
Proc. of the 20th Conf. of Electrical Engineering, Bangkok, 1997

Post processing optimization of byte-code instructions by extension of its virtual
machine.

Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University,

Phaya Thai Road, Bangkok 10330, Thailand.
Phone (66-2) 218-3721, Fax (66-2) 215-3554, E-mail : fengpjs@chulkn.car.chula.ac.th

Abstract
This work describes an optimization

technique which is applied to post-process
byte-code instructions. By extending a virtual
machine of an instruction set, some sequence of
byte-codes can be represented by a shorter
code which can be executed faster. The
experimental result showed that this technique
yielded 25% - 120% speedup on Stanford
integer benchmark suite.

1. Motivation
This work describes an optimization

technique which is applied to post-process
byte-code instructions. By extending a virtual
machine of an instruction set, some sequence of
byte-codes can be represented by a shorter
code which can be executed faster. It is
significant that this is a post-processing
method, it is aimed to be applied to the already
compiled program. There is no access to the
source program. There are various uses of this
technique, for example, to speed up the
execution of JAVA applet [8,9] (which is byte-
coded) that has been loaded into a browser, one
has no access to the source program in such
case.

Motivation of this work came from an
observation that a virtual machine for byte-code
instructions aimed for portability and
architectural neutral mostly concerns
orthogonality of the instruction set. Therefore it
is possible to specialise some sequence of codes
to gain speed.

Optimized compilation of conventional
languages to stack-based virtual machine has

received relatively little attention. Previous
work has focused on using the stack efficiently
for expression evaluation [1,2] and performing
peephole optimizations [3,4]. Koopman [6]
has done a work on optimizing stack usage at
the basic block level and the global level. He
performed intra-block stack scheduling which
reported 91% - 100% elimination of redundant
local variable accesses.

This work differs significantly from
previous work in the premise that the technique
reported is applied to byte-code, not at the
source code level. In this regard, this work can
be described as a bottom-up approach for code
optimization as opposed to top-down approach
in the optimization is applied to source code
compilation.

2. Methodology
Main idea for our bottom-up approach

is to reconstruct basic blocks from the byte-
codes which are compiled from benchmark
programs (static analysis). We perform the
analysis of the execution of these byte-codes
and recognise the most frequently used
sequences (grouping as basic blocks). From
this dynamic analysis, the virtual machine is
extended with specialised byte-codes to
perform the most frequently used sequences.
We select R1 concurrent system [7] as our
base system for experimentation. R1 system
composed of a compiler which compile R1
source language into byte-codes which will be
executed by R1 run-time interpreter. The
reason for choosing this system is simply that it
is our own work therefore we have access to all
details for its implementation. (A brief

description of R1 system is given in the next
section).

We compiled seven integer benchmark
programs from the Stanford Benchmark Suite
[5]. These programs are : bubble sort, tower of
Hanoi, matrix multiplication, permutation,
quick sort, 8 queens problem and generate
prime numbers by sieve method. Although
significantly larger programs must be used to
make conclusive statements about performance,
these programs are sufficiently complex and
varied at the basic block level to illustrate the
effectiveness of our method.

3. R1 system
R1 is a simple language which provides

concurrency control, protection of shared
resources, interprocess communication and
real-time facilities. The aim of this language is
for it to be a small, simple, and practical
language for programming an embedded
application. The syntax of R1 is intentionally
made to be "like" C language. So that the user
who is familiar with C language can read and
write R1 easily.

statements examples
assignment a = b + 1 ;
if-statement if (expr) stmt-true [else stmt-false] ;
while-statement while (expr) stmt ;
return-statement return (expr) ;
function-call function-name (actual parameters) ;
process-call process-name (actual parameters) ;

Figure 1 Syntax of R1 language

A program is composed of declarations
and a main. There are four types of declaration
: global variable declaration, semaphore
declaration, function declaration, and process
declaration. There are several types of
statements : assignment statement, flow-control
if and while, and some additional function for
concurrent processing. Operators are basic
operators such as + - * / etc. including
addressing operators '*' (dereference) and '&'
(address). The scalar data is basically a word
(which can be 16 bits or 32 bits depended on
the architecture of the target hardware) with no
type. Only one type of structured data is

available, it is a one dimensional array of
words. Global variables must be declared.
Local variables are automatically declared and
they are lexical-scoped. Local variables appear
in the formal parameter list and can not be an
array variable.

3.1 Operators

() do an expression inside () first
- ! * & unary op - minus, ! logic not, *

deref, & address
* / && multiply, divide, logical and
+ - || add, subtract, logical or
< <= == != >= > relational operators

Figure 2 Operators in R1 language

The type of operation is : word × word →
word. Therefore the overflow and underflow
can occur. All arithmetic operators treat a
value as a signed integer.

3.2 Example of a R1 program
sort()
{
 i = 10;
 while(i) {
 j = 1;
 while(j < i) {
 if (data[j] < data[j+1])

swap(j,j+1);
 j = j+1;
 }
 i = i-1;
 }
}

For the purpose of this paper we run all
programs as a single process and disable
process switching. From now on we will
ignore all the discussion concerning concurring
processing and real-time aspect of the system.

3.3 R1 byte-code
The byte-code set of R1 is quite

minimal. It has been designed to make it easy
to implement the interpreter for various
platforms. Figure 3 shows the semantics of
byte-codes which we will refer to in the rest of
the paper.

Notation : CS code segment, DS data segment,
SS stack segment. Aop arithmetic operators,
Lop logical operators, Uop unary operators.

Byte-code operational semantics
[Lit #n] push(n)
[Lvalg #ref] /1/ push(ref)
[Lval #i] /1/ push(Fp-i)
[Rvalg #ref] /1/ push(DS[ref])
[Rval #i] /1/ push(SS[Fp-i])
[Fetch] push(M[pop])
[Set] M[pop1] = pop2
[Index] /2/ push(base_ads + index)
[Jmp #ads] Ip = ads
[Jz #ads] /3/ if pop = 0 then Ip = ads
[Call #ads] /4/ push(Ip), Ip = ads
[Func #np #nl] /5/ save state, new stack frame, pass

parameters
[Proc #pid #np #nl] new process descriptor, initialise

state, awake
[Ret0] remove stack frame, restore state
[Ret1] remove stack frame, restore state,

return a value
[Stop] terminate the process
[Aop] push (pop1 Aop pop2)
[Lop] push (pop1 Lop pop2)
[Uop] push (Uop pop)

Figure 3 R1 byte-code semantics

/1/ variable access
/2/ effective address calculation for array var.
/3/ if top of stack = 0 jump
/4/ call to subroutine
/5/ create new stack frame, invoke a function

4. Reconstruction of basic blocks
To identify basic blocks, we looked for

byte-codes that can be used as "stop-word"
such as the transfer of control : Jmp, Jz, Call,
Ret. For example :

while (i < n) { body } =>
$1 [rval i, rval n, LE] Jz $2, [
body] Jmp $1, $2

We can identify the basic block [rval i,
rval n, LE] and [body] from the byte-code Jz
and Jmp. To identify an individual statement,
the "stop-word" are : Fetch, Set, Index. For
example :

a = b + c; => lval a, rval b, rval
c, plus, Set.
b = c[]; => lval b, lvalg c, lit
2, index, Fetch, Set.

We tagged these basic blocks and
statements and counted the frequency of their
use during the run. After the analysis of the
execution of byte-codes of the benchmark
programs, we identified the most frequently
used sequences as shown in Table 1.

Table 1 The most frequently used sequences
byte-code sequence correspond to

lval a, rval a, lit 1, plus, set. a = a + 1;
lval b, lvalg c, ... , index, ... b = c[..] ...
lvalg c, ... , index, ... c[..] = ...
lval a, lit 0, set a = 0;
lvalg c, ..., index, lit 0, set c[..] = 0;
lval a, rval a, exp, plus, set a = a + exp;
lvalg c,..,index,lvalg c,..,index,
fetch,..,plus set

c[n] = c[n] + ...

rval a, rval b, EQ, Jz if (a == b)
rval a, lit 0, EQ, Jz if (a == 0)
lvalg c, ..., index, rval b, LE, Jz if (c[..] <= b)
rval a, rval b, LT, Jz while (a < b)

We classified these sequences into 4
classes :
1. increment, decrement and combined

operators (such as "+=" in C language).
2. array access
3. assignment
4. flow control

We defined an extension of R1 virtual
machine to represent these sequences by
special byte-codes :

Table 2 The extended byte-code
extended byte-code for the sequence
inc v (dec v) lval v, rval v, lit 1, plus, set.
addset a lval a, rval a, exp, plus, set.
set-var a lval a, ... set.
set-0 a lval a, lit 0, set
EQjz a b $1 rval a, rval b, EQ, jz $1
Jnz a $1 rval a, lit 0, EQ, jz $1
LEjz a b $1 rval a, rval b, LE, jz $1
LTjz a b $1 rval a, rval b, LT, jz $1

We notice that some combination of
variable accesses are more frequent than other
so we specialised "addressing mode" of
extended byte-codes further. In set , a variable
can be either local or global therefore we
defined :

set-local v, set-global v.

The combined operator "+=" of an array
variable :

c[m] = c[m] + exp => c[m] += exp

correspond to :
lvalg c, rval m, index, lvalg c,
rval m, index Fetch plus set. =>
exp, rval m, addset2 c

Also various form of "while a < b" where a, b
can be : local, global, array. We selected two
forms :

LTjz2 local local $1
LTjz3 local global $1

and one form of :
LEjz2 array local $1

for the statement if(c[..] < b) . Totally there
are 21 additional instructions for the extended
virtual machine.

5. Experimental results
The original byte-code programs were

transformed using the extended byte-codes with
all the offset of the Jmps and Calls readjusted
properly. We analysed the execution of the
transformed programs to observe the effect of
each category of the optimization method :
1 apply only extended array access byte-code
2 apply only combined operators (increment,

decrement, addset) byte-code
3 apply only extended assignment byte-code
4 apply only extended flow control byte-code
5 apply all the above methods

We reported the results of the speedup,
the reduction in the number of stack operations
and the reduction in size of the byte-code
programs. The result of using all extended
byte-code is that the speedup varies from 25%
(hanoi) to 120% (sieve). The reason for low
speedup in hanoi is because the hanoi program
mainly is recursion which is not affected by our
optimization. Combined operators byte-code is
the most effective method which yields the
result 20% - 65% speedup. This is not
unexpected because all the loops contain
increment or decrement of the loop counter
which can be most effectively optimized by inc
v, dec v extended byte-code. Part of the
speedup is contributed by the reduction in the
number of stack operations (push and pop).

The aggregate result is 20% - 80% (Fig. 5). It
is worth noting that the "shape" of the graph of
Fig. 5 compared to the graph of Fig. 4 supports
this reasoning. In terms of the reduction in size
of byte-code programs, the aggregate result is
10% -34%.

6. Discussion
T h e b o t t o m - u p a p p r o a c h t o

optimization by using only post-processing of
byte-codes has yield the result of 25% - 120%
speedup. The optimization technique
recognises the sequence of byte-code in the
basic blocks and statements. By analysing the
dynamic execution of benchmark programs the
most frequently used sequence are identified
and replaced by the specialised version of byte-
codes which are an extension of the original
virtual machine. The application of this
technique to the popular byte-code system Java
[8,9] might proved to be interesting. Java aims
to be architectural neutral, platform
independent and safe. Its byte-code has been
designed to be suitable for stack architecture
hardware [10]. As opposed to another
optimization technique, Just In Time
compilation, which is platform dependent, the
extended virtual machine is to a large degree
platform independent. The extended byte-code
can be regarded as the "specialization" of the
original virtual machine for the type and mode
related operations such as the access to
local/global variable, the access to scalar/array
operand, the combined operations such as
increment/decrement and some branching
operations.

7. Acknowlegdement
This work is funded by the faculty of

engineering research center, Chulalongkorn
university.

References
[1] J. Bruno and T. Lassagne, "The generation

of optimal code for stack machines",
JACM, July 1975, 22(3):382-396.

[2] J. Couch and T. Hamm, "Semantic
structures for efficient code generation on a
stack machine", Computer, May 1977,
10(5):42-48.

[3] J. Hayes, "An interpreter and object code
optimizer for a 32 bit Forth chip", in 1986
FORML Conf. Proc. pp.211-221.

[4] T. Hand, "Performance of the Harris RTX-
2000 C compiler", in Proc. of the 1989
Rochester Forth Conf., pp.61-62.

[5] J. Hennessy and P. Nye, "Stanford Integer
Benchmarks", Stanford University.

[6] P. Koopman, "A preliminary exploration of
optimized stack code generation", in Proc.
of 1992 Rochester Forth Conf.

[7] P. Chongstitvatana, "A multi-tasking
environment for real-time control",
Progress report, Faculty of engineering
research center, Chulalongkorn university.
Also http://www.cp.eng.chula.ac.th/
faculty/pjw/ ISL.htm

[8] G. Tribble, "Java computing whitepapers",
1996, http: //www.sun.com/
javacomputing/ whpaper/

[9] J. Gosling and H. McGiltion, "Java
language environment whitepaper", 1996,
http://java.sun.com/doc/language-
environment.

[10] Picojava, 1996, http://java.sun.com.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

a r r a y s u m p l u s a s s i g n f l o w a l l

% S p e e d u p

b u b b l e

h a n o i

m a t m u l

p e r m

q s o r t

q u e e n

s i e v e

Figure 4 Execution speedup

0

20

40

60

80

array sumplus assign flow all

% Reduction

Figure 5 Reduction of the number of stack operations

0

5

10

15

20

25

35

array sumplus assign flow all

% Reduction

30

Figure 6 Reduction of the size of byte-code programs

