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DESCRIPTION

Computable functions 
decidable predicates and 
solvable problems; 
computational complexity; 
NP-complete problems; 
automata theory;
formal language;
lambda calculus.

EVALUATION
Mid-Term examination 50 %
Final examination 50 %
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BACKGROUND
SYLLOGISTIC REASONINGAristotle (384-322 B.C.)

Euclid of Alexandria  (325-265 B.C.) DEDUCTIVE REASONING

Chrysippus of Soli (279-206 B.C.) MODAL LOGIC

George Boole (1815-1864 A.D.) PROPOSITIONAL LOGIC

Augustus De Morgan (1806-1871 A.D.) DE MORGAN’s LAWs

Charles Babbage
1791-1871

Created the first difference 
engine (producing the members of the 
sequence n2 + n + 41 at the rate of about 
60 every 5 minutes)

The 1st drawings of the 
analytical engine (describes five 
logical components, the store, the mill, the 
control, the input and the output)

The construction of modern computers, 
logically similar to Babbage's design
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Kurt Gödel
1906-1978

Proved that there 
was no algorithm to 
provide proofs for all 
the true statements 
in mathematics.

Universal model for all algorithms.

VARIOUS VERSIONS
OF A  UNIVERSAL ALGORITHM MACHINE

Andrei Andreevich Markov 1856-1922 
Emil Post 1897-1954
Alonzo Church 1903-1995
Stephen Kleene 1909-1994
John von Neumann 1903-1957
Alain Turing 1912-1954
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Alain Turing
1912-1954

Computing machinery and intelligence 

•studied problems which
today lie at the heart of
artificial intelligence.
•proposed the Turing Test 
which is still today the test 
people apply in attempting
to answer whether a 
computer can be intelligent. 

Warren McCulloch & Walter Pitts
neurophysiologists

Constructed for a “neural net” was 
a theoretical machine of the same 
nature as the one Turing invented.

Modern linguists
Investigated a very similar subject

•What is language in general ?
•How could primitive humans have developed language ?

•How do people understand it ?
•How do they learn it as children ?

•What ideas can be expressed, and in what way ?
•How do people construct sentences from the idea s in their minds ?
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Noam
Chomsky

Massachusetts

Institute
of

Technology

Created the subject of 
mathematical models for 

the description of 
languages to answer 

these questions.

MAIN TOPIC

We shall study different types
of theoretical machines

that are mathematical models
for actual physical processes.
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MACHINE MODEL

input
output

machine input
output

machine input
output

machine

input
output

machine

MACHINE

MAIN CONCLUSIONS
“ this can be done or it can never be done.”?
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LANGUAGES

LANGUAGES
Different entities (in English)

letters
words
sentences
paragraphs
coherent stories

Not all collections of letters form a valid sentence.
Humans agree on which sequences are valid or which are not.

COLLECTION
&

SEQUENTIAL

How do they do that ?
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Different entities
letters
words
commands
programs
systems

Commands can be recognized by certain sequences of words.
Language structure is based on explicitly rules.

It is very hard to 
state all the rules 
for the language 

“spoken English”.

COMPUTER LANGUAGES

Language means simply a set of strings involving 
symbols from alphabet.

LANGUAGE
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Formal refers
explicitly rules

What sequences of symbols can occur ?
No liberties are tolerated.
No reference to any “deeper understanding”
is required.

the form of the sequences of symbols
not the meaning

THEORY OF
FORMAL LANGUAGES

STRUCTURE
One finite set of fundamental units , called 
“alphabet”, denoted ∑.
An element of alphabet is called “character”.
A certain specified set of strings of characters 
will be called “language” denoted L.
Those strings that are permissible in the language 
we call “words”.
The string without letter is called “empty string”
or “null string”, denoted by Λ.
The language that has no word is denoted by ∅.

specified

THEORY OF
FORMAL LANGUAGES
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Union operation +
Different operation −
Alphabet ∑
Empty string Λ

ε
Language L

Γ
Empty language ∅

SYMBOLS

LANGUAGES

Given an alphabet ∑ = { a b c … z ‘ - }.
We can now  specify a language L as

{ all words in a standard dictionary },
named “ENGLISH-WORDS”.
We define a language Γ as

{ all words in a standard dictionary, blank space,

the usually punctuation marks },
named “ENGLISH-SENTENCES”.

LANGUAGE DEFINING
IMPLICITLY

DEFINING
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LANGUAGES

The trick of defining the language Γ,
By listing all rules of grammar.

This allows us to give a finite description of an 
infinite language.

Consider this sentence “I eat three Sundays”.
This is grammatically correct.

INFINITE LANGUAGE DEFINING

RIDICULOUS
LANGUAGE

LANGUAGES

METHOD OF EXHAUSTION
Let ∑ = {x} be an alphabet.
Language L can be defined by

L = { x  xx  xxx  xxxx … }
L = { xn for n = 1  2  3  … }.

Language L2 = { x  xxx   xxxxx xxxxxxx …}
L2 = { xodd }
L2 = { x2n-1 for n = 1  2  3  … }.

LANGUAGE DEFINING
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LANGUAGES

We define the function length of a string to be the number 
of letters in the string.
For example, if a word a = xxxx in L, then length(a)=4.
In any language that includes Λ, we have length(Λ)=0.

The function reverse is defined by if a is a word in L, then 
reverse(a) is the same string of letters spelled backward, 
called the reverse of a.
For example, reverse(123)=321.

Remark: The reverse(a) is not necessary in the language of a.

SOME DEFINITIONS

LANGUAGES

We define the function na(w) of a w to be the number of 
letter a in the string w.

For example, if a word w = aabbac in L,
then na(w)=3.

Concatenation of two strings means that two strings are 
written down side by side.
For example, xn concatenated with xm is xn+m

SOME DEFINITIONS
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LANGUAGES

Language is called PALINDROME over the 
alphabet if

Language = { Λ and all strings x such that 
reserve(x)=x }.

For example, let ∑={ a, b }, and
PALINDROME={ Λ a b aa bb aaa aba bab bbb …}.

Remark: Sometimes, we obtain another word in 
PALINDROME when we concatenate two words in 
PALINDROME. We shall see the interesting 
properties of this language later.

SOME DEFINITIONS

LANGUAGES

Consider the language
PALINDROME={ Λ a b aa bb aaa aba bab bbb …}.

We usually put words in size order and then listed all the 
words of the same length alphabetically. This order is 
called lexicographic order.

SOME DEFINITIONS
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LANGUAGES

Given an alphabet ∑, the language that any string of 
characters in ∑ are in this language is called the closure of 
the alphabet. It is denoted by

∑*.
This notation is sometimes known as the Kleene star.

Kleene star can be considered as an operation that makes an 
infinite language. When we say “infinite language”, we 

mean infinitely many words, each of finite length.

KLEENE CLOSURE

LANGUAGES

More general,
if S is a set of words, then by S* we mean the set of all 
finite strings formed by concatenating words from S and 
from S*.

Example:
If S = { a ab }then
S* = { Λ and any word composed of factors of a and ab }.

{ Λ and all strings of a and b except strings with double b }.
{ Λ a aa ab aaa aab aba aaaa aaab aaba … }.

KLEENE CLOSURE
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LANGUAGES
Example:

If S = { a ab }then
S* = { Λ and any word composed of factors of a and ab }.

{ Λ and all strings of a and b except strings with double b }.
{ Λ a aa ab aaa aab aba aaaa aaab aaba … }.

To prove that a certain word is in the closure language S* , 
we must show how it can be written as a concatenation of 
words from the base set S.

Example: abaaba can be factored as (ab)(a)(ab)(a) and
it is unique.

KLEENE CLOSURE

LANGUAGES
Example:

If S = { xx xxxxx }then
S* ={ Λ xx xxxx xxxxx xxxxxx xxxxxxx xxxxxxxx … }.

{ Λ and xx and xn for n = 4  5  6  7  … }.

How can we prove this statement ?

Hence: proof by constructive algorithm

(showing how to create it).

KLEENE CLOSURE
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LANGUAGES

Example:
If S = { a b ab } and T = { a b ba }, then S* = T* = { a b }*.

Proof: It is clear that { a b }*⊂ S* and { a b }*⊂T*.
We have to show that S* and T* ⊂ { a b }*.
For x ∈ S*, in the case that x is composed of ab.
Replace ab in x by a, b which are in { a b }*.
Then S*⊂ { a b }*.
The proof of T*⊂ { a b }* is similarity. QED

KLEENE CLOSURE

LANGUAGES

Given an alphabet ∑, the language that any string 
(not zero) of characters in ∑ are in this language 
is called the positive closure of the alphabet. It is 
denoted by

∑+.

Example: Let Γ={ ab }.
Then Γ+ = { ab abab ababab … }.

POSITIVE CLOSURE
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LANGUAGES

Given an alphabet ∑={ aa bbb }. Then Σ* is the set of all 
strings where a’s occur in even clumps and b’s in groups 
of 3, 6, 9…. Some words in Σ* are

bbb aabbbaaaa bbbaa
If we concatenate these three elements of Σ*, we get one big 

word in Σ**, which is again in Σ*.
bbbaabbbaaaabbbaa = (bbb)(aa)(bbb)(aa)(aa)(bbb)(aa)

Note : Σ** means  (Σ*)*.

TRIVIAL REMARK

LANGUAGES
Theorem

For any set S of strings, we have S*= S**.

Proof: Every words in S** is made up of factors from S*.
Every words in S* is made up of factors from S.
Therefore every words in S** is made up of factors from S.
We can write this S**⊂ S*.

In general, it is true that S ⊂ S*. So S*⊂ S**.
Then S*= S**. QED

THEOREM
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RECURSIVELY
DEFINING
LANGUAGES

RECURSIVE DEFINITIONS

EVEN language
EVEN is the set of all positive whole numbers divisible by 2.

EVEN is the set of all 2n where n  = 1  2  3  4  …
Another way we might try this:

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x is in EVEN, then so is x+2.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.

The last rule above is completely redundant.

LANGUAGE DEFINING
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RECURSIVE DEFINITIONS
EVEN language

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x is in EVEN, then so is x+2.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.
PROBLEM: Show that 10 is in this language.

By Rule1, 2 is in EVEN.
By Rule2, 2+2=4 is in EVEN.
By Rule2, 4+2=6 is in EVEN.
By Rule2, 6+2=8 is in EVEN.
By Rule2, 8+2=10 is in EVEN.

PRETTY HORRIBLE !

LANGUAGE DEFINING

RECURSIVE DEFINITIONS
EVEN language

The set is defined by these three rules:
Rule1: 2 is in EVEN.

Rule2: if x,y are in EVEN, then so is x+y.
Rule3: The only elements in the set EVEN are those that

can be produced from the two rules above.
PROBLEM: Show that 10 is in this language.

By Rule1, 2 is in EVEN.
By Rule2, 2+2=4 is in EVEN.
By Rule2, 4+4=8 is in EVEN.
By Rule2, 8+2=10 is in EVEN.

DECIDEDLY HARD

LANGUAGE DEFINING
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RECURSIVE DEFINITIONS
POSITIVE language

The set is defined by these three rules:
Rule1: 1 is in POSITIVE.

Rule2: if x,y are in POSITIVE, then so is x+y, x-y, x×y and 
x/y where y is not zero.

Rule3: The only elements in the set POSITIVE are those that
can be produced from the two rules above.

PROBLEM: What is POSITIVE language ?

LANGUAGE DEFINING

RECURSIVE DEFINITIONS
POLYNOMIAL language

The set is defined by these four rules:
Rule1: Any number is in POLYNOMIAL

Rule2: Any variable x is in POLYNOMIAL.
Rule3: if x,y are in POLYNOMIAL,

then so is x+y, x-y, x×y and (x).
Rule4: The only elements in the set POLYNOMIAL are those that

can be produced from the three rules above.

PROBLEM: Show that 3x2+2x-5 is in POLYNOMIAL.
Proof:

Rule1: 2, 3, 5 are in POLYNOMIAL, Rule2: x is in POLYNOMIAL,
Rule3: 3x, 2x are in POLYNOMIAL,  Rule3: 3xx is in POLYNOMIAL,
Rule3: 3xxx+2x, 3x2+2x-5 are in POLYNOMIAL. QED.

LANGUAGE DEFINING
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RECURSIVE DEFINITIONS

Language:
Let Σ be an alphabet for AE language.

Σ = { 0 1 2 3 4 5 6 7 8 9 + - * / ( ) }.
Define rules for this language.

Problems:
Show that the language does not contain 
substring //.
Show that ((3+4)-(2*6))/5 is in this language.

ARITHMETIC EXPRESSIONS

REMARK

Languages can be defined by
L1={ xn for n = 1 2 3 … }
L2={ xn for n = 1 3 5 7 … }
L3={ xn for n = 1 4 9 16 … }
L4={ xn for n = 3 4 8 22 … }.

More precision and less guesswork are required.

DEFINING LANGUAGES


