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Overview

From bits to qubits: Dirac notation, density matrices, measurement, Bloch sphere
Quantum circuits: basic single-qubit & two-qubit gates, multipartite quantum states
Entanglement: Bell states, Teleportation, Superdense coding

Quantum algorithms: Deutsch-Jozsa algorithm, Grover's algorithm
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« Superpositions allow to perform calculations on many
states at the same time.
» Quantum algorithms with exponential speed-up.
« But: Once we measure the superposition state, it collapse
to one of its states.
« We can use interference effects to keep the right answer.

Photo courtesy of : https://medium.com/gntm/gntm-entering-the-era-of-quantum-computing



Dirac notation & density matrices

* |t used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

> ket: |a) = (3‘1))

+
> bra: (b| = |b)* = (gg) = (b% bY)
> bra-ket: (bla) = aghy” + a;b;” = (al|b)* € C (inner product)

> ket-bra: |a){b| = (aobo Aobs > (2x2 matrix)

a1bo* a1b1*




Dirac notation & density matrices

The pure states are |0) = (é) 1) = (2) which are orthogonal: (0|1) = 1.0+ 0.1 =0
1 (1 0 ) (0 0
ol =Gaon=(, ,)wa=Qon=(; ;)
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All quantum states can be described by density matrices.

) = Pool0XO1 + Pog [0)(1] + P4ol 1(0] + Py [1)(1]

1
All quantum states are normalized, i.e., (y|y) =1, e.g., |y) = \/_15“0) 1 1) = <\/15>
V2

A density matrix is pure, if P = |[y){(y|, otherwise it is mixed.

> P= ((1) 8) = |0){0| = Pure, P = (8 (1)) = |1){1| —» Pure
> P=§((1) (1’) = 2(10)(0] + [1)(1]) > Mixed
> P=2(1 1) =200)01 - 101l = 110l + [1XLD) = 3 (10} = |1))(|0) — [1)) - Pure




Measurement

* We choose orthogonal base to describe and measure quantum states I~
(projective measurement).

* During a measurement onto the basis {|0), |1)}, the states will collapse into either
state |0) or |1), as those are the eigenstates of g, we call this a Z-measurement.

« Other different bases are:
> |+) = \/—E(IO) + (1)), |[-) = \/%(IO) — |1)), corresponding to the eigenstates of gy,

> |+i) = \/%(IO) + i|1)), |[-i) = \/%(IO) — i|1)), corresponding to the eigenstates of g,,.




Measurement

* Born rule: the probability that a state |y) collapses during a project measurement onto the basis
{Ix), |xi>}to the state |X) is given by P(X) = [(X[y)|2, X, P (X;) = 1

* Examples:

> |y) = \%(lO) + \/Ell)) is measured in the basis {|0), |1)}:

2
1

2

P(0) = <0|%(|0) + «/§|1>)2 - %(om) z! %(om

> |y) = %(lO) — 1)) is measured in the basis {|+), |-)}:

P(+) = [CH)I2 = | = (10) + 1) =(10) — 1] = 21(010) — (012) + (110) — (1[1))]? = 0 - expected as (+|-) = 0,
P(-) = [(—|-)I> =1



Bloch sphere

11)

« We can write any normalized pure state as |y) = cosg |0) + e'¥ sing |1), where ¢ € [0, 27]
describes the relative phase and 6 € [0, ] determines the probability to measure |0), |1):
P(|0)) = cos?Z, P(|1)) = sin?Z.

 All normalized pure states can be illustrated on the surface of a sphere with radius |r| = 1,
which we call the Bloch sphere.

sin @ cos @
« The coordinates of such a state are given by the Bloch vector: r = (sin@ sin <p>

cos 6




Bloch sphere

 Be careful: On the Bloch
g_xmgks: -105: 60, ¢ Mmma - 2 sphere, angles are twice as big
' as in Hilbert space:
> e.g., |0) & |1) are orthogonal, but

on the Bloch sphere their angle
is 180°.
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2 » For a general state, |y) =
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< ey 9‘%‘, ’-Li' = if’:() cos§|0)+---—>9istheang|eon
. 0 ., 6.
- |-y 9«.%' ({ig' Y r-‘:’:(ﬂ the Bloch sphere, Whl|eEIS the

actual angle in Hilbert space!

Photo courtesy of : IBM quantum summer school 2019



Quantum circuits: single qubit gates

« Circuit model: sequence of building block that carry out computations, called gates.

« Quantum gates are represented by unitary matrices, A unitary matrix is a square
matrix of complex numbers, whose inverse is equal to its conjugate transpose.

- Single qubit gates:

Hadamard _E_ % “ _11 }4— creates superposition
rotation around X-axis by 1 —— Pauli-X _z_ H (IJ «— bitflip
rotation around Y-axis by 1 — Pauli-Y _Z_ {? _U{l «— bit & phase flip
rotation around Z-axis by 1 —— Pauli-Z _Z_ [(1] _UJ «— phase flip
Phase _E _ B ﬂ «— used to change from Z to Y—basi@
/8 —E— Ll] 61'2/4}



Quantum circuits: single qubit gates
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- by = (0") = lox1| + [1x 0|

A O
- 527 | pug | = 10XO[~ 15|
( 1) Dal->: (loxOI-I‘IX'II)% (lo> - 07)

14 0\ 41 (1 d
brios (55) & ()& ()
?B-l., 0 -1 =P ‘ﬁ'("l ' >. :%[Io).;[,q))-_-h)
— Hodammd acuh * One qf \'ﬂ\z IhosJ fn(m'&iml aml’s ﬁr 7aamlhm c&ms‘J:
He & (37) = & (1oxof +loxat ¢ ol - uxca)
L Hloy =\,-';-:. (1 :’1)(;)% (:):h'; ) Hm-é(loxomamh{«rkol-Mml)-M>=é.(Jo>-M>)-l-)q

Photo courtesy of : IBM quantum summer school 2019



multiple-qubit gates
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Quantum circuits: two-qubit gates

« Classical example: XOR

X . . . .
” NXGBY irreversible: given the output, we cannot recover the input.

« But as quantum theory is unitary, we only consider unitary and therefore reversible gates
* Quantum example: CNOT gate

a L ad=a
b b=adb

Quantum circuits can perform all function
0 that can be calculated classically.

o | O
—
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Quantum circuits:
multipartite quantum states

* We use tensor product to describe multiple states:
a1b1
> la)®lb) = (2)® () = <a1b2>
2

» Example: system A is in state |1)4 and system B is in state |0)g = (2)@(3) = (

o RrOO

), states of this form

are called uncorrelated.

» Butthere are also bipartite states that cannot be written as |y),®|wv);,. These states are correlated

1
and sometimes even entangled (very strong correlation), e.g. |w)20§) = 12 (100)a5 + [11)aR) = \/ii <8>’
1

it so called Bell state, used for teleportation, cryptography, Bell tests, etc.




Entanglement

* |f a pure state|y)agon system A,B cannot be written as |y),®|d),, it is entangled.

* These are four so called Bell states that are maximally entangled and build on
orthonormal basis:

> [y00) = —=(100) + [11)),
> w‘”)= (101) + [10)),
> |y1%) = = (100) — |11)),
> |y'l) =f(|01>—|10>).




Entanglement

e Creation of Bell states:
ql[0] .
ql[1] é

1 1
|dod1),, Ho = —=(100) +110)) CNOToq —» —=(100) +[11)) = |¢®°),

V2 V2
1 1
dod1)y, Ho = 77 (01 + 1)) CNOTyy > —=(101) + |10)) = vo),
1 1
dod1),, Ho = o ) L0 CReg — —(ot) — 1) = v'?),
1 1
dod1),, Ho = —=(101) —[11)) CNOTy; » —=(|01) — [10)) = |y?).

2 2



Teleportation

* Goal:
> Alice want to send her (unknown) state |9); :== a|0); + B|1)s to Bob.

» She can only send him two classical bits though.
» They both share the maximally entangled state Iw)g)];)) = %(IOO)AB + |11)4p).
* Initial states of the total system:
| o5 @ ke -.J% [uloon)m = o(lo44>m +(6|400‘>5ﬂ3 +fil4ﬂ>su)
: fﬁ[ (lo0>, + WS>, )& (w07 + ’3|4>3)+ (10434 +1407,,) &( 1137310, )
+ (10095, ~1115¢, )@ (0%~ BI4>g) + (1005 - [4095,) ® [ U, —[H%)]
A T1¥"2;, 0165 + [ ¥ 500 (0 163,)

+ 11},40)&4 o (5} W)%) + |1-F44>5ﬁ ® (b‘xﬁi_ H")B)]

| Photo courtesy of : IBM quantum summer school 2019




Teleportation

e Protocol:

4. Alie {Jegﬁrm a meas.

Jbs>
on S& R cn the Bell fascs,

ﬂe.ce 0o
e ey
%ﬁL l 4)) .
B 3.8k aglles by gnd %o hs
1. Aﬁ'ce‘s measatemen+ -~ BaL‘_s s-ha[e 3_“ aﬂo&e‘s - B:b'.s ﬂnaﬂ :‘:&
1°°> | d>g 00 1 (9>
' T-l’m) G'K'¢>B 04 F! i~
I 1?‘07 6'.1 l#)g 4 0 5-3 "
[ 45 6307 >y 14 B, &% -
* Alice’s state collapsed during the measurement, so she doesn’t have the initial state |¢)s anymore.
This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state to Bob

when destroying her own. Photo courtesy of : IBM quantum summer school 2019



Teleportation

e Quantum circuit:
two classical bits

The qubit she is trying
to send Bob. N

Alice’'s qubit — Q1 —. l
w

Bob's qubit — Q>

do

00 — Do nothing
_01 - Apply X gate
10 > Apply Z gate
11 - Apply ZX gate

crz it

crx

0x1




Superdense coding

» Superdense coding is a procedure that allows someone to send two classical bits to
another party using just a single qubit of communication.

 Take advantage of quantum mechanics to more efficiently transmit classical information.

« Word “coding” means there are 2 essential processes, encoding and decoding:
» encoding: classical state — quantum state,

» decoding: quantum state — classical state.

Superdense Coding

Transmit one qubit Transmit two classical bits
using two classical bits. using one qubit.




Superdense coding

* Superdense coding
includes 4 steps:

0/1 0/1 '
i “ » preparation,
% Preparation Decoding message » encoding message,
» transmission,
[0] . transmission . 7
q m » decoding message.
Cl[i] mz
0 1
v \ 4




Superdense coding

 Step 1: preparation

» Start with 2 qubits in the
basis state |0).

» Applying Hadamard gate
to the first qubit and CNOT
gate (the first qubit as

(|00 + |11 control, another qubit as
target) accordingly.

qlO] .
qll] é




Superdense coding

 Step 1: preparation
> Give the first qubit to A and

the second qubit to B.
©)]  » Aand B travel far away.

/
% %q[ll

qlO]

qll1]




Superdense coding

Message Applied Gate State Result * Step 2: enCOding message
00 I _1§(|00> +11)) » A encodes the classical
"1 state in the qubit by
o X (10 +101) applying gate(s).
0/1 0/1 1 _

10 z L (00) 1))

o s
11 ZX v§(|10) 101))

Message Applied Gate

00

01 *
: z
ﬂ X




Superdense coding

* Step 3: transmission

> A sends the first qubit to B.

D¢
transmission




Superdense coding

* Step 4: decoding message

- » Applying CNOT gate (the
State Result AU gate
irst qubit as control,

9 00 100) another qubit as target)
and Hadamard gate to the
01 101) first qubit accordingly.
qlO] . 10 110)
q[1] é 11 111)




Superdense coding

Test the circuit which encodes message “11” and run on “ibm_oslo”.

9 * Step 4: decoding message
1.00 - 0953
» Finally, measure both
p 0.75 qubits.
q[0] -~ 2 050
: :
ql1] A 0.25 1
:0 :1 0.025
v v 0.00 0004 PR Q017
8§ S < ~




How the noise properties affect the result

ibmg_quito
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* There are often optimizations that the

transpiler can perform that reduce the
overall gate count, and thus total length
of the input circuits.

Qiskit library has a command “backend”
to show the chosen backend

information graphically such as “Error
Map”.

* We can select a good initial layout

considering connectivity and error
information that you can find from the
map to initial layout onto the physical
qubits with at least noise.




Assignment I: Basic Quantum Computing

* Required:

» Go to https://quantum-computing.ibm.com/

» Register IBMid account or sign in with Google, Github, LinkedIn, or Twitter.

» Download source codes at Assignment and upload files “Lab-1.ipynb”, “Lab-2.ipynb”
and “Lab-3.ipynb” into IBM Quantum Lab.

* Assignments:

» Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.
» Lab-2: Quantum circuits by IBM Quantum.
» Lab-3: Superdense coding.



https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

	Slide 1: Introduction to Quantum Computing
	Slide 2: Overview
	Slide 3: From bits to qubits
	Slide 4: Dirac notation & density matrices
	Slide 5: Dirac notation & density matrices
	Slide 6: Measurement
	Slide 7: Measurement
	Slide 8: Bloch sphere
	Slide 9: Bloch sphere
	Slide 10: Quantum circuits: single qubit gates
	Slide 11: Quantum circuits: single qubit gates
	Slide 12: Quantum circuits: multiple-qubit gates
	Slide 13: Quantum circuits: two-qubit gates
	Slide 14: Quantum circuits:  multipartite quantum states
	Slide 15: Entanglement
	Slide 16: Entanglement
	Slide 17: Teleportation
	Slide 18: Teleportation
	Slide 19: Teleportation
	Slide 20: Superdense coding  
	Slide 21: Superdense coding  
	Slide 22: Superdense coding  
	Slide 23: Superdense coding  
	Slide 24: Superdense coding  
	Slide 25: Superdense coding  
	Slide 26: Superdense coding  
	Slide 27: Superdense coding  
	Slide 31: How the noise properties affect the result
	Slide 32: Assignment I: Basic Quantum Computing

