
Learning a Visual Task by Genetic Programming

Prabhas Chongstitvatana and Jumpol Polvichai
Department of computer engineering

Chulalongkorn University
Bangkok 10330, Thailand
fengpjs@chulkn.car.chula.ac.th

Abstract
This work describes a hand-eye system that can learn

from its experience. The task is to visually guide the hand
to reach a target while avoiding obstacles. The motion
planning problem is solved by genetic programming. The
system learns the forward kinematics by building a look-
up table and uses it in the simulation run to generate
robot programs that perform the task. The genetically
created programs are validated by the actual runs on the
robot.

1: Introduction

One aim to achieve general intelligence in the field of
artificial intelligence is to have a system that can learn. A
learning system can extract information from an unknown
environment, especially when an accurate model of
environment is not available. Agents having a continuous
existence can also learn from experience, they should be
able to learn how to solve new problems when the
circumstances arise. One learning technique is the genetic
programming method. In genetic programming paradigm,
genetically breed populations of computer programs are
used to solve problems. The individuals in the population
are compositions of functions and terminals. An
evolutionary process is driven by the measure of fitness of
each individual computer program in handling the
problem environment.

Our goal is to develop an efficient learning system
that is capable of performing the task in the real world. A
visually-guide robotic task is a good domain for
experimentation in learning. The perceptual task in the
world has the characteristic that the relevant laws and
interrelationships between a robot and the environment are
highly reliable. We adopt the interpretation that a learning
system is a system that is capable of making changes to
itself over time with the goal of improving its performance

on its task. We measure the performance of the system
under the real world environment. Our system performs
the learning task using the real robot and visual feedback
data from the real world.

2: Previous work

Visual feedback has been used to guide robots in
hand-eye coordination tasks since the early days of
robotics research. Jones [1] demonstrated the use of visual
tracking methods to perform block stacking and loose
insertion. To perform tasks in a complex world, the
motion planning part in a robotic system relies on the
geometrical model of the environment and the robot. The
system such as HANDEY [2] performs hand-eye
coordination tasks in a structured environment in which an
accurate model of the world is available. The system plans
collision free paths in a configuration space. Because it
relies on accurate models of the world the system is unable
to cope with uncertainty. The environment has to be
engineered to reduce the uncertainty to an acceptable
level. The work to extend this paradigm to cope with
uncertainty is still an active research area [3].

Another approach is to have the robot system learn
the task by itself. In [4], MURPHY, a robot motion
planning system is presented. The system approaches the
problem of visually-guided reaching using connectionist
method. MURPHY uses neural-like units to learn the
association between visual perception and robot arm
motions in which it learns both forward kinematics and
inverse differential kinematics. To plan a collision free
path , the system uses a heuristic to search the sequences
of arm configurations which move the hand to the target.
MURPHY moves the arm randomly and uses a gradient
descent method to move closer to the target, backtracking
if it fails and tries other paths if a current path is blocked
by obstacles. Our system attempts to learn the similar
task. The system learns the forward kinematics by

building a look-up table and solves motion planning part
by using the genetic programming method.

Genetic programming (GP) is a machine learning
technique derives from genetic algorithms (GA). Genetic
algorithms, originated by Holland [5], are general-purpose
search algorithm that use principles inspired by population
genetics to evolve solutions to problems. GP [6] has
become increasingly popular in recent years as a method
for solving complex search problems in a large number of
disciplines. Koza and Rice [7] applied genetic
programming to generate robot programs that perform a
box pushing task : a mobile robot searching for a box and
pushes it to the wall. The applications of GA and GP to
robot manipulator problems are numerous; Khoogar,
Parker and Goldberg [8] solved inverse kinematics of
redundant robots, Chan and Zalzala [9] planned
minimum-time trajectories. Although most of the work in
GA and GP use the simulated world to perform learning,
the problem of transferring the result from the simulated
world to the real world has been recognised [10], [11],
[12]. This problem is especially interesting for us.

3: Learning the visual task

3.1: Problem statement

We define our visual task as follows: a robot arm
reaches for a target while avoiding obstacles. The robot
system consisted of a 3 degrees of freedom robot arm,
which has all joints rotate on one plane, and a vision
system (fig. 1). The target is specified as an object visible
in the view of the vision system. Note that the task is
specified in terms of visual objects and not by referring to
any world coordinate system. The vision system can locate
the target, the obstacles and the position of the arm, i.e.
the locations of the shoulder, the elbow, the wrist and the
fingertip. The vision system reports the locations in the
image coordinate.

Fig. 1. A typical scene of the task

3.2: Learning process

The robot system described above is controlled by a
robot program. The robot program is constructed from a
list of commands with necessary functions to move the
joints and to perceive the environment. The detailed
description of a robot program is in the section 5. The
learning process starts from a large number of randomly
generated robot programs (400 programs in this
experiment). Each program is evaluated by running it in
the environment. Upon termination, the system observes
the result how well the robot performs the task. From
these results, the learning process tries to improve robot
programs by altering their structures and commands, then
the cycle of evaluating and improving is repeated until a
solution is found. The solution is the robot program that
can control the arm to reach the target while avoiding
obstacles. The genetic programming method is used as the
learning process in this paper and is discussed in details in
the section 5. In the next section, we describe the design
of the experiment and the robot system.

4: Experiments

We select three problems with different degree of
difficulty for the robot system to learn (fig. 2). The first
problem has one obstacle in front of the target. The robot
has to fold the arm to move around the obstacle. The
second problem puts more constraint on the possible
trajectory of the arm by having two obstacles. The robot
has to move through the opening to reach the target. The
third problem creates a situation where a local minimum
exists. There are two openings to the target but only the
left one enables the robot to reach the target. If the robot
enters the wrong opening, the arm will be wedged against
the obstacles without reaching the target. Next we describe
the set up of the robot system to run the experiment.

A vision system is used to identify the target, the
obstacles and the robot arm. To simplify the vision
algorithms, the robot arm has a distinctive color and two
different thresholds are used to distinguish the robot arm
from the obstacles and the target. A simple heuristic is
used to locate three joints of the robot arm. The shoulder
joint is the one near the bottom left of the image. The
fingertip has a triangular shape. The wrist is the joint that
is near to the fingertip and, lastly, the elbow is the
remainder joint. The target, the obstacles and the arm are
represented directly in the image therefore checking the
collision and the out of bound condition are done with the
actual image data. This is, in a way, similar to the
analogical representation paradigm.

a) Problem 1

b) Problem 2

c) Problem 3

Fig. 2. Three problems to learn

To evaluate a large number of robot programs
effectively, the real robot cannot be used as it takes an
inordinate amount of time. Consider that we evaluate
4000 programs for each problem and run the experiment
20 times, a typical robot program takes about 100 sec. to
run to completion on the real robot, so it will take about
2000 hours for each problem. Therefore, a simulator is
used for this purpose. A robot program is evaluated by
running it under simulated environment thus avoiding the
speed limit of the real robot. The image of the
environment (the arm, the target and the obstacles) that is
used in the simulation run, is taken from the actual scene

via the camera. The danger of using the simulator is that it
might not correspond to the real run due to many factors.
We discuss this problem in the discussion section.

One important element in the simulator is the forward
kinematics model of the robot arm, i.e. the function that
maps the robot joint angles to the position of links. We
prefer to avoid using the mathematical model and instead
use the look-up table that is constructed from the real data
from the vision system. To construct the table of forward
kinematics, the arm is moved, with a discrete incremental
of joint angles, for every combination of joint angles, and
the positions of the links are recorded by the vision system
(the robot arm is controlled by joint motion commands
such as shoulder moves +5 degrees). The position data
are average over a number of repeated runs to smooth out
the noise.

5: Genetic programming process

We describe the elements of a robot program and then
the genetic programming process. The robot program has
a tree structure, similar to the S-expression in LISP. The
set of terminals includes six primitive servo motor
functions and the system checking functions. Thus, the
terminal set for this problem is { s+, s-, e+, e-,

w+, w-, hit?, see?, inc?, dec?, out? }. A set
of functions is {if-and, if-or, if-not }. Fig. 3
shows an example of a robot program.

Fig. 3. An example of a robot program

The function s+ (shoulder) drives the shoulder motor
clockwise 1 step (5 degrees) and s- drives the shoulder
motor anticlockwise 1 step. The similar meaning applies
for e+, e- (elbow) and w+, w- (wrist). All of these
functions always return true. The function hit? checks
whether each link of the robot arm hits the obstacle. To
discourage the action that causes repeated collisions a
memory is created using PAIN-variable. When the arm
hits an obstacle, 5 is added to the PAIN-variable,
otherwise, 1 is subtracted from the PAIN-variable (lower
limit at zero). The function hit? returns true if the PAIN-
variable is not equal to zero, . The function see? checks
whether the path from the fingertip to the goal has any
obstacle. The function inc? checks whether the distance
between the fingertip and the goal is increasing. The
function dec? checks the opposite. The function out?

checks if each joint of the robot arm moves out of bound.
The bound is defined to prevent the arm from going out of
the view of the camera. The function if-and is a four-
argument comparative branching operator that executes its
third argument if its first argument and its second
argument are true, or otherwise, executes the fourth
argument. The function if-or is a four-argument operator
that executes its third argument if its first argument or its
second argument is true, or otherwise, executes the fourth
argument. The function if-not is a three-argument
operator that executes its second argument if the negation
of its first argument is true, or otherwise, executes the
third argument. We describe the genetic programming
process next.

There are five stages in one cycle of the genetic
programming process in the experiment.

Stage 1 : Creation of an initial population
The first step is to generate an initial population of

computer program that randomly mixes the functions and
the terminals. We use the size of population 400
programs. Each individual has at least 40 symbols. We
check that there is no duplication in the initial population.

Stage 2 : Verification of each computer program
In each generation, iteratively execute each program

until one of the termination criteria has been qualified.
The termination criteria are described as follows:
• Maximum execution time : not over 100 execution time.

The execution time is defined as the number of time that
the program tree is evaluated.

• Dead condition : There are two conditions :
1. The arm is in the same final position over 10

execution time, i.e. the arm gets stuck.
2. The value of PAIN-variable is over 500 units.

• Successful : the arm has reached the target.
Stage 3 : Evaluation of each program
The fitness of individual program is evaluated with the

following function :

2000 × initialDistance / finalDistance +
100 × sumDistance / finalDistance +
1000 × notSee + 4000 × die

where initialDistance is the initial distance from the
fingertip to the target, finalDistance is the distance from
the fingertip to the target after the program execution is
terminated, sumDistance is the total of distance that the
fingertip travelled, notSee is a boolean variable that
indicate the path from the fingertip to the target is blocked
by an obstacle, and die is a boolean variable that indicate
the dead condition.

The fitness function is a cost function, the lower number
means the better performance of the program. This
function indicates that : 1) getting close to the target lower

the cost 2) move economically has the lower cost 3)
moving to an opening to the target has the lower cost and
4) penalise the badly performed program (die) by giving it
a high cost.

Stage 4 : Selection of the good programs
Based on the individual fitness of each program, the

best 10% (40 programs) of population are selected to
generate the population for the next generation.

Stage 5 : Genetic manipulation
The manipulation process uses genetic operators to

create a new population of individual programs. There are
four operations : reproduction, crossover, addition and
extension. The reproduction is the operation that copies
the best 40 programs into the next generation. The
crossover is the operation that creates the new programs
by recombining randomly chosen parts of two of the
existing best 40 programs (the pair is chosen with
replacement and enforces that they must be the different
individuals). The addition operation generates an
additional node (randomly generated) from the root node
(fig. 4). The extension operations does likewise but from a
terminal node. The addition and extension operations
create the new programs that are longer than the originals
and bring in the new part to the program population. The
number of programs generated from crossover is 160,
from addition 100 and from extension 100.

a) addition operation

b) extension operation

Fig. 4. The addition and extension operations

The number of generation is 10 for each experiment.
Because of the stochastic nature of the method we need a
number of runs to infer the result. We ran the genetic

programming process for the problem 1 and 2, 20 times.
The problem 3 is more difficult to find solutions and we
ran the experiment 40 times. We discuss the results in the
next section.

6: Results and discussion

The results are presented in fig. 5, using the
performance curve as defined by Koza in [13]. P(M,i) is
the probability of a single run yielding a solution by i
generations (each consisting of M individuals). This is
estimated by doing a number of runs. The number of runs
required to produce a successful individual with
probability z is defined in terms of P(M,i), R(z) = ceiling(
log(1-z)/ log(1-P(M,i))). The number of individuals that
must be processed to find a successful individual with
probability z is I(M,i,z) = R(z).M.i. The minimum of the
I(M,i,z) is a measure of the difficulty of the problem,
called Effort (E). We use the confidence factor z = 99%.

The results show that the robot system can learn to
solve all problems satisfactorily. The problem 2 is easiest
to solve which indicates that the environment actually help
to guide the arm to move in the right direction. The
problem 3 is hardest as expected, a lot of individual got
stuck at local minima. We are interested in the
improvement of the fitness of the population, in other
words, the learning that took place during the genetic
programming process. We plot the fitness value of a
typical run (problem 1, run number 6, the first solution
was found in the 6th generation) in fig. 6. There are two
curves, one is the fitness of the best individual and another
is the average fitness. The average fitness is calculated
from the best 40 programs of that generation. One can
notice that, although the initial population is randomly
generated, some program perform better than the others
and the genetic programming process improves the fitness
of the population, eventually yields a solution. We also
interested in the quality of the solution. In the fitness
function, we give weight for the good quality solution,
defined as the one that has a shorter distance trajectory
(sumDistance / initialDistance). We plot the two
trajectories in fig. 7, one is the trajectory of the best
individual in the generation that the first solution is found,
the other one is the trajectory of the best individual of the
final (10th) generation from the same run (problem 1, run
number 6). There is an improvement in the quality of the
solution. Finally, we observe the correlation between the
size of the solution, measured by the number symbols in
the program, and the difficulty of the problem (E) in table
1. The size is calculated from the average size of the best
40 programs of the final generation (we select only the run
that yield solutions). To give an idea about the time taken
to run GP, we present some observation, one run (M =
400, generation = 10) takes about 20 sec. on the machine

we used, a SPARCstation 20 with 4 CPUs of 50 MHz
SuperSPARC, 192 Mbytes memory, during a normal load
period (day time, 10 users on the machine).

a) Problem 1

b) Problem 2

c) Problem 3

Fig. 5. The performance curves of the three problems

Fig. 6. The learning curve of the problem 1, run
number 6

Fig. 7. The improvement of trajectory (from the
problem 1, run number 6)

Table 1. The correlation between size of solution and
the effort

p. 1 p. 2 p. 3
average size (symbols) 42 36 66
effort (no. of individual) 16000 2800 72000

To validate solutions, we select 20 programs from the
best individual of each run of problem 1 and problem 2, 5
programs from the problem 3, and run them with the real
robot. The result is presented in table 2. This result
compares well with the result from [15] which used the
same equipment. The reason for failure is due to the
uncertainty in the actual runs. Although the result is
satisfactory, it is not robust. The initial condition must be

exactly the same as in the simulation, even a small
deviation can lead to failure to reach the target. This has
been observed in [10] that a major difficulty in using the
learning techniques that based on simulation lies in the
transferring of programs evolved in simulated
environments to actual robots. To use the robot in the real
world, Dorigo’s work [11] suggests that the learning
process should be taken place in the actual run. Reynolds
[12] tries to simulate the uncertainty by injection noise
into the simulation by has no success in getting solutions.
Ito, Iba and Kimura [14] study the robustness of robot
programs generated by GP. Their chosen task is a box
moving problem. A mobile robot moves a box to the
target location. The robustness is studied in two aspects :
1) the initial position of robot is random 2) the noise is
injected into sensors and actuators. Under the simulation,
their results show that the generated robot programs are
robust. In our work, we have tried as much as possible to
emulate the real world in our simulation by using the
actual visual data and the forward kinematics from the real
data.

Table 2. The number of generated programs that
successfully run with the real robot

[15] this paper
problem 1 80% 90%
problem 2 70% 90%
problem 3 83% 80%

The work in [15] as well as our earlier work [16] use
the forward kinematics model in the simulator. We found
that the run on the actual robot is not the same as the run
in the simulation. This is caused by the discrepancy in
position predicted by the kinematics model and the actual
position of the robot arm. This error comes from several
sources : the non-linearity of the camera field of view, the
error in the image processing, the error in servo motors.
We ran a test to see these cumulative effects. The result is
presented in fig. 8. The graph shows the length of the last
link of the arm (the finger) when the robot is in various
configurations compare to the average length (averaging
the length in all configurations). The size of the icon
represents the difference (scale by 2). One can observe
that, from the view of the vision system, the top-left corner
appears compressed and the middle region appears
enlarged. The distortion is highly non-linear. The result
of this test convinced us that it is unlikely that we can find
a mathematical model that can predict the position of the
links from the joint angles with adequate accuracy.
Therefore we adopted the look-up table approach.

Fig. 8. The cumulative error effect

7: Conclusion and future work

This work shows that the genetic programming
method can be used to solve the motion planning problem
in a visually-guided reaching task. The system improves
its performance by learning from its experience. The
vision system is used to map the environment directly into
an internal representation. This representation is use
successfully as a simulated environment for genetic
programming. The result from the experiment indicates
that the solution is not yet robust when applies to the real
robot. More work can be done in this area. One approach
that we are pursuing is the use the real robot to learn in the
real world. To overcome the limitation of the speed of the
robot arm, we are investigating the on-line algorithm that
dynamically build the forward kinematics and the map of
the environment at the same time as the learning is
progressing.

Acknowledgements

We would like to thank the department of computer
science, Michigan State University, for providing the
environment and the computational resource to carry out
this work and the department of computer engineering,
Chulalongkorn University, for permitting an extended visit
of the first author to Michigan State University. The
second author is supported by the grant from the National
Science and Technology Development Agency of
Thailand. We also thank the reviewers whose comments
had helped us to improve the clarity of this paper.

References

[1] V. Jones, “Tracking: An Approach to Dynamic Vision and
Hand-Eye Coordination,” Ph.D thesis. University of
Illinois, Urbana Champaign, 1974.

[2] T. Lozano-Perez, J. L. Jones, E. Mazer and P. A.
O'Donnell, HANDEY A Robot Task Planner. MIT Press,
1992.

[3] S. A. Hutchinson and A. C. Kak, “Spar: A planner that
satisfies geometric goals in uncertain environments”, AI
Magazine, vol. 11, no. 1, 1990, pp. 30-61.

[4] B. W. Mel, Connectionist Robot Motion Planning: A
Neurally-Inspired Approach to Visually-Guided Reaching.
Academic Press, 1990.

[5] J. H. Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI: University of Michigan Press,
1975.

[6] J. R. Koza, Genetic Programming. MIT Press, 1992.
[7] J. R. Koza and J. P. Rice, “Automatic Programming of

Robots using Genetic Programming,” in AAAI-92 Proc.
Tenth National Conf. on Artificial Intelligence, pp. 194-
201.

[8] A. R. Khoogar, J. K. Parker and D. E. Goldberg, “Inverse
Kinematics of Redundant Robots using Genetic
Algorithms,” in Proc. IEEE Int. Conf. on Robotics and
Automation, vol. 1, 1989, pp. 271-276.

[9] K. K. Chan and A. M.S. Zalzala, “Genetic-Based
Minimum-Time Trajectory Planning of Articulated
Manipulations with Torque Constraints,” IEE Colloquium
on Genetic Algorithms for Control Systems Engineering,
Digest No. 1993/130, 1993, pp. 4/1-3.

[10] R. A. Brooks, “Artificial Life to actual robots”, in Proc. of
the first European conf. on Artificial Life, MIT Press,
1991, pp.3-10.

[11] C. W. Reynolds, “Evolution of obstacles avoidance
behavior: using noise to promote robust solutions”, in K.
Kinnear, Ed., Advances in genetic programming. MIT
Press, 1994.

[12] M. Dorigo, “ALECSYS and the AutonoMouse: Learning
to control a real robot by distributed classifier systems”,
Machine learning, vol. 19, 1995, pp.209-240.

[13] J. R. Koza, Genetic Programming II. MIT Press, 1994,
pp. 99-105.

[14] T. Ito, H. Iba and M. Kimura, “Robustness of robot
programs generated by Genetic Programming”, In Genetic
Programming 96, MIT Press, 1996.

[15] J. Polvichai, “Robot Learning by Genetic Programming”,
M.Eng thesis, the department of computer engineering,
Chulalongkorn University, Thailand, 1996 (in Thai).

[16] J. Polvichai and P. Chongstitvatana, "Visually-Guided
Reaching by Genetic Programming", in Proc. of ACCV'95
the second Asian Conf. on Computer Vision, vol. 3, 1995,
pp. 329-333.

