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Course Outline

4 parts:

Part1: Logic, Sets, Relations, Functions, and
Mathematical Reasoning

Part2: Graphs and Trees

Part3: Counting, Recurrence Relations, and
Generating Functions

Part4: Number Theory
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Grading

In-class Quiz 1
In-class Quiz 2
In-class Quiz 3
In-class Quiz 4
Final Exam
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Why 2?7

Formulate associated
Problem ™ Mathematical
arguments

Solve the problem
mathematically Solution
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Goals of Discrete Math.

* Mathematical Reasoning

— Read, comprehend, and construct mathematical
arguments

« Combinatorial Analysis
— Perform analysis to solve counting problems
» Discrete Structure

— Able to work with discrete structures: sets, graphs,
finite-state machines, etc.
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Goals of Discrete Math.

* Algorithmic Thinking
— Specify, verify, and analyze an algorithm
« Applications and Modeling

— Apply the obtained problem-solving skills to model and

solve problems in computer science and other areas,
such as:

* Business
+ Chemistry
* Linguistics
+ Geology

* etc
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Gateway to . ..

Data Structures Operating

Database
Systems

Theory

Computer
Securities

Automata
Theory

Formal
Languages

Compiler
Theory
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Foundations of Discrete Math.

* Loqic
— Specify the meaning of Mathematical statements
— Basis of all Mathematical reasoning
* Sets
— Sets are collections of objects, which are used for
building many important discrete structures.
* Functions

— Used in the definition of some important structures
— Represent complexity of an algorithm, and etc.
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Readings

* Rosen: Section 1.1 to 1.4 and Section 1.6 to 1.8
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Logic

* Rules of logic gives precise meaning to
mathematical statements.
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Proposition: Building Blocks of Logic

* Proposition =
— Declarative sentence
— Either TRUE or FALSE (not both)

_________ Compound
- T T T .. proposition
- - - = ~ ~
27 A— S—
/ g g g S
/ proposition proposition proposition ‘|
\ '
N /
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proposition proposition proposition

TS = -

Logical operator
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Logical Operators

* Negation (NOT)
« Conjunction (AND)
+ Disjunction (OR)
* Exclusive OR (XOR)
* Implication (IF..THEN)
 Biconditional (IF & ONLY IF)
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Negation

» The negation of p has opposite truth value to p

Conjunction

» The conjunction of p and q, is true when, and
only when, both p and q are true.

T F T T T
= - T F F
F T F
F F F
Disjunction Exclusive OR

» The disjunction of p and q, is true when at least
one of porqis true.

m|m| |-
n|(—|n|H

||
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» Exclusive or = OR but NOT both
POg=(pvag)Ar—=(pArQ)

|||
n|—|m|H
M|
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Implication

* ltis false when p is true and q is false, and true
otherwise.

Biconditional

* p < qis true when p and g have the same truth
value.

« Intuitively, p < qis (p—q)A(g—p)

T T T T T T
T F F T F F
F T T F T F
F F T F F T
General Compound Proposition Contrapositive

» Example:
(PAQ)V—p
p qg |prql —p | PAQV—-P
T T F T
T F F F .
F T F T T
F F F T T
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* The contrapositive of an implication p — q is:

—q — —p
* has the same truth values as p — q
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Converse and Inverse

Precedence of Logical Operators

 The converse of an implication p — q is: N PA-QVI—p«S
q—p = 1
» The inverse of an implication p — q is: A 2
—pP — —q v 3
« DO NOT have the same truth values as p — q N 2 ((p A(=q) v > p) s
PN 5
Translating from Natural language Consistency

» Example (Rosen, p10):
You cannot ride the rollercoaster if you are under
4 feet tall unless you are older than 16 years old.

g: You can ride the roller coaster
r: You are under 4 feet tall
s: You are older than 16 years old

(rA—s)— —qQ

g: You can ride the roller coaster
—r: You are at least 4 feet tall
s: You are older than 16 years old

—|(—| rVS)—) —q
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» Translating natural language to logical expressions
is essential to specifying system spec.

» Specifications are “consistent” when they do not
conflict with one another. i.e.:

There must be an assignment of truth values
to every expression that make all the
expression true.

Atiwong Suchato
Faculty of Engineering, Chulalongkorn University




Consistency

* Whenever the system is being upgraded, users
cannot access the file system.

« If users can access the file system, they can
save new files.

* |f users cannot save new files, the system is not
being upgraded.
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Consistency

* Whenever the system is being upgraded, users
cannot access the file system. ([p - = q

* If users can access the file system, they can
save new files. q—r

» |f users cannot save new files, the svstem is not
being upgraded. —r — —p

p q r \p>-=q | qor |[-r—-p

T F T T T T

These spec. are consistent.
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Tautology, Contradiction, & Contingency

» A compound proposition that is always true is
called a “tautology”.

« A compound proposition that is always false is
called a “contradiction”.

* If neither a tautology nor a contradiction, it is
called a “contingency”.
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Logical Equivalences

The propositions p and q are called “logical
equivalent” (p = q) if p < q is a tautology
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Showing Logically Equivalent propositions

Show that the truth values of these propositions
are always the same.

— Construct truth tables.
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Showing Logically Equivalent propositions

» Example (Rosen p22):
Show thatp - g=—-pvq

—|m|m

n|n|-|H
n|l-|n|H
—|—|7n|H

—| =T

Logically Equivalent
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Showing Logically Equivalent propositions

Show that the truth values of these propositions
are always the same.

@ Use series of established equivalences.
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Logical Equivalences

* Distributive Laws
pv(gar)=(pvq)a(pvr)
pr(qvr)=(paq)v(pnar)

* De Morgan’s Laws
—=(prq)==pv—(q
—=(pvq)==pr—q

* More can be found in Rosen p.24
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Showing Logically Equivalent propositions

+ Example (Rosen p25):
Showthat - (pv (=pAq))=—-pAr—=q

—(pv(=PArq))==pAr—=(-PAq)

De Morgan’s

= —p A (—(—p) v—q ) De Morgan’s
=—-pA(pv—q) Double negative
= (—-p A p) v (—p A —q ) Distributive

=—Pp A —q
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Predicate Logic
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Predicate Logic

In Propositional Logic, ‘the atomic units’ are
propositions.
- E.g.:

— p: John goes to school., g: Mary goes to school.

In Predicate Logic, we look at each
proposition as the combination of variables
and predicates .

- E.g.:

— X goes to school, where X can be John or Mary.
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Predicate Logic

* The statement “x go to school” has two parts:
Variable “x”
The predicate “go to school”

» This statement can be denoted by P(x), where P
denotes the predicate “go to school”.

* P(x) is said to be the value of the propositional
function P at x.

* Once a value has been assigned to the variable
x, the statement P(x) becomes a proposition and
has a truth value.

» E.g: P(John) and P(Mary) have truth values.
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Creating propositions from a
propositional function

Assign values to all variables in a propositional
function.

@ Use “Quantification”
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Universal Quantifier

* VXP(X) (read “for all x P(x)” ) denotes:

P(x) is true for all values x in the universal of
discourse.

* VXP(x) is the same as:
P(x )AP(X)A...AP(X,)
When all elements in the universe of discourse
can be listed as (x;, X5, ..., X,,)
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Universal Quantifier

» Example (Rosen p.31):

« What is the truth value of VxP(x2 > x), when the
universe of discourse consists of:
— all real numbers?
— all integers?

Since x2 >x only when x <0 or x > 1, VxP(x? >x)
is false if the universe consists of all real
numbers. However, it is true when the universe
consists of only the integers.
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Existential Quantifier

» XP(X) ( read “for some x P(x)” ) denotes:

There exists an element x in the universe of
discourse that P(x) is true.

* IXP(x) is the same as:
P(x,)v P(x5)v ...v P(x,)

When all elements in the universe of discourse
can be listed as (x4, X5, ..., X,,)
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Existential Quantifier

« Example (Rosen p.32):

* What is the truth value of 3xP(x) where P(x) is
the statement x2 > 10, and the universe of
discourse consists of the positive integers not
exceeding 47?

Since the elements in the universe can be listed
as {1,2,3,4}, 7xP(x) is the same as P(1)\P(2)v
P(3)vP(4). There for 7xP(x) is true since P(4) is
true.
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Negations

—VxP(x) = 7x —P(x)

—xP(x) =Vx —=P(x)

Negation of
“Every 2" year students loves Discrete math.” is

“There is a 2" year student who does not love Discrete math.”
Negation of

“Some student in this class get ‘A’.” is
“‘None of the students in this class get ‘A’.”
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Translating from Natural language

+ Example (Rosen, p36):
( ) Some student in this class has visited Mexico.

Every student in this class has visited Canada or
Mexico.

M(x): X has visited Mexico

C(x): X has visited Canada

The universe of discourse consists of the students in
this class.

O HM(x)

@ vx(M(x)v C(x))
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Translating from Natural language

The universe of discourse consists of all people
M(x): X has visited Mexico.

C(x): X has visited Canada.

S(x): X is a student in this class.

“Some student in this class has visited Mexico” can be
written “There is a person X having the properties that X
is a student in this class AND X has visited Mexico.”

FX(S(x)AM(x))

CANNOT be written as 7x(S(x)—M(x)). Why??
What about the other statement?
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Sets

Atiwong Suchato
Faculty of Engineering, Chulalongkorn University

Sets

» A setis an unordered collection of objects.

* Objects in a set are called “members” or
“elements” of that set.

* Two sets are equal « they have the same
elements

* Are {1,2,3} and {3,2,1} equal?
» Are {0,1,2} and {0,0,0,1,1,2} equal?
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Set Builder Notation

 Stating the properties that all elements must
have to be members.

O ={x | x is a prime number less than 100}
R ={x | x is a real number}
U = {x | x is any of the objects

under consideration}
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Subset

AcBeo VVx(xeA—-xeB)

Proper Subset

AcB« (AcB)A(A=B)

For any set S, 4% - S”and “S C S”
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Proof: O — Sand S C S

« Show that Vx(xed — xeS)

— Since xed is always false, then xe @ — xeS
is always true no matter what x is.

« Show that Vx(xeS — xeS)

— Since p — p is a tautology the xeS — xeSis
true no matter what.

Atiwong Suchato
Faculty of Engineering, Chulalongkorn University

Cardinality

* For aset S, if there are exactly n distinct
elements in S, where n is a nonnegative interger,
we say that S is a finite set and that n is the
cardinality of S (|S|=n)

* A setis “infinite” if it is not finite.
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Power Set

» Given a set S, the power set of S, P(S), is the set
of all subsets of S

 If S has n elements, then P(S) has 2" elements.

« Examples (Rosen p.82):

S P(S)
{0,1,2} {©,{0},{1}.{2}.{0,1},{0,2}.,{1,2},{0,1,2}}
% {}
%) {D{T}}
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Ordered n-tuple

» The ordered n-tuple (a,,a,,..,a,) is the ordered
collection that has a, as its first element, a, as its
second element,..., and an as its nt" element.

Two ordered n-tuples are equal < each
corresponding pair of their elements is equal
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Cartesian Products

AxB={(a,b)|]ace AArbeB}

A XA X .. XA, =
{(ay,ay,...,a,,) | a; € A;fori=1,2,..,n}

+ Examples:

* What is the Cartesian product AxBxC, where
A={0,1}, B={j,k}, C={x,y,z}?

AxBxC={(0,j,x),(0.,},y),(0,j,2),(0,k,x),(0,k,y),(0,k,z)

(1 ’j’X)’(1 ’j’y)’(1 ’j’z)’(1 ’k’X)’(1 ’k’y)’(1 ’k’z)

Faculty of Engineering, Chulalongkorn University
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Using Set Notation with Quantifiers

» Specify the universe of discourse .

 E.g.:
VxeR(x?>0)
means “for every real number x2>0"
which is true.
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Set Operations

* Union (V)
* Intersection (M)
+ Difference (-)
« Complement (')
« Symmetric difference (®)
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Symmetric Difference

+ A®B is the set containing those elements in
either A or B but NOT in both A and B.

Example:
A ={1,3,5}, B ={1,2,3}, A®B ={2,5}

Atiwong Suchato

Faculty of Engineering, Chulalongkorn University




Principle of Inclusion-Exclusion

|A U B| = |A|+|B|-|A N B|

More general (Chapter 6):

Ay UA, U ... UA | =
AL -ZIA N AL+ ZIANANA] - -
+-1)" A, NAN N A
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Set Identities

* Distributive Laws
An(BuC)=(AnB)Uu(AnC)
Au(BNnC)=(AuB)n(AuC)

* De Morgan’s Laws
(AUuB)'=A"nB’
(AnB)'=A"UB’

* More can be found in Rosen p.89
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Showing that two sets have the same
elements
@ Show that each set is a subset of the other.

@ Use set builder notation and logical
equivalences.

@ Build membership tables.

@ Use set identities.
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Proving Set Equality

Showing that each is a subset of the other
* ExamQIe (Rosen p.89). Prove that (A M B) "'=A’UB’

1)  Suppose xe (A nB)’. So, xg AnB
Then, —((xe A)a (xe B)) is true.
2) De Morgan’s = —(xe A)v —(xe B) is true.

Then, xe A’ v xe B’
3)  Deéfinition of Union = xe A’ U B’

xe(ANnB)" > xeA’uUB’
This shows (A hB)’'cA’uB’
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Proving Set Equality

Showing that each is a subset of the other
» Example (Rosen p.89): Continued

4)  Suppose xe AU B’
Definition of Union = xe A" v xe B’
—(xe A)v —(xe B) is true.

5) Then, —(xe A n B) is true.
xgANB.So,xe (AnB)’.

6) xe A’UB’— xe (AN B)’
This shows A”UB'c(AnB)’
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Proving Set Equality

Showing that each is a subset of the other

+ Example (Rosen p.89): Continued

3) (AnB)'’cA’uB’

and —(ANnB)'=A"UB’

6) A’uBc(ANnB)’
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Proving Set Equality
Using set builder notation and logic equivalances

i ExamQIe (Rosen p.89). Prove that (A M B) '=A’UB’

(AnB)" ={x|xgANB}
={x|-(xe€AnB)}
={x|=((x eA)r(x €B))}
={x|(xgA) v(x £B)}
={x|(xeA’)u(xeB)}
={x|xeA’uB’}
=A’uUB’
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Proving Set Equality

Using membership table

Example Prove that (A N B)’=A"u B’

AlBI A |B |AuvB]||ANnB) | (AnB)
OO0} 1]1 1 0 1
0|1 110 1 0 1
110 0| 1 1 0 1
1111070 0 1 0
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Proving Set Equality

Use set identities

* Examgle (Rosen p.91).
Show that (Av (B C))’=(C"uB’) nA”’
(AuBnC) =A"n(BNC)’
=A’'n(B"vC)
=(B"vC)NA’
=(C’uB)nA”’
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Generalized Union and Intersection

n
A uA, U . UA = UA
i=1
n
AnAN...AA = (A
i=1
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Computer Representation of Sets

2 13 495

16 ok

o v o
1 3 5

Universal set =
{1,2,3,4,5}
Representation for
odd integers

Odd integer set =
{1,3,5}
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Computer Representation of Sets

Universal set = y 7 /7 /7 /7 4

{1,2,3,4,5} 1 2 3 4 5

Representation for

A={1,2,3}

Representation for a a

B={2,3,4} 1 1

1
y J J J 4

={1,2,3,4} 1 2 3 4
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Computer Representation of Sets

Universal set = y 7 /7 /7 /7 4

Functions

{1,2,3,4,5} 2 3 4 5

Representation for

A={1,2,3}

Representation for a

B={2,3,4}

ANnB

..
={2,3} 21 2
Functions Adding and Multiplying Functions

Definition:

A function ffrom A to B is an assignment.
+ assigns exactly one element of B to each of A

A: Domain
° f B: Codomain
a b is the image of a.
A ais a pre-image of b.

Range of fis the set of
all images.

*Function cannot be “one-to-many”.
* a eA, f(a) must be assigned to some b.
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* Two real-valued functions with the same domain
can be added and multiplied.

f,, f, are functions from A to R
— f,+f, and f,f, are also functions from A to R.

(f+f;)(x) = f;(x)+f,(x)
(fif5)(x) = F1(x)f5(x)
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Adding and Multiplying Functions

« Example (Rosen p.99):

- f,, f, are functions from R to R. f;(x)=x?, f,(x)=x-
x?. What are the functions f,+f,and f,f,?

(F1+f2 )(x) = f1(x)+f2(x) = x2 + x - X2 = x

(F1f2 )(x) = f1(x)f2(x) = x2 (x - x2 ) = x3 — x4
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One-to-one Functions

A function f is one-to-one or injective
— VxVy ( f(x)=f(y) - x=y)

Examples (Rosen p.100)
Determine whether these functions are one-to-one.

f,(x) = x? from the set of integers to the set of integers
Since f(1) = f(-1) = 1, f,(x) is not one-to-one.
fo(x) = x+1
x+1 = y+1 when x =y, then f,(x) is one-to-one.
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Conditions Guaranteeing One-to-one

» Strictly increasing function:
VX Vy ((x<y) — (f(x)<f(y)) )
« Strictly decreasing function:

VX Yy ( (x<y) — (f(x)>f(y)) )
where the universe of discourse = domain of f

Strictly increasing function
or — one-to-one
Strictly decreasing function
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Onto Functions

A function f is onto or surjective
< Vyax (f(x) =y)

Examples (Rosen p.101)
Determine whether these functions are onto.

f,(x) = x? from the set of integers to the set of integers
No, since there is no integer x that f,(x)=-1

fo(x) = x+1
Yes, for every f,(x)=y, there is an integer x=y-1
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One-to-one Correspondence

* One-to-one AND Onto
+ Also called “bijection”
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Examples
1 a a 1
P e T
3 C C 3

1-to-1, not onto not 1-to-1,onto 1-to-1,onto

a 1 1
b52 3%{2
C 3 3

neither 1-to-1,nor onto not a function
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Inverse Functions

» Let fbe a one-to-one correspondent function
from A to B.

« f1(b) assigns to b, belonging to B, the unique
element a, belonging to A, such that f(a)=b.

f1(b)=a « f(a)=b

A function that is NOT one-to-one
correspondent is NOT invertible.
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Composite Functions

* (feg)(a)=1f(g(a))
» feg cannot be defined unless the range of g is a
subset of the domain of f.

+ If f is a one-to-one correspondent function from A
toB

(f1 of)(@a)=a, acA
(f «f")(b)=b, beB
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Some Important Functions

« Floor function | |
| x] = the largest integer < x

« Ceiling function| |
[ x1=the smallest integer > x

11/2]
[1/2]

[-1/2 ] = [1]
[-1/2] = 1]
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Examples

+ Example (Rosen p.106):

» Each byte is made up of 8 bits. How many bytes
are required to encoded 100 bits of data?

[100/81 = [12.5]= 13 bytes
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Useful Properties

Ix]=neon<x <n+1
[x]=neon-1<x<n
Ixl=neox-1<n<x
[xl=neo x<n< x+1

L-x]=-[x]
[-x]=-|x]

[ x+nl=[x]+n
[x+nl=[x]+n

x-1<|xl<x<[x] <x+1
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Factorial Function

» f(n) = n!is the product of the first n positive
integers, so that

fln)=1-2-...-(n-1) -n
and f(0) =0! =1
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Logic: Key Terms

* Proposition
* Truth value
* Negation
* Logical Operator
+ Compound
proposition
» Truth table
+ Disjunction
» Conjunction
+ Exclusive or
+ Implication
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Inverse
Converse
Contrapositive
Biconditional
Bit operations
Tautology
Contradiction
Contingency
Consistency
Logical
equivalence

Predicate
Propositional
function
Universe of
discourse
Existential
quantifier
Universal
quantifier

Sets: Key Terms

+ Set » Cardinality
* Element + Power set

* Member * Union

* Empty/Null set  + Intersection
* Universal set « Difference
* Venn diagram + Complement
» Set equality * Symmetric
. Subset difference

* Proper subset * Membership
- Finite set table

* [nfinite set
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Functions: Key Terms

* Function

* Domain

+ Codomain

* Image

* Pre-image

* Range

* Onto / Surjection

¢ One-to-one/
Injection
* One-to-one
correspondence /
bijection
Atiwong Suchato
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Inverse
Composition
Floor function
Ceiling function
Factorial




