Mathematical Induction

Mathematical Induction

• A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:

<u>BASIC STEP</u>: Show that P(1) is true.

INDUCTIVE STEP: Show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k

Department of Computer Engineering

2110200 Discrete Structures

• Example :

Prove that the sum of the first *n* odd positive integers is n^2 .

P(n):

Basic Step:

Inductive Step:

• Example:

2110200 Discrete Structures

Department of Computer Engineering

Prove that $n < 2^n$ for all positive integers *n*.

P(n):

Basic Step:

Inductive Step:

Faculty of ENGINEERING | Chulalongkorn University

Faculty of ENGINEERING | Chulalongkorn University

<text><text><text><text><text><text></text></text></text></text></text></text>	<section-header><text><text><text><text><text></text></text></text></text></text></section-header>
Example : Prove that $H_{2^n} \ge 1 + \frac{n}{2}$ $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{j}$ whenever n is a nonnegative integer. P(n): <u>Basic Step</u> :	<section-header> Proving Mathematical Induction • The well-ordering property: Every nonempty set of nonnegative integers has a least element.</section-header>

Proving Mathematical Induction

- Show that *P*(*n*) must be true for all positive integers when *P*(1) and *P*(*k*)→*P*(*k*+1) are true.
- Assume that *P*(*n*) is not true for at least a positive integer. Then, the set *S* for which *P*(*n*) is false is nonempty.
- S has the least element, called $m. (m \neq 1)$
- Since m-1 < m, then $m-1 \notin S$ (or P(m-1) is true)
- But $P(m-1) \rightarrow P(m)$ is true. So, P(m) must be true.
- This contradicts the choice of *m*.

Strong Induction

- A proof by induction that *P*(*n*) is true for every positive integer *n* consists of 2 steps:
- Use a different induction step.

<u>BASIC STEP</u>: Show that P(1) is true. <u>INDUCTIVE STEP</u>: Show that $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$ is true for every positive integer k

2110200 Discrete Structures Department of Computer Engineering	Faculty of ENGINEERING Chulalongkorn University	2110200 Discrete Structures Department of Computer Engineering	Faculty of ENGINEERING Chulalongkorn University
 <u>Example</u>: Show that if <i>n</i> is an in can be written as the <i>P(n):</i> <u>Basic Step</u>: <u>Inductive Step:</u> 	nteger greater than <i>1</i> , then <i>n</i> e product of primes.		nount of postage of 12 cents ned using just 4-cent and 5-