Recurrence Relations

Recurrence Relations

 A recurrence relation for the sequence {a_n} is an equation that expresses a_n in terms of one or more of the previous terms, a₀, a₁,...,a_{n-1}.

> $a_n = 5a_{n-1}$ $b_n = b_{n-1} - 2 \ b_{n-2} + 100$ $c_n = c_{n-3} + c_{n-4} + log(n) + e^n$

2110200 Discrete Structures

Department of Computer Engineering

tment of Computer Engineering

• A sequence is called a **solution** of a recurrence relation if its terms <u>satisfy the recurrence relation</u>.

Recurrence Relations

• Example

Determine whether $a_n=3n$, for every nonnegative integer *n*, is a solution of

$$a_n = 2a_{n-1} - a_{n-2}; \quad n = 2, 3, \ldots$$

Initial Conditions

The *initial conditions* specify the terms that precede the first term where the recurrence relation takes effect.

Faculty of ENGINEERING | Chulalongkorn University

Initial Conditions

In order to find a *unique solution* for every <u>non-negative integers</u> to:

 $b_n = b_{n-2} + b_{n-4}$; n = 4, 5, ...

how many terms of b_n needed to be given in the initial conditions?

Modeling with Recurrence Relations

To find solutions for doing a task of a size n

Find a way to:

Construct the solution at the size n from the solution of the same tasks at smaller sizes.

2110200 Discrete Structures Department of Computer Engineering Faculty of ENGINEERING | Chulalongkorn University

Example: The Tower of Hanoi

<u>Rules</u>:

Move a disk at a time from one peg to another. Never place a disk on a smaller disk.

The goal is to have all disk on the 2nd peg in order of size.

Find H_n , the number of moves needed to solve the problem with *n* disks.

Example:

A man running up a staircase of *n* stairs. Each step he takes can cover either 1 or 2 stairs. How many different ways for him to ascend this staircase?

Department of Computer Engineering

Linear Recurrence Relations with Constant Coefficients

Linear Homogeneous Recurrence Rel.

- $a_n = a_{n-1} + a_{n-2}^2$
- $H_n = 2H_{n-1} + 1$
- $B_n = nB_{n-1}$
- $f_n = f_{n-1} + f_{n-2}$

Solving Recurrence Relations

• A *linear homogeneous* recurrence relation can be solved in a systematic way.

Faculty of ENGINEERING | Chulalongkorn University

Some Solutions

Show that:

$$a_n = K_1 r^n$$

where:

 K_1 can be any real number and, we can choose the value of *r* to be anything.

is a solution of:

 $a_n = c_1 a_{n-1} + c_1 a_{n-2} + \dots + c_k a_{n-k}$

Show that:

2110200 Discrete Structures

Department of Computer Engineering

$$a_n = \kappa_1 r_1^n + \kappa_2 r_2^n + \dots + \kappa_k r_k^n$$

where:

 K_i can be any real number, each r_i is a root of $r^k = c_1 r^{k-1} + c_2 r^{k-2} + ... + c_k$ and there are *k* distinct r_i 's.

is a solution of:

$$a_n = c_1 a_{n-1} + c_1 a_{n-2} + \dots + c_k a_{n-k}$$

Faculty of ENGINEERING | Chulalongkorn University

2110200 Discrete Structures

Department of Computer Engineering

Faculty of ENGINEERING | Chulalongkorn University

