computing

Gate-based quantum computing uses quantum circuits for
computation, with the Quantum Approximate Optimization
Algorithm (QAOA) commonly applied to QUBO problems.
QAOA uses parameterized quantum gates to prepare a quan-
tum state that encodes the solution, alternating between

problem-specific and mixing Hamiltonians to find the opti-
mal solution through quantum interference. This approach is
implemented with quantum programming frameworks such
as Qiskit, enabling execution on various quantum processors.
QAOA offers a flexible framework for approximating solutions
in the NISQ era [6].

IV. METHODOLOGY
A. Solvers

Brute Force: Our approach of Brute Force is implemented
with Python. It tries all possible answers until it hits the time
limit and stops, returning the best result so far. It runs single-
threaded on a MacBook Pro 2023 (M2 Max).

Gurobi Optimizer: A classical solver employing ad-
vanced mathematical programming techniques, Gurobi pri-
marily uses a Branch-and-Bound framework, enhanced with
Cutting Planes, Heuristics, and Presolve Reductions. It dy-
namically selects between the Simplex and Barrier (Interior
Point) methods for solving continuous relaxations based on the
problem structure. Optimized for multi-threaded performance,
we used Gurobi 11.0.3 under an Academic License on a
MacBook Pro 2023 (M2 Max, 12-core CPU).

Fixstars Amplify QUBO Solver: A quantum-inspired
GPU-accelerated solver optimized for QUBO problems. As
Fixstars Amplify offers only its GPU-accelerated Annealing
Engine for QUBO, our experiments employed its Simulated
Annealing (SA) algorithm—emulating thermal annealing to
escape local minima and approach near-optimal solutions [7].
The experiments were conducted on the cloud platform via
their API under the Basic Plan (Free Plan for Evaluation and
Testing). The experiment was done on the first half of January
2025.

D-Wave Quantum Annealing: A quantum annealing sys-
tem for optimization tasks. Experiments were conducted on
the D-Wave Leap platform with a Developer Plan (Free Trial
Access) during the first half of January 2025. We used a solver
named Advantage System 6.4 with default parameters, except
for num_reads set to 1000.

B. Mathematical Formulation of QUBO Models

The QUBO formulations for these three benchmark prob-
lems are denoted by Hpoblem Name- FOr QAP and TSP, the
QUBO model is composed of two parts: The objective function
Hp and the penalty function g which enforces constraints
along with the penalty weight A [8]. The model formulation
for three problems is as follows:

o 3SAT

m
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where y;; are binary variables representing literals (x;),

w; are the binary variables associated with each clause,
and K is an offset for normalization and is the minimum



number of clauses which are satisfied no matter the binary
literals. [9]
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where f;; represents the flow (interaction) between fa-
cilities ¢ and j, d;; is the distance between locations
and j, x;; is a binary variable indicating if facility ¢ is
assigned to location j, and n is the number of facilities
and number of locations.

o TSP
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where z; ,, is Binary Variable indicating whether city ¢ is
being visited at time p, d;; is distance between cities ¢
and j, and n is the total number of cities.

C. Datasets

The guidelines for selecting benchmark datasets are as

follows:

o 3SAT: The benchmark test sets are generated and verified
to be satisfiable with PySAT and are from SATLIB
All Satisfiable Uniform Random-3-SAT [10], where one
problem is randomly selected from each set of 100 prob-
lems. The number of variables and clauses for each set
are as follows: 5 variables with 15 clauses, 10 variables
with 30 clauses, 15 variables with 55 clauses (which are
generated), 20 variables with 91 clauses, 50 variables with
218 clauses, 75 variables with 325 clauses, 100 variables
with 430 clauses, and 125 variables with 538 clauses
(which are from SATLIB). These correspond to the sizes
of the binary vectors of the problems: 20, 40, 70, 111,
268, 400, 530, and 663, respectively.

¢ QAP and TSP: The benchmarks used fixed seeds to gen-
erate random weight matrices with sizes ranging from 4 to
12 nodes, where nodes represent the number of factories
and locations in QAP or the number of cities in TSP.

The matrix values were uniformly distributed between
1 and 9 inclusive. Both problems required constraints,
implemented using a penalty value of 10°, which was
found to be effective without affecting the computation
time. Both of these problems are encoded such that the
size of the binary vectors (problem size) is nodes?.

D. Evaluation Metrics

We used three metrics to evaluate the solvers’ performance:

1) Success Rate: The success rate is calculated as the
number of times the solver returns a feasible solution over
the total number of runs. If all samples in a run fail to meet
the constraints, that run is considered to have no feasible
solution. For problems like 3SAT, which do not have additional
constraints, the success rate is either 1.0 or 0.0, with 0.0
occurring when the problem size becomes too large for the
solver.

2) Accuracy: Percentage of the optimal solution given.

e 3SAT: Accuracy is verified by checking the correctness
through boolean algebra.

e QAP and TSP: Accuracy is determined by matching the
solution to Brute Force for the problem instance. Our
experiment shows that for nodes < 10 for QAP and
nodes < 11 for TSP. The Brute Force method, having not
hit its time limit, explored all possible solutions, ensuring
the optimal result. For nodes = 11,12 we will assume
Fixstars provided an optimal solution.

3) Computation Time: Measure the time it takes for the
solver to first find the best solution. This does not include
the time it takes to formulate the problem, upload, and
queue. Some solvers like Fixstars will continue running despite
finding an optimal solution, therefore, we will only use the
time it first found its best solution.

V. BENCHMARKING QUBO SOLVERS

A. Experimental Results

Results from solving 3SAT, QAP, and TSP instances re-
vealed:
1) 3SAT:

a) Success Rate: Across all test sets, the classical solvers
(Gurobi and Fixstars) successfully find all the solutions. In
contrast, D-Wave’s Advantage System 6.4 fails to solve prob-
lems with a vector size of 663 as the problem size became too
large for D-Wave’s minor embedding.

b) Accuracy Results: As shown in Fig. 1, the results’
accuracy indicates that the D-Wave solver can only solve prob-
lems up to a size of 663, primarily due to minor embedding
errors caused by the problem’s large size. Comparatively, D-
Wave’s accuracy is the lowest among the three solvers, with
Advantage System 6.4, but still remains above 0.95. For the
Gurobi solver, its accuracy depends heavily on the timeout
parameter as it gradually declines as the problem size gets
larger. Finally, Fixstars demonstrates the highest accuracy,
remaining completely accurate except for problem sizes of 40
and 663, where it maintains the highest overall accuracy.



¢) Computation Time: As shown in Fig. 2, for problem
sizes ranging from 111 to 530, the execution time of D-Wave
remains relatively low compared to that of Fixstars and Gurobi.
Both solvers exhibit increasing execution times as the problem
size grows, but D-Wave’s execution time remains significantly
lower compared to the Gurobi solver. Gurobi’s execution time
grows much faster than the other two solvers, quickly reaching
its timeout limit, even for relatively small problem sizes. And
in Fig. 3, Fixstars’ and D-Wave’s computation time grows
linearly, and D-Wave’s with the smaller slope demonstrates
a slower increase in execution time.

2) QAP:

a) Success Rate: Classical Solvers which are Brute
Force, Gurobi, and Fixstars, are able to find a feasible solution
for all problems. However, for D-Wave, it struggles to find
a feasible solution at nodes = 6 and no solution after
nodes = 7, before reaching the hardware’s size limit.

b) Accuracy Results: The accuracy results for solving
QAP instances are shown in Fig. 4. It is shown that all classical
solvers achieve optimal solutions for nodes < 10. D-Wave
achieved 100% accuracy for nodes = 4 but the accuracy drops
significantly as the problem size increases. At nodes = 5,
accuracy drops to 70% and fails to find optimal solutions for
nodes > 6.

c) Computation Time: In Fig. 5, we can see that Brute
Force and Gurobi’s computation time grows exponentially (or
linearly on a log scale) as the number of nodes increases.

Fig. 6 provides a clearer view of Fixstars’ and D-Wave’s
computation time. They grow almost linearly as the number
of nodes increases. The graph also shows that Fixstars’ growth
is more than D-Wave, but this cannot be concluded as we lack
data on D-Wave.

3) TSP:

a) Success Rate: Classical Solvers which are Brute
Force, Gurobi, and Fixstars, are able to find a feasible solution
for all problems. However, for D-Wave, it struggles to find
a feasible solution at nodes = 7 and no solution after
nodes = 8, before reaching the hardware’s size limit.

b) Accuracy Results: The accuracy results for solving
TSP instances are shown in Fig. 7. It is shown that all classical
solvers achieve optimal solutions for nodes < 12. D-Wave
achieved 100% accuracy for nodes = 4 and nodes = 5 but
the accuracy drops significantly as the problem size increases.
At nodes = 6, accuracy drops to 20% and fails to find optimal
solutions for nodes > 7.

¢) Computation Time: In Fig. 8, we can see that Brute
Force and Gurobi’s computation time grows exponentially (or
linearly on a log scale) as the number of nodes increases.

Fig. 9 provides a clearer view of Fixstars’ and D-Wave’s
computation time. They grow almost linearly as the number
of nodes increases. As with QAP’s case, we cannot compare
the growth rate as we lack data on D-Wave.

B. Discussion

The experimental results highlight distinct behaviors and
limitations of quantum and classical solvers when applied to

all 3 problems. Below, we delve into the key observations and
underlying reasons behind these phenomena.

1) Quantum Solver Scalability and Limitations: For dense
combinatorial problems like QAP and TSP, the embedding
process becomes increasingly resource-intensive as the number
of nodes grows. Specifically, for QAP nodes = 6 and TSP
nodes = 7. This inability stems from hardware constraints,
specifically the quantum annealer’s topology and the process
of minor embedding [11].

In contrast, sparse combinatorial problems like 3SAT are
more amenable to quantum annealing. The sparse nature of
3SAT instances allows for more efficient embedding into the
quantum annealer’s topology, enabling the system to handle
larger problem sizes. For example, D-Wave’s quantum an-
nealer can effectively solve 3SAT instances with up to 530
variables, demonstrating its capability to manage larger sparse
problems compared to dense ones.

2) Execution Time Trends: In contrast, classical solvers
such as Gurobi and the Brute Force method exhibit exponential
time growth due to the combinatorial nature of optimiza-
tion problems. D-Wave demonstrates near-linear time growth,
indicating more stable execution times as the problem size
increases. This highlights a key advantage of quantum solvers:
their ability to maintain consistent performance within the
limitations of available hardware resources.

While this does not yet represent quantum speed-up in
the strictest sense, it emphasizes the potential of quantum
annealing for solving optimization problems efficiently.

VI. CONCLUSION

TABLE I
SUMMARY OF RESULTS FOR 3SAT, QAP, AND TSP

3SAT QAP TSP

size acc(%) time (ms) size acc(%) time(ms) size acc(%) time(ms)
20 100.000  95.803 4 100 94.444 4 100 94.443
40  99.000 106.503 5 70 99.603 5 100 99.603
70  97.091 126.205 6 0 106.165 6 20 106.164
111 97.033  190.226 7 0 124.323
268 97.523  193.467

400 95.661 211.567

530 95.721 227.981

Quantum computing holds promise for solving combinato-
rial optimization problems, with quantum annealing showing
potential in this area. In our experiments, D-Wave demon-
strated slower computation times compared to classical solvers
such as Gurobi and Fixstars in most cases. However, the
growth in computation time for D-Wave was minimal as
problem size increased, while Gurobi exhibited noticeable
growth rates.

This paper presents benchmarks that evaluate the perfor-
mance of D-Wave’s quantum annealer within a pure quantum
computing framework, without the use of hybrid approaches.
While extensive parameter tuning was not performed, we
modified the num_reads parameter to ensure consistent
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sampling. Other parameters, such as annealing_time and
chain_strength, were left at their default values. Further
optimization is reserved for future work.

In this study by Villarrodri et al. [12], a comprehensive
analysis of the sensitivity of the Hamiltonian-related param-
eters for D-Wave’s quantum annealer was conducted. By
evaluating over 200 parameters configurations—including all
the parameters mentioned, they showed that fine-tuning these
parameters significantly influences solution quality and energy
distribution. For instance, chain_strength controls how
strongly the qubits in a logical chain are coupled together;
if the strength is too weak, the chains may break which
would result in the failure of problem embedding [13]. On
the other hand, too strong and the constraints of the in-
tended problem will no longer represent the original problem.
annealing_time determines how long the system searches
for solutions, with longer runs increasing the likelihood of
remaining in the ground state in accordance with the adiabatic
theorem.

These results highlight quantum annealing’s potential
and limitations. Key challenges—improving embedding tech-
niques, mitigating errors, and scaling hardware—must be
addressed to realize its full potential. While classical solvers
dominate large instances, quantum annealers show promise
for specific applications and smaller problem sizes, warranting
further research.

Future work will expand to include hybrid quantum-
classical methods, particularly gate-based approaches like
the Quantum Approximate Optimization Algorithm (QAOA).
We plan to explore QAOA implementations across multi-
ple platforms—including Qiskit, Cirq, CUDA-Q, and Q#—to
assess their practicality for solving the same combinatorial
optimization problems benchmarked in this study. Future
benchmarks will focus on evaluating scalability, accuracy, and
execution time, as well as parameter tuning strategies. This
includes tuning key parameters such as annealing_time
and chain_strength (for annealing-based and quantum-
inspired solvers), which play a critical role in solution quality
and performance.

ACKNOWLEDGMENT

This work was made possible by a collaboration between
Chulalongkorn University and the National University of
Singapore in the project “Quantum Computing and Machine
Learning for Combinatorial Optimization” supported by the
Singapore Ministry of Education Academic Research Fund
(AcRF) Tier 1, grant MOE-T1-251RES2302. The authors
thank Lim Chee Keen for helpful discussions. The first three
authors contributed equally to this work.

REFERENCES

[1] P. Codognet, D. Diaz, and S. Abreu, “Quantum and digital annealing
for the quadratic assignment problem,” in 2022 [EEE International
Conference on Quantum Software (QSW), 2022, pp. 1-8.

[2] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and
using qubo models,” 2019. [Online]. Available: https://arxiv.org/abs/
1811.11538

[3] A. Mandal, A. Roy, S. Upadhyay, and H. Ushijima-Mwesigwa,

“Compressed quadratization of higher order binary optimization

problems,” 2020. [Online]. Available: https://arxiv.org/abs/2001.00658

Fixstars. (2024) Gurobi optimizer - fixstars amplify sdk documentation.

Accessed: 2025-01-05. [Online]. Available: https://amplify.fixstars.com/

en/docs/amplify/v1/clients/gurobi.html

[5] A. Rajak, S. Suzuki, A. Dutta, and B. K. Chakrabarti, “Quantum
annealing: an overview,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 381, no. 2241,
dec 2022. [Online]. Available: http://dx.doi.org/10.1098/rsta.2021.0417

[6] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate

optimization algorithm,” 2014. [Online]. Available: https://arxiv.org/abs/

1411.4028

Fixstars. (2024) Fixstars amplify annealing engine. Accessed: 2025-04-

17. [Online]. Available: https://amplify.fixstars.com/en/docs/amplify/v1/

clients/fixstars.html

. (2022) Constraint - amplify documentation. Accessed: 2025-01-
05. [Online]. Available: https://amplify.fixstars.com/en/docs/amplify/v0/
constraint.html

[9] M. J. Dinneen, “Maximum 3-sat as qubo,” 2016, lecture notes,

CompSci 750, Semester 2, University of Auckland. [Online]. Available:

https://canvas.auckland.ac.nz/courses/14782/files/574983/download

T. U. of British Columbia. (2024) Satlib - benchmark problems.

Accessed: 2024-10-15. [Online]. Available: https://www.cs.ubc.ca/

~hoos/SATLIB/benchm.html

S. Jain, “Solving the traveling salesman problem on the d-wave

quantum computer,” Frontiers in Physics, vol. 9, 2021. [Online].

Available: https://www.frontiersin.org/journals/physics/articles/10.3389/

fphy.2021.760783

E. Villar-Rodriguez, E. Osaba, and I. Oregi, “Analyzing the behaviour

of d’wave quantum annealer: fine-tuning parameterization and tests

with restrictive hamiltonian formulations,” 2022. [Online]. Available:
https://arxiv.org/abs/2207.00253

D-Wave. (2020) Programming the d-wave qpu: Parameters for

beginners. Accessedd: 2025-04-17. [Online]. Available: https://www.

dwavequantum.com/media/qvbjrzgg/guide-2.pdf

[4

=

[7

—

[8]

[10]

[11]

[12]

[13]



