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Abstract
This work describes an optimization 

technique which is applied to post-process 
byte-code  instructions.  By extending a virtual 
machine of an instruction set, some sequence of 
byte-codes can be represented by a shorter 
code which can be executed faster.  The 
experimental result showed that this technique 
yielded 25% - 120% speedup on Stanford 
integer benchmark suite.

1. Motivation
This work describes an optimization 

technique which is applied to post-process 
byte-code  instructions.  By extending a virtual 
machine of an instruction set, some sequence of 
byte-codes can be represented by a shorter 
code which can be executed faster.   It is 
significant that this is a post-processing 
method, it is aimed to be applied to the already 
compiled program.  There is no access to the 
source program.  There are various uses of this 
technique, for example, to speed up the 
execution of JAVA applet [8,9] (which is byte-
coded) that has been loaded into a browser, one 
has no access to the source program in such 
case.

Motivation of this work came from an 
observation that a virtual machine for byte-code 
instructions aimed for portability and 
architectural  neutral  mostly concerns 
orthogonality of the instruction set. Therefore it 
is possible to specialise some sequence of codes 
to gain speed.

Optimized compilation of conventional 
languages to stack-based virtual machine has  

received relatively little attention.  Previous 
work has focused on using the stack efficiently 
for expression evaluation [1,2] and performing 
peephole optimizations [3,4].  Koopman [6] 
has done a work on optimizing stack usage at 
the basic block level and the global level.  He 
performed intra-block stack scheduling which 
reported 91% - 100% elimination of redundant 
local variable accesses.

This work differs significantly from 
previous work in the premise that the technique 
reported is applied to byte-code, not at the 
source code level.  In this regard, this work can 
be described as a bottom-up approach for code 
optimization as opposed to top-down approach 
in the optimization is applied to source code 
compilation.

2. Methodology
Main idea for our bottom-up approach 

is to reconstruct basic blocks from the byte-
codes which are compiled from benchmark 
programs (static analysis).  We perform the 
analysis of the execution of these byte-codes 
and recognise the most frequently used 
sequences  (grouping as basic blocks).  From 
this dynamic analysis,  the virtual machine is 
extended with specialised byte-codes to 
perform the most frequently used sequences.   
We select  R1 concurrent system [7] as our 
base system for experimentation. R1 system 
composed of a compiler which compile R1 
source language into byte-codes which will be 
executed by R1 run-time interpreter.  The 
reason for choosing this system is simply that it 
is our own work therefore we have access to all 
details for its implementation. (A brief 



description of R1 system is given in the next 
section).

We compiled seven integer benchmark 
programs from the Stanford Benchmark Suite 
[5].  These programs are : bubble sort, tower of 
Hanoi, matrix multiplication, permutation, 
quick sort, 8 queens problem and generate 
prime numbers by sieve method.  Although 
significantly larger programs must be used to 
make conclusive statements about performance, 
these programs are sufficiently complex and 
varied at the basic block level to illustrate the 
effectiveness of our method.

3. R1 system
R1 is a simple language which provides 

concurrency control, protection of shared 
resources, interprocess communication and 
real-time facilities.   The aim of this language is 
for it to be a small, simple, and practical 
language for programming an embedded 
application.  The syntax of R1 is intentionally 
made to be "like" C language.  So that the user 
who is familiar with C language can read and 
write R1 easily.

statements examples
assignment a = b + 1 ;
if-statement if ( expr ) stmt-true [ else stmt-false ] ;
while-statement while ( expr ) stmt ;
return-statement return ( expr ) ;
function-call function-name ( actual parameters ) ;
process-call process-name ( actual parameters ) ;

Figure 1  Syntax of R1 language

A program is composed of declarations 
and a main.  There are four types of declaration 
: global variable declaration, semaphore 
declaration, function declaration, and process 
declaration.  There are several types of 
statements : assignment statement, flow-control 
if  and while, and some additional function for 
concurrent processing.  Operators are basic 
operators such as + - * / etc. including 
addressing operators '*' (dereference) and '&' 
(address).   The scalar data is basically a word 
(which can be 16 bits or 32 bits depended on 
the architecture of the target hardware) with no 
type.  Only one type of structured data is 

available, it is a one dimensional array of 
words.  Global variables must be declared.  
Local variables are automatically declared and 
they are lexical-scoped.  Local variables appear 
in the formal parameter list and can not be an 
array variable.

3.1 Operators

( ) do an expression inside ( ) first
- ! * & unary op  - minus, ! logic not, *

deref, & address
* / && multiply, divide, logical and
+ - || add, subtract, logical or
< <= == != >= > relational operators

Figure 2  Operators in R1 language

The type of operation is : word × word →
word. Therefore the overflow and underflow 
can occur.  All arithmetic operators treat a 
value as a signed integer.

3.2 Example of a R1 program
sort()
{
   i = 10;
   while(i) {
     j = 1;
     while(j < i) {
       if ( data[j] < data[j+1])

swap(j,j+1);
       j = j+1;
     }
     i = i-1;
   }
}

For the purpose of this paper we run all 
programs as a single process and disable 
process switching.   From now on we will 
ignore all the discussion concerning concurring 
processing and real-time aspect of the system.

3.3 R1 byte-code
The byte-code set of R1 is quite 

minimal.  It has been designed to make it easy 
to implement the interpreter for various 
platforms.  Figure 3 shows the semantics of 
byte-codes which we will refer to in the rest of 
the paper.



Notation : CS code segment, DS data segment, 
SS stack segment.  Aop arithmetic operators, 
Lop logical operators, Uop unary operators.

Byte-code operational semantics
[Lit #n ] push( n )
[Lvalg #ref ]  /1/ push( ref )
[Lval #i ]  /1/ push( Fp-i )
[Rvalg #ref ]  /1/ push( DS[ref] )
[Rval #i ]  /1/ push( SS[Fp-i] )
[Fetch] push( M[ pop ] )
[Set] M[ pop1 ] = pop2
[Index]  /2/ push( base_ads + index )
[Jmp #ads ] Ip = ads
[Jz #ads ]  /3/ if pop = 0 then Ip = ads
[Call #ads ]  /4/ push( Ip ), Ip = ads
[Func #np #nl ] /5/ save state, new stack frame, pass

parameters
[Proc #pid #np #nl ] new process descriptor, initialise

state, awake
[Ret0] remove stack frame, restore state
[Ret1] remove stack frame, restore state,

return a value
[Stop] terminate the process
[Aop] push ( pop1 Aop pop2 )
[Lop] push ( pop1 Lop pop2 )
[Uop] push ( Uop pop )

Figure 3  R1 byte-code semantics

/1/ variable access
/2/ effective address calculation for array var.
/3/ if top of stack = 0 jump
/4/ call to subroutine
/5/ create new stack frame, invoke a function

4. Reconstruction of basic blocks
To identify basic blocks, we looked for 

byte-codes that can be used as "stop-word" 
such as the transfer of control : Jmp, Jz, Call, 
Ret. For example :

while ( i < n ) { body } =>
$1 [ rval i, rval n, LE ] Jz $2, [
body ] Jmp $1, $2

We can identify the basic block  [ rval i, 
rval n, LE ] and [ body ] from the byte-code Jz 
and Jmp. To identify an individual statement, 
the "stop-word" are : Fetch, Set, Index.  For 
example :

a = b + c; => lval a, rval b, rval
c, plus, Set.
b = c[];   => lval b, lvalg c, lit
2, index, Fetch, Set.

We tagged these basic blocks and 
statements and counted the frequency of their 
use during  the run.  After the analysis of the 
execution of byte-codes of the benchmark 
programs, we  identified the most frequently 
used sequences as shown in Table 1.

Table 1  The most frequently used sequences
byte-code sequence correspond to

lval a, rval a, lit 1, plus, set. a = a + 1;
lval b, lvalg c, ... , index, ... b = c[..] ...
lvalg c, ... , index, ... c[..] = ...
lval a, lit 0, set a = 0;
lvalg c, ..., index, lit 0, set c[..] = 0;
lval a, rval a, exp, plus, set a = a + exp;
lvalg c,..,index,lvalg c,..,index,
fetch,..,plus set

c[n] = c[n] + ...

rval a, rval b, EQ, Jz if ( a == b )
rval a, lit 0, EQ, Jz if ( a == 0 )
lvalg c, ..., index, rval b, LE, Jz if ( c[..] <= b )
rval a, rval b, LT, Jz while ( a < b )

We classified these sequences into 4
classes :
1. increment, decrement and combined

operators (such as "+=" in C language).
2. array access
3. assignment
4. flow control

We defined an extension of R1 virtual
machine to represent these sequences by
special byte-codes :

Table 2  The extended byte-code
extended byte-code  for the sequence
inc v (dec v) lval v, rval v, lit 1, plus, set.
addset a lval a, rval a, exp, plus, set.
set-var a lval a, ... set.
set-0 a lval a, lit 0, set
EQjz a b $1 rval a, rval b, EQ, jz $1 
Jnz a $1 rval a, lit 0, EQ, jz $1
LEjz a b $1 rval a, rval b, LE, jz $1
LTjz a b $1 rval a, rval b, LT, jz $1

We notice that some combination of 
variable accesses are more frequent than other 
so we specialised "addressing mode" of 
extended byte-codes further.  In set , a variable 
can be either local or global therefore we 
defined :

set-local v,  set-global v.



The combined operator "+=" of an array
variable  :

c[m] = c[m] + exp => c[m] += exp

correspond to :
lvalg c, rval m, index, lvalg c,
rval m, index Fetch plus set. =>
exp, rval m, addset2 c

Also various form of "while a < b" where a, b 
can be : local, global, array. We selected two 
forms :

LTjz2 local local $1
LTjz3 local global $1

and one form of :
LEjz2 array local $1

for the  statement  if( c[..] < b )  .  Totally there 
are 21 additional instructions for the extended 
virtual machine.

5. Experimental results
The original byte-code programs were 

transformed using the extended byte-codes with 
all the offset of the Jmps and Calls readjusted 
properly.  We analysed the execution of the 
transformed programs to observe the effect of 
each category of the optimization method :
1 apply only extended array access byte-code
2 apply only combined operators (increment,

decrement, addset) byte-code
3 apply only extended assignment byte-code
4 apply only extended flow control byte-code
5 apply all the above methods

We reported the results of the speedup, 
the reduction in the number of stack operations 
and the  reduction in size of the byte-code 
programs.  The result of using all extended 
byte-code is that the speedup varies from 25% 
(hanoi) to 120% (sieve).  The reason for low 
speedup in hanoi is  because the hanoi program 
mainly is recursion which is not affected by our 
optimization.  Combined operators byte-code is 
the most effective method which yields the 
result 20% - 65% speedup. This is not 
unexpected because all the loops contain 
increment or decrement of the loop counter 
which can be most effectively optimized by inc 
v, dec v extended byte-code.  Part of the 
speedup is contributed by the reduction in the 
number of stack operations (push and pop).  

The aggregate result is 20% - 80% (Fig. 5).  It 
is worth noting that the "shape" of the graph of 
Fig. 5 compared to the graph of Fig. 4 supports 
this reasoning.  In terms of the reduction in size 
of byte-code programs, the aggregate result is 
10% -34%.

6. Discussion
T h e  b o t t o m - u p  a p p r o a c h  t o  

optimization by using only post-processing of 
byte-codes has yield the result of 25% - 120% 
speedup.  The optimization technique 
recognises the sequence of byte-code in the 
basic blocks and statements.  By analysing the 
dynamic execution of benchmark programs the 
most frequently used sequence are identified 
and replaced by the specialised version of byte-
codes which are an extension of the original 
virtual machine.  The application of this 
technique to the popular byte-code system Java 
[8,9] might proved to be interesting.  Java aims 
to be  architectural neutral, platform 
independent and safe.  Its byte-code has been 
designed to be suitable for stack architecture 
hardware [10].  As opposed to another 
optimization technique, Just In Time 
compilation, which is platform dependent, the 
extended virtual machine is to a large degree 
platform independent.  The extended byte-code 
can be regarded as the "specialization" of the 
original virtual machine for the type and mode 
related operations such as the access to 
local/global variable, the access to scalar/array 
operand, the combined operations such as 
increment/decrement and some branching 
operations.
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Figure 4  Execution speedup
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