
1

2110711
THEORY

of

COMPUTATION

ATHASIT SURARERKS
ELITE

Athasit Surarerks
ELITE

Engineering Laboratory in Theoretical Enumerable System
Computer Engineering, Faculty of Engineering

Chulalongkorn University
254 Phayathai road, Patumwan, Bangkok 10330

Tel : 0 2218 6989, Fax : 0 2218 6955
Email : athasit@cp.eng.chula.ac.th

Webpage : http://www.cp.eng.chula.ac.th/~athasit

2

DESCRIPTION

Computable functions
decidable predicates and
solvable problems;
computational complexity;
NP-complete problems;
automata theory;
formal language;
lambda calculus.

EVALUATION
Mid-Term examination 50 %
Final examination 50 %

3

TEXTBOOK
Essentials of
Theoretical Computer Science

F. D. Lewis

REFERENCES
Introduction to Languages and
Theory of Computation(3rd ed.) John
C. Martin
Introduction to Automata Theory,
Languages, and Computation, J.E.
Hopcroft, R. Motwani, J.D. Ullman
Introduction to Computer Theory (2nd

ed.) Daniel I. A. Cohen
Languages and Machines: An
Introduction to the Theory of
Computer Science (2nd ed.) Thomas
A. Sudkamp
Topology (2nd ed.) James R. Munkres
Discrete Mathematics and Its
Applications (4th ed.)

Mc
Graw
Hill

PRINTICE
HALL

Mc
Graw
Hill

Addison
Wesley

W
IE

4

BACKGROUND
SYLLOGISTIC REASONINGAristotle (384-322 B.C.)

Euclid of Alexandria (325-265 B.C.) DEDUCTIVE REASONING

Chrysippus of Soli (279-206 B.C.) MODAL LOGIC

George Boole (1815-1864 A.D.) PROPOSITIONAL LOGIC

Augustus De Morgan (1806-1871 A.D.) DE MORGAN’s LAWs

Charles Babbage
1791-1871

Created the first difference
engine (producing the members of the
sequence n2 + n + 41 at the rate of about
60 every 5 minutes)

The 1st drawings of the
analytical engine (describes five
logical components, the store, the mill, the
control, the input and the output)

The construction of modern computers,
logically similar to Babbage's design

5

Kurt Gödel
1906-1978

Proved that there
was no algorithm to
provide proofs for all
the true statements
in mathematics.

Universal model for all algorithms.

VARIOUS VERSIONS
OF A UNIVERSAL ALGORITHM MACHINE

Andrei Andreevich Markov 1856-1922
Emil Post 1897-1954
Alonzo Church 1903-1995
Stephen Kleene 1909-1994
John von Neumann 1903-1957
Alain Turing 1912-1954

6

Alain Turing
1912-1954

Computing machinery and intelligence

•studied problems which
today lie at the heart of
artificial intelligence.
•proposed the Turing Test
which is still today the test
people apply in attempting
to answer whether a
computer can be intelligent.

Warren McCulloch & Walter Pitts
neurophysiologists

Constructed for a “neural net” was
a theoretical machine of the same
nature as the one Turing invented.

Modern linguists
Investigated a very similar subject

•What is language in general ?
•How could primitive humans have developed language ?

•How do people understand it ?
•How do they learn it as children ?

•What ideas can be expressed, and in what way ?
•How do people construct sentences from the idea s in their minds ?

7

Noam
Chomsky

Massachusetts

Institute
of

Technology

Created the subject of
mathematical models for

the description of
languages to answer

these questions.

MAIN TOPIC

We shall study different types
of theoretical machines

that are mathematical models
for actual physical processes.

8

MACHINE MODEL

input
output

machine input
output

machine input
output

machine

input
output

machine

MACHINE

MAIN CONCLUSIONS
“ this can be done or it can never be done.”?

9

LANGUAGES

LANGUAGES
Different entities (in English)

letters
words
sentences
paragraphs
coherent stories

Not all collections of letters form a valid sentence.
Humans agree on which sequences are valid or which are not.

COLLECTION
&

SEQUENTIAL

How do they do that ?

10

Different entities
letters
words
commands
programs
systems

Commands can be recognized by certain sequences of words.
Language structure is based on explicitly rules.

It is very hard to
state all the rules
for the language

“spoken English”.

COMPUTER LANGUAGES

Language means simply a set of strings involving
symbols from alphabet.

LANGUAGE

11

Formal refers
explicitly rules

What sequences of symbols can occur ?
No liberties are tolerated.
No reference to any “deeper understanding”
is required.

the form of the sequences of symbols
not the meaning

THEORY OF
FORMAL LANGUAGES

STRUCTURE
One finite set of fundamental units , called
“alphabet”, denoted ∑.
An element of alphabet is called “character”.
A certain specified set of strings of characters
will be called “language” denoted L.
Those strings that are permissible in the language
we call “words”.
The string without letter is called “empty string”
or “null string”, denoted by Λ.
The language that has no word is denoted by ∅.

specified

THEORY OF
FORMAL LANGUAGES

12

Union operation +
Different operation −
Alphabet ∑
Empty string Λ

ε
Language L

Γ
Empty language ∅

SYMBOLS

LANGUAGES

Given an alphabet ∑ = { a b c … z ‘ - }.
We can now specify a language L as

{ all words in a standard dictionary },
named “ENGLISH-WORDS”.
We define a language Γ as

{ all words in a standard dictionary, blank space,

the usually punctuation marks },
named “ENGLISH-SENTENCES”.

LANGUAGE DEFINING
IMPLICITLY

DEFINING

13

LANGUAGES

The trick of defining the language Γ,
By listing all rules of grammar.

This allows us to give a finite description of an
infinite language.

Consider this sentence “I eat three Sundays”.
This is grammatically correct.

INFINITE LANGUAGE DEFINING

RIDICULOUS
LANGUAGE

LANGUAGES

METHOD OF EXHAUSTION
Let ∑ = {x} be an alphabet.
Language L can be defined by

L = { x xx xxx xxxx … }
L = { xn for n = 1 2 3 … }.

Language L2 = { x xxx xxxxx xxxxxxx …}
L2 = { xodd }
L2 = { x2n-1 for n = 1 2 3 … }.

LANGUAGE DEFINING

14

LANGUAGES

We define the function length of a string to be the number
of letters in the string.
For example, if a word a = xxxx in L, then length(a)=4.
In any language that includes Λ, we have length(Λ)=0.

The function reverse is defined by if a is a word in L, then
reverse(a) is the same string of letters spelled backward,
called the reverse of a.
For example, reverse(123)=321.

Remark: The reverse(a) is not necessary in the language of a.

SOME DEFINITIONS

LANGUAGES

We define the function na(w) of a w to be the number of
letter a in the string w.

For example, if a word w = aabbac in L,
then na(w)=3.

Concatenation of two strings means that two strings are
written down side by side.
For example, xn concatenated with xm is xn+m

SOME DEFINITIONS

15

LANGUAGES

Language is called PALINDROME over the
alphabet if

Language = { Λ and all strings x such that
reserve(x)=x }.

For example, let ∑={ a, b }, and
PALINDROME={ Λ a b aa bb aaa aba bab bbb …}.

Remark: Sometimes, we obtain another word in
PALINDROME when we concatenate two words in
PALINDROME. We shall see the interesting
properties of this language later.

SOME DEFINITIONS

LANGUAGES

Consider the language
PALINDROME={ Λ a b aa bb aaa aba bab bbb …}.

We usually put words in size order and then listed all the
words of the same length alphabetically. This order is
called lexicographic order.

SOME DEFINITIONS

16

LANGUAGES

Given an alphabet ∑, the language that any string of
characters in ∑ are in this language is called the closure of
the alphabet. It is denoted by

∑*.
This notation is sometimes known as the Kleene star.

Kleene star can be considered as an operation that makes an
infinite language. When we say “infinite language”, we

mean infinitely many words, each of finite length.

KLEENE CLOSURE

LANGUAGES

More general,
if S is a set of words, then by S* we mean the set of all
finite strings formed by concatenating words from S and
from S*.

Example:
If S = { a ab }then
S* = { Λ and any word composed of factors of a and ab }.

{ Λ and all strings of a and b except strings with double b }.
{ Λ a aa ab aaa aab aba aaaa aaab aaba … }.

KLEENE CLOSURE

17

LANGUAGES
Example:

If S = { a ab }then
S* = { Λ and any word composed of factors of a and ab }.

{ Λ and all strings of a and b except strings with double b }.
{ Λ a aa ab aaa aab aba aaaa aaab aaba … }.

To prove that a certain word is in the closure language S* ,
we must show how it can be written as a concatenation of
words from the base set S.

Example: abaaba can be factored as (ab)(a)(ab)(a) and
it is unique.

KLEENE CLOSURE

LANGUAGES
Example:

If S = { xx xxxxx }then
S* ={ Λ xx xxxx xxxxx xxxxxx xxxxxxx xxxxxxxx … }.

{ Λ and xx and xn for n = 4 5 6 7 … }.

How can we prove this statement ?

Hence: proof by constructive algorithm

(showing how to create it).

KLEENE CLOSURE

18

LANGUAGES

Example:
If S = { a b ab } and T = { a b ba }, then S* = T* = { a b }*.

Proof: It is clear that { a b }*⊂ S* and { a b }*⊂T*.
We have to show that S* and T* ⊂ { a b }*.
For x ∈ S*, in the case that x is composed of ab.
Replace ab in x by a, b which are in { a b }*.
Then S*⊂ { a b }*.
The proof of T*⊂ { a b }* is similarity. QED

KLEENE CLOSURE

LANGUAGES

Given an alphabet ∑, the language that any string
(not zero) of characters in ∑ are in this language
is called the positive closure of the alphabet. It is
denoted by

∑+.

Example: Let Γ={ ab }.
Then Γ+ = { ab abab ababab … }.

POSITIVE CLOSURE

19

LANGUAGES

Given an alphabet ∑={ aa bbb }. Then Σ* is the set of all
strings where a’s occur in even clumps and b’s in groups
of 3, 6, 9…. Some words in Σ* are

bbb aabbbaaaa bbbaa
If we concatenate these three elements of Σ*, we get one big

word in Σ**, which is again in Σ*.
bbbaabbbaaaabbbaa = (bbb)(aa)(bbb)(aa)(aa)(bbb)(aa)

Note : Σ** means (Σ*)*.

TRIVIAL REMARK

LANGUAGES
Theorem

For any set S of strings, we have S*= S**.

Proof: Every words in S** is made up of factors from S*.
Every words in S* is made up of factors from S.
Therefore every words in S** is made up of factors from S.
We can write this S**⊂ S*.

In general, it is true that S ⊂ S*. So S*⊂ S**.
Then S*= S**. QED

THEOREM

20

RECURSIVELY
DEFINING
LANGUAGES

RECURSIVE DEFINITIONS

EVEN language
EVEN is the set of all positive whole numbers divisible by 2.

EVEN is the set of all 2n where n = 1 2 3 4 …
Another way we might try this:

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x is in EVEN, then so is x+2.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.

The last rule above is completely redundant.

LANGUAGE DEFINING

21

RECURSIVE DEFINITIONS
EVEN language

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x is in EVEN, then so is x+2.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.
PROBLEM: Show that 10 is in this language.

By Rule1, 2 is in EVEN.
By Rule2, 2+2=4 is in EVEN.
By Rule2, 4+2=6 is in EVEN.
By Rule2, 6+2=8 is in EVEN.
By Rule2, 8+2=10 is in EVEN.

PRETTY HORRIBLE !

LANGUAGE DEFINING

RECURSIVE DEFINITIONS
EVEN language

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x,y are in EVEN, then so is x+y.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.
PROBLEM: Show that 10 is in this language.

By Rule1, 2 is in EVEN.
By Rule2, 2+2=4 is in EVEN.
By Rule2, 4+4=8 is in EVEN.
By Rule2, 8+2=10 is in EVEN.

DECIDEDLY HARD

LANGUAGE DEFINING

22

RECURSIVE DEFINITIONS
POSITIVE language

The set is defined by these three rules:
Rule1: 1 is in POSITIVE.

Rule2: if x,y are in POSITIVE, then so is x+y, x-y, x×y and
x/y where y is not zero.

Rule3: The only elements in the set POSITIVE are those that
can be produced from the two rules above.

PROBLEM: What is POSITIVE language ?

LANGUAGE DEFINING

RECURSIVE DEFINITIONS
POLYNOMIAL language

The set is defined by these four rules:
Rule1: Any number is in POLYNOMIAL

Rule2: Any variable x is in POLYNOMIAL.
Rule3: if x,y are in POLYNOMIAL,

then so is x+y, x-y, x×y and (x).
Rule4: The only elements in the set POLYNOMIAL are those that

can be produced from the three rules above.

PROBLEM: Show that 3x2+2x-5 is in POLYNOMIAL.
Proof:

Rule1: 2, 3, 5 are in POLYNOMIAL, Rule2: x is in POLYNOMIAL,
Rule3: 3x, 2x are in POLYNOMIAL, Rule3: 3xx is in POLYNOMIAL,
Rule3: 3xxx+2x, 3x2+2x-5 are in POLYNOMIAL. QED.

LANGUAGE DEFINING

23

RECURSIVE DEFINITIONS

Language:
Let Σ be an alphabet for AE language.

Σ = { 0 1 2 3 4 5 6 7 8 9 + - * / () }.
Define rules for this language.

Problems:
Show that the language does not contain
substring //.
Show that ((3+4)-(2*6))/5 is in this language.

ARITHMETIC EXPRESSIONS

REMARK

Languages can be defined by
L1={ xn for n = 1 2 3 … }
L2={ xn for n = 1 3 5 7 … }
L3={ xn for n = 1 4 9 16 … }
L4={ xn for n = 3 4 8 22 … }.

More precision and less guesswork are required.

DEFINING LANGUAGES

