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Course OutlineCourse Outline
• 4 parts:
• Part1: Discrete Math Fundamentals
• Part2: Graphs and Trees 
• Part3: Counting Techniques
• Part4: Number Theory
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Why ?Why ?????

ProblemProblem

SolutionSolution

Formulate associated 
Mathematical 

arguments

Solve the problem 
mathematically
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Goals of Discrete Math.Goals of Discrete Math.
•• Mathematical ReasoningMathematical Reasoning

– Read, comprehend, and construct mathematical 
arguments

•• Combinatorial AnalysisCombinatorial Analysis
– Perform analysis to solve counting problems

•• Discrete StructureDiscrete Structure
– Able to work with discrete structures: sets, graphs, 

finite-state machines, etc.
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Goals of Discrete Math.Goals of Discrete Math.
•• Algorithmic ThinkingAlgorithmic Thinking

– Specify, verify, and analyze an algorithm

•• Applications and ModelingApplications and Modeling
– Apply the obtained problem-solving skills to model and 

solve problems in computer science and other areas, 
such as:

• Business
• Chemistry
• Linguistics
• Geology
• etc
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ABET AccreditationABET Accreditation

Programs containing the modifier
“computer” in the title must also

demonstrate that graduates have a
knowledge of

“discrete mathematics”.
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Foundations of Discrete Math.Foundations of Discrete Math.
•• LogicLogic

– Specify the meaning of Mathematical statements
– Basis of all Mathematical reasoning

•• SetsSets
– Sets are collections of objects, which are used for 

building many important discrete structures.

•• FunctionsFunctions
– Used in the definition of some important structures
– Represent complexity of an algorithm, and etc.



2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Rules of logic gives precise meaning to mathematical statements.
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Proposition: Building Blocks of LogicProposition: Building Blocks of Logic
• Proposition =

– Declarative sentence
– Either TRUE or FALSE (not both)

propositionproposition proposition

proposition proposition proposition

Logical operator

Compound
proposition
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Logical OperatorsLogical Operators
• Negation (NOT)

• Conjunction (AND)
• Disjunction (OR)

• Exclusive OR (XOR)
• Implication (IF..THEN)

• Biconditional (IF & ONLY IF)
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NegationNegation

TF
FT

¬ pp

• The negation of p has opposite truth value to p
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ConjunctionConjunction
• The conjunction of p and q, is true when, and 

only when, both p and q are true.

FFF
FTF
FFT
TTT

p ∧ qqp
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DisjunctionDisjunction
• The disjunction of p and q, is true when at least 

one of  p or q is true.

FFF
TTF
TFT
TTT

p ∨ qqp
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Exclusive ORExclusive OR
• Exclusive or = OR but NOT both

p ⊕ q = (p ∨ q) ∧ ¬(p ∧ q)

FFF
TTF
TFT
FTT

p ⊕ qqp
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ImplicationImplication
• It is false when p is true and q is false, and true 

otherwise.

TFF
TTF
FFT
TTT

p → qqp
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BiconditionalBiconditional
• p ↔ q is true when p and q have the same truth 

value.
• Intuitively, p ↔ q is (p→q)∧(q→p)

TFF
FTF
FFT
TTT

p ↔ qqp
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General Compound PropositionGeneral Compound Proposition
• Example:

(p∧q)∨¬p

F
F

T
T

p

F
F

T
F

T
F

T
F

p ∧ qq

T
T

F
F

¬ p (p ∧ q)∨ ¬ p

T

F

T

T
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ContrapositiveContrapositive
• The contrapositive of an implication p → q is:

¬q → ¬p
• has the same truth values as p → q
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Converse and InverseConverse and Inverse
• The converse of an implication p → q is:

q → p
• The inverse of an implication p → q is:

¬p → ¬q
• DO NOT have the same truth values as p → q
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Precedence of Logical OperatorsPrecedence of Logical Operators

5↔

4→

3∨

2∧

1¬
PrecedenceOperator p ∧¬q ∨ r→ p ↔ s

((p ∧(¬q) ∨ r)→ p) ↔ s
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Translating from Natural languageTranslating from Natural language
• Example (Rosen):

You cannot ride the rollercoaster if you are under 
4 feet tall unless you are older than 16 years old.

q: You can ride the roller coaster
r: You are under 4 feet tall
s: You are older than 16 years old

(r∧¬s)→ ¬q

¬(¬ r∨s)→ ¬q
q: You can ride the roller coaster
¬ r: You are at least 4 feet tall
s: You are older than 16 years old
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ConsistencyConsistency
• Translating natural language to logical expressions 

is essential to specifying system spec.
• Specifications are ““consistentconsistent”” when they do not 

conflict with one another. i.e.:

There must be an assignment of truth values 
to every expression that make all the 
expression true.
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ConsistencyConsistency
• Whenever the system is being upgraded, users 

cannot access the file system.
• If users can access the file system, they can 

save new files.
• If users cannot save new files, the system is not 

being upgraded.

• Whenever the system is being upgraded, users 
cannot access the file system.

• If users can access the file system, they can 
save new files.

• If users cannot save new files, the system is not 
being upgraded.
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ConsistencyConsistency
• Whenever the system is being upgraded, users 

cannot access the file system.
• If users can access the file system, they can 

save new files.
• If users cannot save new files, the system is not 

being upgraded.

• Whenever the system is being upgraded, users 
cannot access the file system.

• If users can access the file system, they can 
save new files.

• If users cannot save new files, the system is not 
being upgraded.

p → ¬ qp → ¬ q

q → rq → r

¬r → ¬p¬r → ¬p

TTTTFT

¬r → ¬pq → rp → ¬ qrqp

These spec. are consistent.
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Tautology, Contradiction, & ContingencyTautology, Contradiction, & Contingency

• A compound proposition that is always true is 
called a ““tautologytautology””.

• A compound proposition that is always false is 
called a ““contradictioncontradiction””.

• If neither a tautology nor a contradiction, it is 
called a ““contingencycontingency””.
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Logical EquivalencesLogical Equivalences
The propositions p and q are called “logical 

equivalent” (p ≡ q) if p ↔ q is a tautology
The propositions p and q are called “logical 

equivalent” (p ≡ q) if p ↔ q is a tautology
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Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

Show that the truth values of these propositions 
are always the same.

11

→ Construct truth tables.
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Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

• Example (Rosen):
Show that p → q ≡ ¬p ∨ q

FF
TF
FT
TT
qp

T
T
F
T

p → q

T
T
F
F

¬ p

T
T
F
T

¬ p∨ q

Logically EquivalentLogically Equivalent
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Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

Show that the truth values of these propositions 
are always the same.

11

Use series of established equivalences.22
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Logical EquivalencesLogical Equivalences
• Distributive Laws

p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r )
p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r )

• De Morgan’s Laws
¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q
¬ ( p ∨ q ) ≡ ¬ p ∧ ¬ q

• More can be found in the textbook
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Showing Logically Equivalent propositionsShowing Logically Equivalent propositions

• Example (Rosen):
Show that ¬ (p ∨ (¬ p ∧ q )) ≡ ¬ p ∧ ¬ q

¬(p ∨ (¬p ∧ q )) ≡ ¬p ∧ ¬(¬p ∧ q )       De Morgan’s
≡ ¬p ∧ (¬(¬p) ∨ ¬q )  De Morgan’s
≡ ¬p ∧ (p ∨ ¬q )    Double negative
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q ) Distributive
≡ F ∨ (¬p ∧ ¬q )
≡ ¬p ∧ ¬q
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Predicate LogicPredicate Logic
• In Propositional Logic, ‘the atomic units’ are 

propositions.
• E.g.:

– p: John goes to school., q: Mary goes to school.

• In Predicate Logic, we look at each
proposition as the combination of variablesvariables
and predicatespredicates .

• E.g.:
– X goes to school, where X can be John or Mary.

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Predicate LogicPredicate Logic
• The statement “x go to school” has two parts:

Variable “x”
The predicate “go to school”

• This statement can be denoted by P(x), where P
denotes the predicate “go to school”.

• P(x) is said to be the value of the propositional 
function P at x.

• Once a value has been assigned to the variable
x, the statement P(x) becomes a proposition and 
has a truth value.

• E.g: P(John) and P(Mary) have truth values.
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Creating propositions from a propositional functionCreating propositions from a propositional function

Assign values to all variables in a propositional 
function.
Use “Quantification”

11

22
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Universal QuantifierUniversal Quantifier
•• ∀∀xP(xxP(x)) ( read “for all x P(x)” ) denotes:

P(x) is true for all values x in the universal of 
discourse.
P(x) is true for all values x in the universal of 
discourse.

•• ∀∀xP(xxP(x)) is the same as:
P(x1)∧P(x2)∧…∧P(xn)

When all elements in the universe of discourse 
can be listed as (x1 , x2 , … , xn)
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Universal QuantifierUniversal Quantifier
• Example (Rosen):
• What is the truth value of ∀xP(x2 ≥ x), when the 

universe of discourse consists of:
– all real numbers?
– all integers?

Since x2 ≥ x only when x ≤ 0 or x ≥ 1, ∀xP(x2 ≥ x) 
is false if the universe consists of all real 
numbers. However, it is true when the universe 
consists of only the integers.
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Existential QuantifierExistential Quantifier
•• ∃∃xP(xxP(x)) ( read “for some x P(x)” ) denotes:

There exists an element x in the universe of 
discourse that P(x) is true.
There exists an element x in the universe of 
discourse that P(x) is true.

•• ∃∃xP(xxP(x)) is the same as:
P(x1)∨ P(x2)∨ …∨ P(xn)

When all elements in the universe of discourse 
can be listed as (x1 , x2 , … , xn)
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Existential QuantifierExistential Quantifier
• Example (Rosen):
• What is the truth value of ∃xP(x) where P(x) is 

the statement x2 > 10, and the universe of 
discourse consists of the positive integers not 
exceeding 4?
Since the elements in the universe can be listed 
as {1,2,3,4}, ∃xP(x) is the same as P(1)∨P(2)∨
P(3)∨P(4). There for ∃xP(x) is true since P(4) is 
true.
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NegationsNegations

Negation of
“Every 2nd year students loves Discrete math.” is
“There is a 2nd year student who does not love Discrete math.”

¬∀xP(x) ≡ ∃x ¬P(x)

¬∃xP(x) ≡ ∀x ¬P(x)

Negation of
“Some student in this class get ‘A’.” is
“None of the students in this class get ‘A’.”
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SetsSets
• A set is an unordered collection of objects.
• Objects in a set are called “members” or 

“elements” of that set.
• Two sets are equal ↔ they have the same 

elements

• A set is an unordered collection of objects.
• Objects in a set are called “members” or 

“elements” of that set.
• Two sets are equal ↔ they have the same 

elements

• Are {1,2,3} and {3,2,1} equal?
• Are {0,1,2} and {0,0,0,1,1,2} equal?
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Set Builder NotationSet Builder Notation
• Stating the properties that all elements must 

have to be members.

O = {x | x is a prime number less than 100}
R = {x | x is a real number}
U = {x | x is any of the objects

under consideration}
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SubsetSubset
A ⊆ B ↔ ∀x ( x ∈ A → x ∈ B )A ⊆ B ↔ ∀x ( x ∈ A → x ∈ B )

Proper SubsetProper Subset
A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)A ⊂ B ↔ (A ⊆ B) ∧ (A ≠ B)

For any set S, “∅ ⊆ S” and “S ⊆ S”
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CardinalityCardinality
• For a set S, if there are exactly n distinct 

elements in S, where n is a nonnegative integer, 
we say that S is a finite set and that n is the 
cardinality of S ( |S|=n )

• A set is “infinite” if it is not finite.
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Power SetPower Set
• Given a set S, the power set of S, P(S), is the set 

of all subsets of S
• If S has n elements, then P(S) has 2n elements.

• Examples (Rosen):

{∅,{∅}}{∅}
{∅}∅

{∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}{0,1,2}
P(S)S
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Ordered Ordered nn--tupletuple
• The ordered n-tuple (a1,a2,..,an) is the ordered 

collection that has a1 as its first element, a2 as its 
second element,…, and an as its nth element.

• The ordered n-tuple (a1,a2,..,an) is the ordered 
collection that has a1 as its first element, a2 as its 
second element,…, and an as its nth element.

Two ordered n-tuples are equal ↔ each 
corresponding pair of their elements is equal
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Cartesian ProductsCartesian Products
A x B = { (a,b) | a ∈ A ∧ b ∈ B}

A1 x A2 x … x An =
{ (a1,a2,…,an,) | ai ∈ Ai for i=1,2,..,n}

• Examples:
• What is the Cartesian product AxBxC, where 

A={0,1}, B={j,k}, C={x,y,z}?
AxBxC={(0,j,x),(0,j,y),(0,j,z),(0,k,x),(0,k,y),(0,k,z),

(1,j,x),(1,j,y),(1,j,z),(1,k,x),(1,k,y),(1,k,z)}
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Using Set Notation with QuantifiersUsing Set Notation with Quantifiers
• Specify the universe of discourse .
• E.g.:

∀x∈R(x2≥0)
means “for every real number x2≥0”
which is true.
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Set OperationsSet Operations
• Union (∪)

• Intersection (∩)
• Difference (−)

• Complement ( ′)
• Symmetric difference (⊕)
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Symmetric DifferenceSymmetric Difference
• A⊕B is the set containing those elements in 

either A or B but NOT in both A and B.

Example:
A = {1,3,5}, B = {1,2,3}, A⊕B = {2,5}

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Principle of InclusionPrinciple of Inclusion--ExclusionExclusion
|A ∪ B| = |A|+|B|-|A ∩ B||A ∪ B| = |A|+|B|-|A ∩ B|

More general (Later in this course):

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|

|A1 ∪ A2 ∪ … ∪ An| =
Σ|Ai| -Σ|Ai ∩ Aj| + Σ|Ai ∩ Aj ∩ Ak | - …
+(-1)n+1| A1 ∩ A2 ∩ … ∩ An|
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Set IdentitiesSet Identities
• Distributive Laws

A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C )
A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C )

• De Morgan’s Laws
(A ∪ B)′ = A′ ∩ B′
(A ∩ B)′ = A′ ∪ B′

• More can be found in the textbook.
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Showing that two sets have the same elementsShowing that two sets have the same elements

Show that each set is a subset of the other.

Use set builder notation and logical 
equivalences.

Build membership tables.

Use set identities.

11

22

33

44
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Proving Set EqualityProving Set Equality
Using membership tableUsing membership table

• Example Show that (A ∩ B)′ = A′ ∪ B′

01
10
10
10

(A ∩ B)′(A ∩ B)

11
01
10
00
BA

0
1
0
1
B′

0
1
1
1

A′ ∪ B′

0
0
1
1
A′
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Generalized Union and IntersectionGeneralized Union and Intersection

A1 ∪ A2 ∪ … ∪ An =  ∪Ai
i=1

n

A1 ∩ A2 ∩ … ∩ An =  ∩Ai
i=1

n
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FunctionsFunctions
Definition:
• A function f from A to B is an assignment.
• assigns exactly one element of B to each of A

AA BB

a b=f(a)
ff

A: Domain
B: Codomain
b is the image of a.
a is a pre-image of b.
Range of f is the set of
all images.

•Function cannot be “one-to-many”.
•∀a∈A, f(a) must be assigned to some b.
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Adding and Multiplying FunctionsAdding and Multiplying Functions
• Two real-valued functions with the same domain

can be added and multiplied.
f1, f2 are functions from A to R
→ f1+f2 and f1f2 are also functions from A to R.

(f1+f2)(x) = f1(x)+f2(x)
(f1f2)(x) = f1(x)f2(x)
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Adding and Multiplying FunctionsAdding and Multiplying Functions
• Example (Rosen):
• f1, f2 are functions from R to R. f1(x)=x2, f2(x)=x-

x2. What are the functions f1+f2 and f1f2?

(f1+f2 )(x) = f1(x)+f2(x) = x2 + x - x2 = x

(f1f2 )(x) = f1(x)f2(x) = x2 (x - x2 ) = x3 – x4
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OneOne--toto--one Functionsone Functions
A function f is one-to-one or injective

↔ ∀x∀y ( f(x)=f(y) → x=y )

Examples (Rosen)
Determine whether these functions are one-to-one.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

Since f(1) = f(-1) = 1, f1(x) is not one-to-one.

x+1 ≠ y+1 when x ≠ y, then f2(x) is one-to-one. 
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Conditions Guaranteeing OneConditions Guaranteeing One--toto--oneone
• Strictly increasing function:

∀x ∀y ( (x<y) → (f(x)<f(y)) )∀x ∀y ( (x<y) → (f(x)<f(y)) )

• Strictly decreasing function:

∀x ∀y ( (x<y) → (f(x)>f(y)) )∀x ∀y ( (x<y) → (f(x)>f(y)) )

where the universe of discourse = domain of f

Strictly increasing function
or

Strictly decreasing function
→ one-to-one

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Onto FunctionsOnto Functions
A function f is onto or surjective

↔ ∀y∃x ( f(x) = y )

Examples (Rosen)
Determine whether these functions are onto.

f1(x) = x2 from the set of integers to the set of integers

f2(x) = x+1

No, since there is no integer x that f1(x)=-1

Yes, for every f2(x)=y, there is an integer x=y-1 
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OneOne--toto--one Correspondenceone Correspondence
• One-to-one AND Onto
• Also called “bijection”
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ExamplesExamples
a
b
c

1
2
3
4

a
b
c
d

1
2
3

a
b
c
d

1
2
3
4

a
b
c
d

1
2
3
4

a
b
c

1
2
3
4

1-to-1, not onto not 1-to-1,onto 1-to-1,onto

neither 1-to-1,nor onto not a function
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Inverse FunctionsInverse Functions
• Let f be a one-to-one correspondent function 

from A to B.
• f-1(b) assigns to b, belonging to B, the unique 

element a, belonging to A, such that f(a)=b.

f-1(b)=a ↔ f(a)=bf-1(b)=a ↔ f(a)=b

A function that is NOT one-to-one 
correspondent is NOT invertible.
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Composite FunctionsComposite Functions
• (f • g)(a) = f( g(a) )
• f • g cannot be defined unless the range of g is a 

subset of the domain of f.
• If f is a one-to-one correspondent function from A 

to B
( f -1  • f )(a) = a,     a ∈ A
( f  • f -1 )(b) = b,     b ∈ B
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Some Important FunctionsSome Important Functions
• Floor function  ⎣ ⎦

⎣x⎦ = the largest integer  ≤ x

• Ceiling function ⎡ ⎤
⎡x⎤ = the smallest integer  ≥ x

⎣1/2⎦ =
⎡1/2⎤ =

⎣1⎦ =
⎡1⎤ =

⎣-1/2 ⎦ = 
⎡-1/2⎤ =
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ExamplesExamples
• Example (Rosen):
• Each byte is made up of 8 bits. How many bytes 

are required to encoded 100 bits of data?

⎡100/8⎤ =  ⎡12.5⎤ = 13 bytes 
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Factorial FunctionFactorial Function
• f(n) = n! is the product of the first n positive 

integers, so that
f(n) = 1 ⋅ 2 ⋅ … ⋅ (n-1) ⋅ n

and f(0) = 0! = 1
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Logic: Key TermsLogic: Key Terms
• Proposition
• Truth value
• Negation
• Logical Operator
• Compound 

proposition
• Truth table
• Disjunction
• Conjunction
• Exclusive or
• Implication

• Inverse
• Converse
• Contrapositive
• Biconditional
• Tautology
• Contradiction
• Contingency
• Consistency
• Logical 

equivalence

• Predicate
• Propositional 

function
• Universe of 

discourse
• Existential 

quantifier
• Universal 

quantifier
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Sets: Key TermsSets: Key Terms
• Cardinality
• Power set
• Union
• Intersection
• Difference
• Complement
• Symmetric 

difference
• Membership 

table

• Set
• Element
• Member
• Empty/Null set
• Universal set
• Venn diagram
• Set equality
• Subset
• Proper subset
• Finite set
• Infinite set
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Functions: Key TermsFunctions: Key Terms
• Inverse
• Composition
• Floor function
• Ceiling function
• Factorial

• Function
• Domain
• Codomain
• Image
• Pre-image
• Range
• Onto / Surjection
• One-to-one / 

Injection
• One-to-one 

correspondence / 
bijection
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RelationsRelations
• A (binary) relation form A to B is a subset of AxB
• A relation on the set A is a relation from A to A
• A function from A to B is a relation from A to B
• Examples:

R1 = {(1,1),(1,2),(2,1),(2,3)}
R2 = {(a,b) | a = b or a = -b}

a and b are integers
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Properties of RelationsProperties of Relations
• R on the set A is reflexive ↔ ∀a ( (a,a)∈ R )

Example: Consider relations on {1,2,3,4}

R1 = {(1,1),(1,2),(1,3),(2,2),(3,3),(4,1),(4,4)}

R2 = {(1,1),(2,1),(2,3),(3,1),(3,2),(3,3),(3,4),(4,4)}

R must contain (1,1),(2,2),(3,3),(4,4)
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Symmetric and Symmetric and AntisymmetricAntisymmetric
• R on a set A is symmetric

↔ ∀a∀b( (a,b) ∈ R → (b,a) ∈ R)
• R on a set A is antisymmetric

↔ ∀a∀b( ((a,b)∈R ∧ (b,a)∈R) → (a=b) )

• These two are NOT opposite.
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Symmetric and Symmetric and AntisymmetricAntisymmetric
• Symmetric ↔ ∀a∀b( (a,b) ∈ R → (b,a) ∈ R)
• Antisym.↔ ∀a∀b( ((a,b)∈R ∧ (b,a)∈R) → (a=b) )

Example:

R1 = {(1,1),(1,2),(2,1)}
R2 = {(1,1),(1,2)}
R3 = {(a,b) | a = b } (on Int.)
R4 = {(2,1)}
R5 = {(a,b) | a + b  ≤ 3} (on Int.)

Sym     Antisym

2110200 Discrete Structures
Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Transitive RelationsTransitive Relations
• R on a set A is transitive
↔ ∀a∀b∀c( ((a,b)∈R∧(b,c)∈R) → (a,c)∈R)

Example:

R1 = {(1,2),(2,3),(1,3),(1,4)}
R2 = {(1,1),(1,2),(1,3),(2,4)}
R3 = {(a,b) | a < b}
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Combining RelationsCombining Relations
• Since a relation is a set, we can apply all set 

operators to relations.
• Example (Rosen)

R1 = {(1,1),(2,2),(3,3)},
R2 = {(1,1),(1,2),(1,3),(1,4)}

R1 ∩ R2 = {(1,1)}
R1 − R2 = {(2,2),(3,3)}
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Composite RelationsComposite Relations
• R is a relation from A to B
• S is a relation from B to C
• SoR = {(a,c)| a∈A,c∈C, and there exists b∈B

such that (a,b)∈R and (b,c)∈S}
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Composite RelationsComposite Relations
• Example (Rosen):

R is a relation from {1,2,3} to {1,2,3,4} with 
R={(1,1),(1,4),(2,3),(3,1),(3,4)} and S is a relation 
from {1,2,3,4} to {0,1,2} with 
S={(1,0),(2,0),(3,1),(3,2),(4,1)}.
What is the composite of R and S?

SoR = {(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)}


