Generating Functions	Ge
• <u>Readings:</u> Rosen section 6.4	 Represent so as the coeffice a_n = 1, 2, 4, 4, 5, 5, 5, 6, 7, 1, 1, 5, 5, 7, 1, 1, 5, 7, 1, 1, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
Atiwong Suchato Faculty of Engineering, Chulalongkorn University	Atiwong Suchato Faculty of Engineering, Chulalongkorn University
• Example (Rosen p.436): Find the generating functions for the sequences $\{a_k\}$ with: $a_k = 3$ $a_k = k + 1$	Useful F • 1/(1-x) = 1 + • 1/(1-ax) = 1 + <u>Adding & mu</u> Let f(x
$a_k = 2^k$	f(x) + g

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

enerating Functions

sequences $\{a_n\}$ by coding the term a_n ficient of x^n in a power series.

8, $\rightarrow G(x) = 1 + 2x + 4x^2 + ...$ $1, -1, \ldots \rightarrow G(x) = 1 - x + x^2 - \ldots$

ating function for the sequence $a_n = a_{0}$, real numbers is the infinite series

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{k=0}^{\infty} a_k x^k$$

Facts about Power Series

- $+ x + x^2 + \dots$ for |x| < 1
- $+ ax + ax^{2} + \dots$ for |ax| < 1

nultiplying two generating functions

Let
$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$
 and $g(x) = \sum_{k=0}^{\infty} b_k x^k$
 $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$
 $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University • <u>Example</u> (Rosen p.437): Let $f(x) = \frac{1}{(1-x)^2}$. Find the coefficients in the expansion $f(x) = \sum_{k=0}^{\infty} a_k x^k$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.438):

Extended Binomial Coefficient

• To apply binomial theorem for exponents that are not positive integers.

Let <u>u</u> be a real number and <u>k</u> a nonnegative integer. Then the extended binomial coefficient, $\begin{pmatrix} u \\ k \end{pmatrix}$, is defined by:

$$\binom{u}{k} = \begin{cases} u(u-1)...(u-k+1)/k! & \text{if } k > 0\\ 1 & \text{if } k = 0 \end{cases}$$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• When the top parameter is a negative number, the extended binomial coefficient can be expressed in terms of an ordinary binomial coefficient.

 $\binom{-n}{r} =$

Extended Binomial Theorem

• Let *x* be <u>a real number</u> with |*x*|<1 and let u be a real number. Then

 $(1+x)^{u} = \sum_{k=0}^{\infty} \binom{u}{k} x^{k}$

 $(1+x)^{-n} =$

$$(1-x)^{-n} =$$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.441):

Find the number of ways to insert tokens worth \$1, \$2, and \$5 into a vending machine to pay for an item that costs \$r:

When order *does not* matter.

Counting Problems and Generating

Functions

Example (Rosen p.441):

Find the number of solutions of $e_1+e_2+e_3=17$ where $2 \le e_1 \le 5$, $3 \le e_2 \le 6$, $4 \le e_3 \le 7$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.441):

Find the number of ways to insert tokens worth \$1, \$2, and \$5 into a vending machine to pay for an item that costs \$r:

When order *does* matter.

• Example (Rosen p.442):

Use generating functions to find the number of kcombination of a set with n elements. (Assume that the binomial theorem has been established.)

• Example (Rosen p.443):

Use generating functions to find the number of r*combination* of a set with *n* elements when repetition of elements is allowed.

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

• Example (Rosen p.443):

Use generating functions to find the number of ways to selected r objects of n different kinds if we must select at least one object of each kind.

Using Generating Functions to Solve

Recurrence Relations

• Example (p.444): $a_k = 3a_{k-1}$ for k=1,2,3,... and $a_0=2$

Atiwong Suchato

Faculty of Engineering, Chulalongkorn University

• <u>Example</u> (Rosen p.445): $a_n = 8a_{n-1} + 10^{n-1}$ and $a_0=1$

Functions

• <u>Example</u> (Rosen p.446): Use generating functions to show that

$$\sum_{k=0}^{n} c(n,k)^{2} = c(2n,n)$$

Atiwong Suchato Faculty of Engineering, Chulalongkorn University

Atiwong Suchato Faculty of Engineering, Chulalongkorn University